
PHYSICAL REVIEW A 88, 042709 (2013)
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Theoretical doubly differential and total cross sections for electron-induced double ionization of oriented water
molecules are reported here. The calculations are performed within the first Born approximation by describing the
initial molecular state by means of single-center wave functions. Furthermore, the incident (scattered) electron
is described by a plane wave while a Coulomb wave function is used for modeling the two secondary ejected
electrons. The contribution of each final state to the double-ionization process is analyzed, namely, in considering
target electrons ejected either from similar or from different molecular subshells. Thus, secondary electron
energetic distributions as well as total cross sections are reported for particular target configurations, pointing
out orientation effects in the double-ionization process.
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I. INTRODUCTION

Interactions of charged particles like electrons, positrons,
and ions with water molecule are of fundamental importance
in many fields including physics [1–4], radiobiology, and even
medicine [5,6]. Indeed, the living cells being constituted of
about 50–80% water in mass, the water molecule represents
an ideal surrogate target to investigate the radio-induced
ionizing processes in biological matter. As an example, energy
transfer patterns as well as angular distributions resulting
from electron-induced collisions with water are commonly
used as input data in numerical simulations for modeling the
charged-particle track-structure in biological samples (see, for
example, Ref. [7] and references therein). In these numerical
codes (see, for example, Refs. [8–12] and [13–17] for electron-
and ion-track simulations, respectively), the electron histories
are described step by step by means of differential and total
interaction cross sections in order to provide the most detailed
energetic cartography (see, for example, the CELLDOSE code
developed by Champion et al. [18] devoted to the modeling
of the microscopic energetic distribution received by normal
tissues or cancer cells in order to assess the relative merits of
specific radiopharmaceuticals). Knowledge of the collision dy-
namics of electrons with biological systems is hence essential
over a wide range of energies including the low-energy domain
since the observation that high-energy radiations—like those
commonly used in cancer treatment planning—liberate many
low-energy electrons which may cause additional subcellular
damages like DNA single-strand breaks and/or base deletions
[19]. In this context, many theoretical models have been
proposed in the past for describing the main electron-induced
collisional processes in liquid and gaseous water, including
ionization, excitation, and even elastic scattering (see Ref. [7]
for more details) occulting—most of the time—the double-
ionization process considered as minor.

The existing studies on the electron-induced double ion-
ization of molecules remain, up to now, essentially focused
on the determination of multidifferential cross sections and
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therefore limited to simple molecules. In this context, let us
cite the works of Chuluunbaatar et al. [20] and Mansouri
et al. [21], both based on the plane-wave Born approximation
model (PWBA) and focused on the description of the (e,3e)
experiments of Lahmam-Bennani et al. [22] on a H2 target.
However, in the second work—developed within the second
Born approximation [21]—a strong disagreement with the
experimental observations [22] was reported by the authors
with, in particular, small shifts of the binary and recoil peaks
[21]. Let us also cite the more recent experiment of Li et al.
[23] where double ionization of neon, argon, and molecular
nitrogen targets impacted by 600- to 700-eV electron beams
was investigated. Thus, the fourfold differential cross sections
obtained have demonstrated that the double ionization of small
atoms or molecules was dominated—at least within the energy
range studied (600–700 eV)—by non-first-order mechanisms
such as the two-step (TS2) one, as previously shown by Staicu
Casagrande et al. [24] for helium. Regarding the double
ionization of oriented molecules, there are, to the best of
our knowledge, only a few cases reported in the literature.
Nevertheless, let us mention the photon- and ion-induced
double ionization of molecular deuterium (D2) [25] and that
of H2 impacted by photons [26]. For equal energy sharing
between the two ejected electrons and the photon (∼=76 eV),
the authors have observed a strong dependence of the electron
angular distribution versus the orientation of the molecular
target axis. This effect was well reproduced by a model in
which a pair of photoionization amplitudes was introduced for
the light polarization parallel to as well as perpendicular to
the molecular axis. Finally, let us note that orientation effects
on ion-induced double ionization have also been recently
investigated by Jones et al. [27] and Landers et al. [28].

