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All-order calculations of the spectra of Ba II, Ra II, Fr I, and superheavy elements
E119 I and E120 II
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A technique based on summation of dominating classes of correlation diagrams to all orders in Coulomb
interaction is used to calculate the energies of the lowest s,p, and d states of Ba II, Ra II, Fr I, E119 I, and E120
II. Breit and quantum electrodynamic corrections are also included. Comparison with experiment for Ba II, Ra
II, and Fr I demonstrates that the accuracy of the calculations is on the level of 0.1%. The technique has been
applied to predict the spectra of superheavy elements E119 and E120+. The role of the ladder diagrams [Dzuba,
Phys. Rev. A 78, 042502 (2008)], which is the most recent addition to the method, has been emphasized. Their
inclusion significantly improves the accuracy of the calculations and expands the applicability of the method.
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I. INTRODUCTION

Accurate atomic calculations are very important for a
number of applications, such as the search for new physics
beyond the standard model in the measurements of the parity
and time-invariance violation in atoms [1,2], the search for
space-time variation of fundamental constants [3], prediction
of the properties of atoms and ions where experimental data
are poor or absent, etc. The latter include in particular highly
charge ions [4] and superheavy elements (Z > 100) [5,6].

Atoms with one valence electron above closed shells play
a special role in these studies. Their relatively simple electron
structure allows high accuracy of the calculations, leading to a
very accurate interpretation of experimental data. For example,
the current best low-energy test of the standard model is
based on the measurements of parity nonconservation (PNC)
in cesium [7], which has one valence electron above closed
shells of a Xe-like core. Interpretation of the measurements
is based on accurate calculations of Ref. [8]. Further progress
for the PNC measurements is considered for atoms and ions
which have an electron structure similar to that of cesium.
This includes Rb [9], Ba+ [10], Ra+ [11], Fr [12], and
Fr-like ions [13]. Accurate predictions of the spectra and other
properties of the superheavy elements were done for E119,
and E120+ [14–18], which are also analogous to cesium.

The most popular method currently used for accurate
calculations for atoms with one valence electron is the coupled-
cluster (CC) method. Its accuracy depends on the number
of terms included in the expansion of the wave function.
Its simplest version, which includes only terms with single
and double excitations (SD) from the reference ground-state
configuration, gives good accuracy for only a limited number
of systems. In particular, the accuracy is poor for cesium,
and missing third-order diagrams need to be included for
better accuracy [19]. The accuracy is significantly better if
valence triple excitations are also included (the CCSDvT
approximation) [20]. However, the method becomes very
demanding for computer power.

An alternative approach was developed in our group about
25 years ago. It is based on summations of selected classes of
higher-order correlation diagrams to all orders in Coulomb
interactions [21]. Later in the paper we will call it the

correlation potential method (CPM) for convenience. The
following classes of correlations were included in CPM in
all orders: (a) screening of Coulomb interaction of the valence
electron with electrons in the core by other core electrons, (b)
interaction between an electron excited from the atomic core
with the hole in the core caused by this excitation, and (c)
iterations of the correlation operator �̂. This turned out to be
a very powerful method which gives a fraction of a percent
accuracy for the energies of s and p states of alkali-metal
atoms. The computer power needed for the calculations is
small even compared to the simple SD approximation. On the
other hand, accuracy for d states and accuracy for atoms other
than alkali metals was not high. For example, the accuracy
for Ba+ is almost the same as for Cs. This is contrary to
what is expected since the relative values of the correlation
corrections are smaller for Ba+ than for Cs due to a two times
stronger central potential. The reason for lower accuracy was
explained in Ref. [22] for the cases of cesium and thallium.
The high accuracy for s and p states of alkali-metal atoms
and lower accuracy for other atomic systems is related to
a particular choice of higher-order diagrams included in the
CPM method. The three classes of higher-order diagrams listed
above dominate in systems where the valence electron is a large
distance from the core. When the valence electron is closer
to the core, another class of higher-order diagrams becomes
important. These diagrams describe the residual Coulomb
interaction of the valence electron with the core. When the
valence electron is close to the core, this interaction becomes
strong and needs to be included in all orders. In the CPM
method this interaction is included in the second order only.
This limits the accuracy of the calculations for systems where
the external electron is close to the core. The most pronounced
example is probably the thallium atom, where the external 6p

electron is very close to the 6s electrons and strongly interacts
with them [22].

A method to include the core-valence residual interaction
in all orders was developed in Ref. [22]. It is based on
iterations of equations similar to the CCSD equations. The
terms arising from the iterations of theses equations were
described by diagrams which are called ladder diagrams.
When the contribution of the ladder diagrams was added
to the result of the CPM calculations, it led to significant
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improvement of the accuracy of the calculations for the s, p,
and d states of Cs and Tl.