From a more “macroscopic” point of view, namely, in
considering total (integrated) double-ionization cross sections
of atoms and molecules, only a few theoretical predictions
are available in the literature. Let us cite the pioneer works
of Byron and Joachain [29,30] and Tweed [31,32] where
total double-ionization cross sections by electron impact were
estimated as well as the more recent work of Geyer [33]
who used a classical trajectory ansatz to describe the double
ionization of helium. In this context, quantum-mechanical
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models remain rarely evoked essentially due to the fact that
the latter are usually based on fully differential cross-section
calculations, which implies numerous successive numerical
integrations over the energy and angular transfers in order to
access total cross sections. This kind of procedure is obviously
very time-consuming with regards to computing, which leads
to the calculation of total double-ionization cross sections
being almost unfeasible, especially at high impact energy. To
overcome this limitation, an alternative consists of providing
an analytical expression of less differential cross sections. In
this context, the partial-wave expansion formalism reported
in our previous works appears to be of great interest even
if the first achievable cross sections are sixfold differential
ones, namely, differential in the energy transfers (relative to the
two secondary ejected electrons), differential in the scattering
direction, differential in the directions of the two ejected elec-
trons, and finally differential in the target molecule orientation,
the latter being defined by means of the Euler angle triplets
(see hereafter for more details). In this context, let us underline
the importance of such oriented-target cross sections which
appear as crucial not only for a better understanding of the
fragmentation mechanism itself but also for practical reasons
since anisotropic angular and therefore energetic distributions
may influence the measurements, as already revealed by many
authors in the case of ion-induced multiple ionization (see, for
example, Ref. [34]) as well as in electron-induced (e,2e + M)
collisions where the two outgoing electrons and the fragment
ion are detected in triple coincidence [35]. Conversely, it
has been shown that coincident time-of-flight measurements
with a position-sensitive multihit detector provided a complete
three-dimensional image of the breakup process for each
individual event, conferring then to the measured break-up
pattern yields a complete information on the molecular system
orientation with respect to the projectile beam axis.

Finally, let us remind the reader that recently, the time-
dependent close-coupling (TDCC) method was used to cal-
culate total cross sections for the electron-induced double
ionization of helium [36,37], H− [38], magnesium [39], and
beryllium [40] targets.

Considering now the investigation of total double-
ionization cross sections of oriented molecules, one only
finds the case of photon-induced double ionization recently
treated by Ivanov and Kheifets [41] who used the time-
dependent Schrödinger equation for calculating the total
double-ionization cross sections of H2. Besides, perpendicular
to parallel photon-induced double-ionization cross-section
ratios were also reported by Vanroose et al. [42] and
compared to their homologous cross-section ratios obtained
by single photoionization. Thus, single-photoionization ratios
have shown peaks for photon energy of about 75 eV, which
correspond to a Cooper-like minimum of the dipole in the
parallel configuration. This maximum was also observed in
the photon-induced double-ionization cross-section ratios at
slightly lower photon energy. Then, the authors stated that the
perpendicular to parallel ratios were similar in both the single-
and double-ionization channels.

The double-ionization process on single oriented water
molecules is discussed in our previous works [43–45], where
fivefold differential cross sections for the water double ion-
ization have been reported and intracompared for particular

kinematical conditions in order to highlight the role played
by the target molecule orientation in the double-ionization
process. In this context, the current work aims to point
out that the molecular orientation is still crucial when less
differential cross sections are investigated, in particular, in
terms of secondary electron energy distribution as well as total
cross sections as already observed for the single ionization of
oriented water molecules [46].

II. THEORETICAL MODEL

We here study the double-ionization reaction on water
molecule,

e−
i + H2O → e−

s + e−
1 + e−

2 + H2O2+, (1)

where e−
i , e−

s , e−
1 , and e−

2 refer to the incident, the scattered,
and the two outgoing electrons, respectively, H2O2+ being
the residual ion. The corresponding momenta ki ,ks,k1,
and k2 are linked to the electron kinetic energies via the
following relations: ki = √

2Ei , k1 = √
2E1, k2 = √

2E2,
and ks =

√
2(Ei − E1 − E2 − I 2+), where I 2+ denotes the

double-ionization threshold and varies according to the two
molecular orbitals involved in the collision (see Table I).

In the present work as well as in our previous studies
devoted to single and double water ionization by charged
particles [43,44,48–51], the frozen-core approximation was
used in order to reduce the N = 10-electron problem to a
two-electron system and then to consider only two active
ejected electrons. In addition, we also assume that the
remaining electrons in the doubly charged ion core are un-
affected by the ionization process. Consequently, the potential
V ≡ V (r0,r1,r2) involved in the transition matrix element may
be written as

V (r0,r1,r2) = − 2

r0
+ 1

|r0 − r1| + 1

|r0 − r2| , (2)

TABLE I. Binding energies of the various final states of the
double-ionized water molecule. The data are taken from Ref. [47].

Molecular final states Binding energies (eV) State multiplicity

1b1
−2 39.7 Singlet

3a1
−2 44.4 Singlet

1b2
−2 52.2 Singlet

2a1
−2 83.3 Singlet

1b1
−13a1

−1 41.3 Singlet
38.6 Triplet

1b1
−11b2

−1 44.9 Singlet
43.0 Triplet

1b1
−12a1

−1 63.9 Singlet
57.1 Triplet

3a1
−11b2

−1 47.1 Singlet
44.9 Triplet

3a1
−12a1

−1 65.2 Singlet
58.8 Triplet

1b2
−12a1

−1 70.3 Singlet
63.9 Triplet
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where r0 denotes the position vector of the incident particle
whereas ri is the position vector of the ith bound electron with
respect to the center of the molecule, i.e., the oxygen nucleus.

In the present work as well as in our previous studies
devoted to the double ionization of water by charged particles
[43,44], the oriented target molecule is described by means of
single-center molecular wave functions [52]. The ten bound
electrons of the water target molecule are then distributed
among five molecular wave functions corresponding to the
five molecular orbitals denoted 1b1,3a1, 1b2, 2a1, and 1a1.
Each of them is expressed as

υj (r) =
Nat (j )∑
k=1

ajk�
ξjk

njk ljkmjk
(r), (3)

where the radial and angular parts are given by Slater functions
and by real solid harmonics, respectively (see Ref. [53] for
more details). In Eq. (3), Nat (j ) is the number of Slater
functions used in the development of the j th molecular
orbital and ajk is the weight of each real atomic component

�
ξjk

njk ljkmjk
(r) (more details can be found in Refs. [48,52],

where all the necessary coefficients and quantum numbers
are reported).

In the first Born approximation, the fivefold differential
cross sections σ (5)(�1,�2,�s, E1, E2) for the water double

ionization, hereafter denoted 5DCS, are given by

d5σ

d�1d�2d�sdE1dE2
≡ σ (5)(�1,�2,�s,E1,E2)

=
5∑

j1=1

5∑
j2�j1

σ
(5)
j1j2

(�1,�2,�s,E1,E2)

= (2π )4 k1k2ks

ki

5∑
j1=1

5∑
j2�j1

∣∣Tj1j2

∣∣2
, (4)

where d�s, d�1, and d�2 denote the solid angle directions of
the scattered and the two ejected electrons, respectively. The
energy intervals of the two ejected electrons are represented
by dE1 and dE2.

The transition matrix element denoted as Tj1j2 refers to the
simultaneous ejection of two electrons from two molecular
orbitals labeled j1 and j2, respectively. Moreover, as under-
lined in our previous works, the above-cited wave functions
describing the initial bound states of the water molecule refer
to a particular molecular orientation given by the Euler angle
triplet (α,β,γ ), the latter being defined with respect to the
laboratory-fixed frame (see Sec. II for more details).

Under these conditions, the matrix element Tj1j2 also
depends on the target orientation and may be rewritten as

Tj1j2 ≡ Tj1j2 (α,β,γ ) = 〈�f (ks,k1,k2; r0,r1,r2; α1,α2)|V (r0,r1,r2)
∣∣�j1j2

i (ki; r0,r1,r2; α1,α2; α,β,γ )
〉
, (5)

where �
j1j2
i (ki; r0,r1,r2; α1,α2; α,β,γ ) represents the initial state of the system while �f (ks,k1,k2; r0,r1,r2; α1,α2) stands for

the final state.
In Eq. (5), the vectors |α1,α2〉 indicate the spin of the two active electrons: four possibilities may be identified, namely, (u,u),

(u,d), (d,u), and (d,d), where u (d) refers to a spin up (down). Thus, we have

|α1,α2〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
2

(|u d〉 − |d u〉) for a singlet state,
|u u〉

1√
2

(|u d〉 + |d u〉)
|d d〉

⎫⎪⎪⎬
⎪⎪⎭ for a triplet state.

(6)

Thus, the initial state wave function may be taken as a product of a plane wave ϕ(ki; r0) describing the incident electron and
the wave function φ

j1j2
i (r1,r2; α,β,γ ) referring to the ground state of the water molecule, while the final state is described by

the product of two Coulomb wave functions [ϕc(k1; r1) and ϕc(k2; r2)] describing the two ejected electrons with a plane wave
ϕ(ks ; r0) for the scattered electron. Thus, we may write∣∣�j1j2

i (ki; r0,r1,r2; α1,α2; α,β,γ )
〉 = ∣∣ϕ(ki; r0)φj1j2

i (r1,r2; α,β,γ )
〉|α1,α2〉,

(7)
〈�f (ks,k1,k2; r0,r1,r2; α1,α2)| = 〈ϕ(ks; r0)φf (k1,k2; r1,r2)|〈α1,α2|.

The functions ϕ(ki; r0) and ϕ(ks ; r0) refer to the plane wave functions associated to the incident and the scattered electron,
respectively, while the functions φ

j1j2
i (r1,r2; α,β,γ ) and φf (k1,k2; r1,r2) refer to the initial and final wave functions, respectively,

φ
j1j2
i (r1,r2; α,β,γ ) ≡ [

φ
j1j2
i (r1,r2; α,β,γ )

]± = υj1 (r1; α,β,γ ) × υj2 (r2; α,β,γ ) ± υj1 (r2; α,β,γ ) × υj2 (r1; α,β,γ )√
2

(8)

and

φf (k1,k2; r1,r2) ≡ [φf (k1,k2; r1,r2)]± = ϕc(k1; r1) × ϕc(k2; r2) ± ϕc(k1; r2) × ϕc(k2; r1)√
2

. (9)