In present paper we further extend the application of the
method by performing calculations for Ba+ and Ra+ ions and
demonstrating that inclusion of ladder diagrams leads to very
accurate results. Then we apply the method to calculate the
spectra of superheavy elements E119 and E120+. Calculations
for francium are also included as another test of the method,
which helps to estimate the accuracy for the E119 superheavy
element. Breit and QED corrections are included for higher
accuracy. The spectra of E119 and E120+ were considered
before [15,16]. However, the present paper presents more
complete and accurate results.

II. METHOD OF CALCULATIONS

Accurate calculations for heavy and superheavy many-
electron atoms need accurate treatment of correlations and
relativistic effects. We use the all-order correlation po-
tential method [21] supplemented by inclusion of ladder
diagrams [22] to include dominating correlation effects to
all orders in residual Coulomb interaction. For accurate
treatment of relativistic effects we start the calculations with
the relativistic Hartree-Fock (RHF) method based on solving
Dirac-like equations, and then we include Breit interaction and
quantum electrodynamic (QED) corrections.

A. Correlations

Calculations start from the RHF in the V N−1 approxima-
tion. States of the valence electron are calculated with the use
of the correlation potential �̂:

(Ĥ0 + �̂ − εv)ψv = 0. (1)

Here Ĥ0 is the RHF Hamiltonian, and ψv and εv are the
wave function and removal energy of the valence electron.
The correlation potential �̂ is defined in such a way that its
average value over the wave function of the valence electron in
state v is the correlation correction to the energy of this state:

δεv =
∫

ψv(r1)�(r1,r2)ψv(r2)dr1dr2. (2)

�̂ is a nonlocal operator similar to the Hartree-Fock exchange
potential. Many-body perturbation theory expansion for �̂

starts from second order. The second-order correlation op-
erator �̂(2) has been described in our previous works [22,23].
For most atomic systems inclusion of just second-order �̂

leads to significant improvements of the accuracy of the
calculations. Further improvement is achieved when higher-
order correlations are also included. Beyond second order we
include four dominating classes of higher-order correlations:
(a) screening of Coulomb interaction, (b) hole-particle inter-
action, (c) iterations of �̂, and (d) ladder diagrams. All these
higher-order correlations are included in all orders of residual
Coulomb interaction.

Two of these classes of higher-order correlations are
included in the calculations of �̂ [21], the screening of
Coulomb interaction between valence and core electrons by
other core electrons and hole-particle interaction between a
hole left in the core by electron excitation and the excited

electron. The third chain of all-order diagrams, the iteration
of the correlation potential, is included by iterating Eq. (1).
Note that the single-electron wave functions for the states of
the valence electron found by solving Eq. (1) are often called
Brueckner orbitals (BO).

Another chain of all-order diagrams describes the residual
Coulomb interaction of the external electron with the core.
It is included by solving coupled-cluster-like equations for
ladder diagrams [22]. The equations are obtained by taking
the SD approximation for the CC method and removing terms
which otherwise would lead to double counting of the effects
which are already included in the correlation potential �̂.
We stress once more that the most important all-order effect,
the screening of Coulomb interaction, is better treated in the
calculation of the all-order correlation potential �̂ than in
solving the CC equations. This is because of the use of the
relativistic Feynman diagram technique while calculating �̂.
The relativistic technique includes all possible time ordering
of the hole-particle loops, which, in terms of the CC expansion,
means inclusion of selected triple and higher excitations.

The equations for ladder diagrams can be written as two
sets of equations [22]. The first is for the atomic core:

(εa + εb − εm − εn)ρmnab

= gmnab +
∑
rs

gmnrsρrsab +
∑
rc

(gcnbrρmrca + gcmarρnrcb).

(3)

Another is for a specific state v of an external electron:

(εv + εb − εm − εn)ρmnvb

= gmnvb +
∑
rs

gmnrsρrsvb +
∑
rc

(gcnbrρmrcv + gcmvrρnrcb).

(4)

Here parameters g are Coulomb integrals,

gmnab =
∫∫

ψ†
m(r1)ψ†

n(r2)e2/r12ψa(r1)ψb(r2)dr1dr2,

variables ρ are the coefficients representing the expansion
of the atomic wave function over double excitations from
the zero-order Hartree-Fock reference wave function, and
parameters ε are the single-electron Hartree-Fock energies.
Coefficients ρ are found by solving the equations iteratively,
starting from

ρmnij = gmnij

εi + εj − εm − εn

.

Indices a,b,c numerate states in the atomic core, indices
m,n,r,s numerate states above the core, and indices i,j

numerate any states.
The equations for the core (3) do not depend on the valence

state v and are iterated first. The convergence is controlled by
the correction to the core energy,

δEC = 1

2

∑
abmn

gabmnρ̃mnab, (5)

where

ρ̃mnab = ρmnab − ρmnba.
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When iterations for the core are finished, Eq. (4) is iterated for
as many valence states v as needed.

The correction to the energy of the valence state v arising
from the iterations of Eqs. (3) and (4) is given by

δεv =
∑
mab

gabvmρ̃mvab +
∑
mnb

gvbmnρ̃mnvb. (6)

Since Brueckner energy εv , in Eq. (1), and the correction δεv , in
Eq. (6), both include the second-order correlation correction,
it is convenient to define the correction associated with the
ladder diagrams as a difference:

δε(l)
v = δεv − 〈v|�̂(2)|v〉. (7)

Here �̂(2) is the second-order correlation potential.