Thus, φ
j1j2
i (r1,r2; α,β,γ ) and φf (k1,k2; r1,r2) are symmetric ([φj1j2

i (r1,r2; α,β,γ )]+ and [φf (k1,k2; r1,r2)]+, respectively)
when the considered vector |α1,α2〉 refers to a singlet state and antisymmetric ([φj1j2

i (r1,r2; α,β,γ )]− and [φf (k1,k2; r1,r2)]−,
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respectively) otherwise. Finally, the functions υj (r; α,β,γ ) reported in Eq. (8) are given by

υj (r; α,β,γ ) =
Nat (j )∑
k=1

fjk(r)
ljk∑

μ=−ljk

D
ljk

μ,mjk
(α,β,γ )Sμ

ljk
(r̂), (10)

where S
μ

ljk
(r̂) and Dlik

μ,mjk
(α,β,γ ) refer to the spherical harmonics in their real form [53] and to the rotation matrix, respectively,

the latter being defined by

D
ljk

μ,mjk
(α,β,γ ) = e−imjkαd

ljk

μ,mjk
(β)e−iμγ , (11)

where the quantity d
ljk

μ,mjk
(β) is given by the Wigner formula

d
ljk

μ,mjk
=

τ∑
t=0

(−1)t
√

(ljk + μ)!(ljk − μ)!(ljk + mjk)!(ljk − mjk)!

(ljk + μ − t)!(ljk − mjk − t)!t!(t − μ + mjk)!
ξ 2ljk+μ−mjk−2t η2t−μ+mjk , (12)

with ξ = cos(β/2) and η = sin(β/2).
Under these conditions and by using the well-known partial-wave expansion of the plane wave as well as that of the Coulomb

wave, we get the following expression for the 5DCS [44],

d5σ±(α,β,γ )

d�1d�2d�sdE1dE2
= (2π )4 k1k2ks

ki

gG(k1,k2)
4∑

j1=1

4∑
j2�j1

n

∣∣∣∣∏̂j1
(α,β,γ ; k1)

[∏
j2

(α,β,γ ; k2) −
∏̂

j2
(α,β,γ ; k2)

]

±
∏̂

j1
(α,β,γ ; k2)

[∏
j2

(α,β,γ ; k1) −
∏̂

j2
(α,β,γ ; k1)

]
+

∏
j1

(α,β,γ ;k1)
∏̂

j2
(α,β,γ ; k2)

±
∏

j1
(α,β,γ ;k2)

∏̂
j2

(α,β,γ ; k1)

∣∣∣∣
2

(13)

with σ− and n = 3 for the triplet state and σ+and n = 1 for the singlet state, where

∏
j
(α,β,γ ; k1)= 2

qk1

√
2

π

Nat (j )∑
k=1

∑
l,m

∑
l1,m1

X
l,l1
jk (k1,q)il−l1eiσl1 (η1)Y

m1
l1

(k̂1)Ym∗
l (q̂)�ljk,m1−m,mjk

(α,β,γ )(−1)m1

√
l̂1 l̂ l̂jk

4π

(
l1 l ljk

0 0 0

)

×
(

l1 l ljk

−m1 m m1 − m

)
, (14)

with the momentum transfer defined by q = ki − ks, and

∏̂
j
(α,β,γ ; k1) = 1

πqk1

√
2

π

Nat (j )∑
k=1

ljk∑
m1=−ljk

X̂
ljk

jk (k1)�ljk,m1,mjk
(α,β,γ )Ym1

ljk
(k̂1)i−ljk e

iσljk
(η1)

, (15)

where

�ljk,mjk,μ (α,β,γ ) = D
ljk

μ,−mjk
(α,β,γ ) − D

ljk

μ,mjk
(α,β,γ )√

2
if j = 1, i.e., for the 1b1 orbital,

�ljk,mjk,μ (α,β,γ ) = i
D

ljk

μ,mjk
(α,β,γ ) + D

ljk

μ,−mjk
(α,β,γ )√

2
if j = 3, i.e., for the 1b2 orbital, (16)

�ljk,mjk,μ (α,β,γ ) = D
ljk

μ,mjk
(α,β,γ ) + D

ljk

μ,−mjk
(α,β,γ )√

2
δmjk,2 + D

ljk

μ,mjk
(α,β,γ ) δmjk,0 otherwise.

The radial parts X
l,l1
jk (k,q) and X̂

ljk

jk (k) introduced in Eqs. (14) and (15) are expressed as

X
l,l1
jk (k,q) = ∫ ∞

0 dr r Fl1 (k,r) jl(qr) fjk(r), X̂
ljk

jk (k) = ∫ ∞
0 dr r Fljk

(k,r) fjk(r), (17)

where Fl(k,r) and jl(qr) denote the radial hypergeometric function and the Bessel function, respectively, while fjk(r) refers to the
jkth component of the radial part of the target wave function (for more details we refer the reader to our previous works [48–51]).

Let us note that we have also introduced in Eq. (13) the well-known Gamov factor gG(k1,k2) in order to account for the
electron-electron repulsion, namely,

gG(k1,k2) = ν

eν − 1
, with ν = 2π

|k1 − k2| . (18)
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However, when the integrations over the ejection directions k̂1 and k̂2 are carried out, we take gG(k1,k2) = 1 in order to benefit
from the selectivity rules of the complex harmonics. Then, we can write

d3σ±(α,β,γ )

d�sdE1dE2
=

∫ ∫
d5σ±(α,β,γ )

d�1d�2d�sdE1dE2
dk̂1dk̂2, (19)

where dk̂ = sin θ dθ dφ.

Finally, taking into account the closure relation of the spherical harmonics given by∫
Ym

� (k̂)Ym′
�′ (k̂)dk̂ = δ��′δmm′ , (20)

Eq. (19) may be written as

d3σ±(α,β,γ )

d�sdE1dE2
=

{
(2π )4 k1 k2 ks

ki

n

4∑
j1=1

4∑
j2�j1

[
Ij1j1 (α, β, γ ; k1) Îj2 (k2) + Ij2j2 (α,β,γ ; k2) Îj1 (k1) + Ij1j1 (α, β, γ ; k2)

× Îj2 (k1) + Ij2j2 (α, β, γ ; k1)Îj1 (k2) + Îj2 (k1) Îj1 (k2) + Îj1 (k1)Îj2 (k2) + 2 Re
[
Hj1j1 (α, β, γ ; k1)

×H ∗
j2j2

(α, β, γ ; k2)
] ± 2Re

[
Hj1j2 (α, β, γ ; k1) H ∗

j1j2
(α, β, γ ; k2 )

] ± 2Re
[
Ij1j2 (α, β, γ ; k1) Î ′

j2j1
(k2)

]
+ 1

π

{ ∓ Re
[
Î ′
j2j2

(k2)Hj1j2 (α,β,γ ; k1)
] − Re

[
Hj1j1 (α,β,γ ; k1)Îj2 (k2)

]} ± 2Re
[
Î ′
j1

(k1)Ij2j1 (α,β,γ ; k2)
]

± 2Re
[
Hj2j1 (α,β,γ ; k2)H ∗

j2j1
(α,β,γ ; k1)

] + 1

π

{ ∓ Re
[
Î ′
j1j2

(k1)Hj2j1 (α,β, γ ; k2)
]

− Re
[
Hj2j2 (α,β,γ ; k2)Îj1 (k1)

]}+2Re
[
Hj1j1 (α,β,γ ; k2)H ∗

j2j2
(α,β,γ ; k1)

]+ 1

π

{ − Re
[
Hj1j1 (α,β, γ ; k2)Îj2 (k1)

]
∓ Re

[
Hj1j2 (α, β, γ ; k2) Î ′

j2j1
(k1)

]} + 1

π

{ − Re
[
Îj1 (k2)Hj2j2 (α ,β, γ ; k1)

]
∓ Re

[
Hj2j1 (α, β, γ ; k1)Î ′

j1j2
(k2)

]}± Re
[
Î ′
j2j1

(k1)Î ′
j1j2

(k2)
]]}

, (21)

where

Ij1j2 (α,β,γ ; k1)= 8

π

1

q2k2
1

Nat (j1)∑
k=1

∑
l,m

∑
l1,m1

X
l,l1
j1k

(k1,q)ilYm∗
l (q̂)�lj1k ,m1−m,mj1k

(α,β,γ )

√
l̂1 l̂ l̂j1k

4π

×
(

l1 l lj1k

0 0 0

) (
l1 l lj1k

−m1 m m1 − m

) Nat (j2)∑
k′

2

∑
l′,m′

X
l′,l1
j2k

′
2
(k1,q)i−l′Ym′

l′ (q̂)�∗
lj2k′

2
,m1−m′,mj2k′

2

(α,β,γ )

×
√

l̂1 l̂′ l̂j2k
′
2

4π

(
l1 l′ lj2k

′
2

0 0 0

) (
l1 l′ lj2k

′
2

−m1 m′ m1 − m′

)
, (22)

Hj1j2 (α,β,γ ; k1) = 8

π

1

q2k2
1

Nat (j1)∑
k=1

Nat (j2)∑
k′

2

∑
l,m,m1

X
l,lj2 k′

2
j1k

(k1,q)ilYm∗
l (q̂)X̂

lj2k′
2

j2k
′
2
(k1)�lj1k ,m1−m,mj1k

(α,β,γ )

×�∗
lj2k′

2
,m1,mj2k′

2

(α,β,γ )(−1)m1

√
l̂j2k

′
2
l̂ l̂j1k

4π

(
lj2k

′
2

l lj1k

0 0 0

)(
lj2k

′
2

l lj1k

−m1 m m1 − m

)
, (23)

Îj (k1) = 2

π3

1

q2 k2
1

Nat (j )∑
k=1

[
X̂

ljk

jk (k1)
]2

, (24)

and

Î ′
j1j2

(k1) = 2

π3

1

q2k2
1

Nat (j1)∑
k=1

Nat (j2)∑
k′

2

X̂
�j1k

j1k
(k1)X̂

�j1k

j2k
′
2
(k1)δmj1k ,mj2k′

2
. (25)

Let us note that the summation over the target initial states does not take into account the inner 1a1 orbital contributions. So, the
indexes j1 and j2 vary up to 4 [see Eqs. (13) and (21)]. In order to obtain the total (integrated) cross section (TCS), Eq. (21) is
numerically integrated over the solid angle �s and the ejected energies E1 and E2, namely,

σ±(α,β,γ ) =
∫ E1 max

0

∫ E2 max

0

∫
d3σ±(α,β,γ )

d�sdE1dE2
d�sdE1dE2. (26)
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In addition, the scattered electron being, by definition, the
most energetic electron in the final state, we have followed the
recommendations of Defrance et al. [54] and Bahati et al. [55]
and defined the upper limits of the integration E1 max and E2 max

as

E1 max = (Ei − I 2+)/2 and E2 max = (Ei − I 2+)/2 − E1,

with

Ei = I 2+ + Es + E1 + E2. (27)

III. RESULTS AND DISCUSSION

In the current work, we investigate the influence of the
molecular target orientation on the double-ionization (DI)
cross sections. To this end, we have selected particular ori-
entations of the target water molecule, namely, those deduced
from the initial target orientation (α,β,γ ) = (0,0,0)—which
corresponds to a water molecule situated in the yz plane with
the z axis parallel to the bisecting line of the molecule—by
a β rotation around the y axis (with β ranging from 0 to π )
in keeping α = γ = 0. These different configurations are
hereafter denoted Ry(0,β,0). In addition, let us note that, in
all the geometries investigated here, the incident momentum
ki remains collinear to the z axis (see Fig. 1).

Studying the orientation effect on the DI of an oriented wa-
ter molecule requires discriminating each molecular subshell
contribution. Thus, in Fig. 2, we report the evolution of the
total DI cross sections for two target electrons ejected from
the same orbital—referred to as (1b1)−2, (3a1)−2, (1b2)−2, and
(2a1)−2—versus the Euler angle β and for different incident
energies. In order to compare the evolution of the total cross
sections versus the β angle, the latter have been normalized to
their β = 0 value (i.e., for a parallel orientation).

FIG. 1. (Color online) Schematic representation of the particular
rotations Ry(0,β,0) investigated in the present work.

Regarding the 1b1 orbital [see Fig. 2(a)], we note that
the total DI cross sections exhibit a maximum at β = π/2,
whatever the incident energy. This result is consistent with the
fact that this orbital is mainly governed by a 2p+1 orbital
(∼=99.6%) and then corresponds—in the current molecular
description (based on real solid harmonic)—to a molecular
orbital collinear to the x molecular axis. This orbital-type is
denoted PX in the following. Thus, applying the Ry(0,β,0)
rotation on the 1b1 orbital means going from an initial
configuration where the orbital is aligned with the x axis to a
final configuration—denoted PZ in the following—where the
orbital is parallel to the z axis, as shown below in Eq. (28),
where the Ry(0,β,0) transformations are summarized:

Ry(0,π/2,0) :

⎧⎪⎨
⎪⎩

PX → PZ,

PZ → PX,

PY → PY .

(28)

Under these conditions, it clearly appears that the highest
DI cross sections are obtained when the impacted orbital is
collinear to the beam axis (the z axis), namely, for β = π/2.

Considering now the 3a1 orbital [see Fig. 2(b)]—whose
major component is 2p0, i.e., a PZ orbital-type—we observe
the opposite trend. Indeed, following the Ry(0,π/2,0) rotation
reported in Eq. (28) according to which a PZ orbital becomes
a PX one, the 3a1 orbital—initially aligned with the incident
electron beam—becomes now perpendicular to the incident
direction (α,β,γ ) = (0,π/2,0), leading then to a minimum for
the total DI cross sections at β = π/2.

In Fig. 2(c), the total DI cross sections for the 1b2 orbital,
mainly governed by a 2p−1 orbital, i.e., a PY orbital-type,
exhibit a minimum at β = π/2 while it is clear that the rotation
Ry(0,β,0) should not change the orientation of the molecular
orbital, which here remains aligned with the y axis. This result
may be explained by the fact that the 1b2 orbital is not a pure
2p−1 molecular state since including a non-negligible 3d−1

component, which obviously exhibits—in the present real
solid-harmonics-based description—four lobes. Under these
conditions, this component appears as collinear to the PZ

orbital for (α,β,γ ) = (0,0,0) while it becomes perpendicular
to the incident electron beam after the Ry(0,π/2,0) rotation.
Thus, the total DI cross sections show a minimum for
β = π/2. Similarly, in Fig. 2(d) the s-type 2a1 orbital
exhibits a maximum for (α,β,γ ) = (0,0,0), which is due to
its non-negligible 2p0 (PZ) component.

Finally, let us note that in all the cases reported in Fig. 2, the
DI process seems to be all the more sensitive to the molecule
orientation when the incident electron energy is low, as already
observed for the single ionization process induced by electron
impact on water molecule [46].

Considering now the case of two secondary electrons
ejected from two different orbitals, we report in Fig. 3 the
relative evolution of the total DI cross sections versus the
β angle for different incident energies. The different final
states here reported are denoted (1b1)−1(3a1)−1, (1b1)−1

(1b2)−1, (1b1)−1(2a1)−1, (3a1)−1(1b2)−1, (3a1)−1(2a1)−1, and
(1b2)−1 (2a1)−1 in Figs. 2(a)–2(f), respectively.

In Fig. 3(a) we report the case of the (1b1)−1(3a1)−1 state,
which is mainly governed by a (PX)−1(PZ)−1 component. In
this case, the incident energy Ei = 100 eV appears as an
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FIG. 2. (Color online) Variation of the total double-ionization cross sections of an isolated water molecule versus the β angle for different
incident energies. The secondary electrons considered are here ejected from the same orbital, namely, from (a) the 1b1 orbital, (b) the 3a1

orbital, (c) the 1b2 orbital, and (d) the 2a1 orbital. Curves are normalized at β = 0.

energy threshold. Thus, below this energy “cutoff,” the total
DI cross sections appear as essentially influenced by the 1b1

orbital whose behavior is strongly dependent on the β angle
for incident energies lower than 100 eV with, in particular, a
maximum at β = π/2 due to its alignment with the incident
beam. Thus, the total DI cross sections exhibit a maximum at
β = π/2 for Ei < 100 eV. On the contrary, for Ei > 100 eV,
the total DI cross section evolution is essentially due to the 3a1

orbital since the 1b1 orbital shows a quasi-isotropic behavior
versus the β angle [see Fig. 2(a)], leading then to a minimum
of the total DI cross sections at β = π/2.

Similar observations may be done for the (1b1)−1(1b2)−1

final state [see Fig. 3(b)] where the behavior of the total DI
cross sections is essentially due to the 1b1 component for
Ei < 100 eV (with a maximum at β = π/2) whereas the 1b2

component governs the evolution of the total DI cross sections
[see Fig. 2(c)] for incident energies greater than 100 eV.
However, let us note that the particular case Ei = 100 eV is very
interesting since we here observe a minimum at β = π/2 while

a maximum is reported in Fig. 3(a). This observation may be
linked to the value of the ratio σ (0,π/2,0)/σ (0,0,0), which is
equal to 1.06 for the 1b1 orbital [see Fig. 2(a)], whereas it is
equal to 0.76 for the 1b2 orbital [see Fig. 2(c)]. Under these
conditions, for this energy, Ei = 100 eV, it is clear that the
main contribution to the total DI cross sections is due to the 1b2

orbital which is then responsible for the minimum at β = π/2.
The cases reported in, Figs. 3(c), 3(d), and 3(f) show an

evident behavior, which may be easily linked to the individual
contribution of each molecular orbital involved in the DI
process (see Fig. 2). Thus, for all the incident energies
considered, we observe a minimum at β =π/2. Let us note that
the incident energy Ei = 50 eV is not any more considered here
since below (or of the same order of magnitude of) the binding
energies of the various final states of the double-ionized water
molecule (see Table I).

Regarding the (3a1)−1(2a1)−1 final state reported in
Fig. 3(e), the maximum reported at β = π/2 for Ei = 200 eV
is very interesting since it was not trivially deduced from the
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FIG. 3. (Color online) Variation of the total double-ionization cross sections of an isolated water molecule versus the β angle for different
incident energies. The secondary electrons considered here are ejected from different orbitals, namely, from (a) the (1b1)−1 (3a1)−1 state, (b)
the (1b1)−1 (1b2)−1 state, (c) the (1b1)−1 (2a1)−1 state, (d) the (3a1)−1 (1b2)−1 state, (e) the (3a1)−1 (2a1)−1, and (f) the (1b2)−1 (2a1)−1 state.
Curves are normalized at β = 0.

individual results shown in Fig. 2(b) and Fig. 2(d) for the
3a1 and 2a1 final states, respectively, where a minimum is
reported at this β angle. In fact, the observed maximum may be
attributed to an interference effect between the two considered
molecular states, namely, the 3a1 and the 2a1 final states which

both are PZ type, contrary to the two particular cases reported
in Figs. 3(a) and 3(b) where the molecular states involved in
the DI process are orthogonal to each other, namely, 1b1 (PX)
and 3a1 (PZ) for Fig. 3(a) and 1b1 (PX) and 1b2 (PY ) for
Fig. 3(b). Finally, let us note that we still observe that the DI
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FIG. 4. (Color online) Variation of the global double-ionization
cross sections of water molecules versus the β angle for different
incident energies. Curves are normalized at β = 0.

process is less and less sensitive to the molecule orientation
when the incident electron energy increases.

In Fig. 4, we report the evolution of the global double
ionization cross sections versus the β angle, the latter being
obtained by summing up all the molecular-state contributions.

For Ei = 50 eV, we observe that the DI probability
shows a maximum for the orientation (α,β,γ ) = (0,π/2,0)
while the parallel orientation (α,β,γ ) = (0,0,0) becomes
the preponderant one when the incident energy increases
(Ei > 50 eV). This result is undoubtedly attributed to the fact
that for Ei = 50 eV, the DI process essentially involves the
(1b1)−2, (1b1)−1(3a1)−1, and (1b1)−1(1b2)−1 final states for
which the DI was privileged in the perpendicular molecular
target orientation [see Figs. 2(a), 3(a), and 3(b)]. Then,
when the incident energy increases, all the molecular states
contribute to the DI process, leading to a maximal cross section
for the (α,β,γ ) = (0,0,0) orientation. This feature may be also
pointed out when the kinetic energy distributions of the ejected
electrons are considered.

Indeed, from Fig. 5 where the global energy distributions
of the secondary electrons ejected by double ionization of a
water molecule oriented in the (0,0,0) and (0,π/2,0) directions
are shown, it clearly appears that, for the 100-eV electron
impact, the DDCS are more affected by the target orientation
than for the 500-eV electron impact. Thus, in Figs. 5(a) and
5(b), we observe more pronounced energy distributions with
a maximum of about 18 a.u. in the (0,0,0) direction versus
about 16 a.u. in the (0,π/2,0) direction. On the contrary, when
the incident electron energy increases, this anisotropy is less
evident such as reported in Figs. 5(c) and 5(d) where the
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FIG. 5. (Color online) Energetic distributions for the double ionization of an oriented water molecule: (a) (Ei , β) = (100 eV, 0),
(b) (Ei , β) = (100 eV, π/2), (c) (Ei , β) = (500 eV, 0), and (d) (Ei , β) = (500 eV, π/2).

042709-9



D. OUBAZIZ, C. CHAMPION, AND H. AOUCHICHE PHYSICAL REVIEW A 88, 042709 (2013)

5
10

15
20

25

0

1

2

3

0
2

4
6

8
10

12

50
100

150
200

0.0

0.2

0.4

0.6

0.8

1.0

0

40

80

120

D
D

C
S

 (E
1,E

2) 
(a

.u
)

E
1  (eV)

E 2
 (e

V)

(a) E
i
= 100 eV

(b) E
i
= 500 eV

D
D

C
S

 (E
1,E

2) 
(a

.u
)

E
1  (eV)

E 2
 (e

V)

FIG. 6. (Color online) Energetic distributions for the double ionization of a water molecule randomly oriented in the space: (a) Ei = 100 eV
and (b) Ei = 500 eV.

energy distribution after a 500-eV electron-induced double
ionization is reported for both a (0,0,0) direction and a
(0,π/2,0) direction, respectively.

Finally, we have calculated the average energy distribu-
tions, analytically deduced from the previous ones by integra-
tion over the Euler solid angle. They are reported in Fig. 6
for the two incident energies here investigated, namely, Ei =
100 eV and Ei = 500 eV. We clearly observe a behavior similar
to that previously, with nevertheless an evident decrease in
terms of magnitude for the doubly differential cross sections,
which strongly points out the importance of the oriented-target
studies, in particular, to appraise at best the underlying physics
of the mechanisms involved in the electron-induced molecular
fragmentation.

IV. CONCLUSION

We have investigated the target orientation dependence
of the total double ionization cross sections as well as
the secondary energy distributions by using a first Born
approximation based model in which the water target molecule
was described by means of an accurate single-center molecular
target wave function. For each molecular state, the observa-
tions reported here—in terms of preferential orientations for DI
induction—were qualitatively explained. From a general point
of view, it has been clearly reported that the DI process was
sensitive to the molecule orientation all the more the incident
electron energy is low, the total DI cross sections showing

even an evident anisotropy for incident energies greater than
about 500 eV. Moreover, thanks to an acute analysis of the
individual contributions of each final state, the dependence of
the total DI cross sections versus the target molecular plane
orientation has been studied in detail. Thus, for two secondary
electrons extracted from the same orbital, it has been shown
that the maximal (minimal) cross sections were obtained when
the impacted orbital was aligned (perpendicular) with the
electron beam. On the other hand, when different orbitals
have been involved in the DI process, it has been reported
that the individual behavior of the dominant molecular orbital
might explain the observation, in pointing out an evident
interference effect when the two molecular orbitals considered
are of identical type.

Considering now the secondary electron energy distri-
butions, we have also demonstrated that the latter were
affected by the target orientation provided that the incident
electron energy remains low, namely, lower than 100 eV, with
an evident anisotropic shape for higher energies. Besides,
we have also showed that the consideration of the target
orientation for describing the DI process is all the more
important because modeling this kind of complex interaction
by means of average cross sections clearly underestimates the
magnitude of the double-ionizing process and undoubtedly
hides the fine mechanisms involved in the electron-induced
molecular fragmentation. Finally, note that at this stage no
direct comparison with experiment is possible and we hope that
these current predictions will be in the near future confirmed
by experimental observations.
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