B. Breit interaction

We treat Breit interaction in the zero-energy transfer
approximation. The Breit Hamiltonian includes magnetic
interaction between moving electrons and retardation:

Ĥ B = −α1 · α2 + (α1 · n)(α2 · n)

2r
. (8)

Here r = nr , r is the distance between electrons, and α is the
Dirac matrix.

Similar to the way the Coulomb interaction is used to form
the self-consistent Coulomb potential, the Breit interaction is
used to form the self-consistent Breit potential. In other words,

Breit interaction is included in the self-consistent Hartree-Fock
procedure. Thus the important relaxation effect is included.
The resulting interelectron potential in (1) consists of two
terms,

V̂ = V C + V B, (9)

where V C is the Coulomb potential and V B is the Breit
potential. Coulomb interaction in the second-order correlation
potential �̂(2) is also modified to include the Breit operator (8).
The Breit correction to the energy of the external electron
is found by comparing the second-order Brueckner energies
[Eq. (1)] calculated with and without the Breit interaction.

C. QED corrections

We use the radiative potential method developed in Ref. [24]
to include quantum radiative corrections. This potential has the
form

Vrad(r) = VU (r) + Vg(r) + Ve(r), (10)

where VU is the Uehling potential, Vg is the potential arising
from the magnetic form factor, and Ve is the potential arising
from the electric form factor. The VU and Ve terms can
be considered additions to the nuclear potential, while the
inclusion of Vg leads to some modification of the Dirac
equation (see Ref. [24] for details). As for the case of the
Breit interaction, the QED corrections to the energies of the

TABLE I. Removal energies (cm−1) of the lowest s,p, and d states of Ba+, Ra+, E120+, Fr, and E119 in different approximations together
with ladder diagram, Breit, and QED corrections and experimental data. � = 100(Efinal − Eexpt)/Eexpt.

Ion/atom State RHF �(2) �∞ Ladder Breit QED Final � (%) Expt.a

Ba+ 6s1/2 75339 82379 80780 −156 −4 −45 80575 −0.14 80687
6p1/2 57265 61216 60571 −128 −27 3 60419 −0.01 60425
6p3/2 55873 59424 58847 −118 −7 0 58722 −0.02 58735
5d3/2 68138 77444 76377 −763 58 22 75694 −0.16 75813
5d5/2 67664 76500 75536 −765 84 18 74873 −0.19 75012

Ra+ 7s1/2 75898 83864 82035 −219 −12 −90 81714 0.16 81842
7p1/2 56878 61432 60744 −182 −51 0 60511 0.03 60491
7p3/2 52905 56278 55776 −140 −11 −3 55625 −0.01 55633
6d3/2 62355 71364 70294 −620 72 42 69788 0.04 69758
6d5/2 61592 69313 68563 −643 92 33 68045 −0.08 68099

E120+ 8s1/2 83262 92195 90241 −518 −68 −132 89523
8p1/2 60040 66792 65448 −378 −125 −16 64929
8p3/2 49290 52744 52006 −178 −12 −11 51805
7d3/2 56610 66765 64815 −590 68 61 64354
7d5/2 56408 63526 62678 −623 82 46 62183

Fr 7s1/2 28767 34136 32924 −136 5 −47 32746 −0.3 32849
7p1/2 18855 21004 20707 −76 −14 0 20617 0 20612
7p3/2 17655 19179 18971 −57 0 −1 18913 −0.06 18925
6d3/2 13825 17190 16724 −139 34 11 16630 0.07 16619
6d5/2 13924 16849 16512 −153 37 9 16405 −0.09 16419

E119 8s1/2 33608 40489 39040 −403 −24 −77 38536
8p1/2 20130 23905 23473 −184 −47 −6 23236
8p3/2 16672 18335 18114 −74 −1 −3 18036
7d3/2 13477 17495 16807 −149 34 19 16711
7d5/2 13827 16899 16567 −181 34 15 16435

aBa+ and Ra+ data are from Ref. [25]; Fr data are from Ref. [26].
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external electron are found by solving Eq. (1) with and without
the radiative potential.

III. RESULTS AND DISCUSSION

The results of the calculations of the energies of the lowest
s, p, and d states of Ba+, Ra+, E120+, Fr, and E119 in
different approximations are presented in Table I. The RHF
column presents Hartree-Fock energies obtained by solving
Eq. (1) without �̂, and the �̂(2) column presents Brueckner
energies obtained by solving Eq. (1) with the second-order
correlation potential �̂(2). Note that since these energies are
obtained by solving the Eq. (1) rather than by calculating the
average value of the correlation potential �̂(2) as in (2), they
already include one all-order effect, the iterations of �̂(2). The
�̂∞ column presents Brueckner energies obtained by solving
Eq. (1) with all-order �̂∞. The difference between this and
previous columns illustrates the importance of higher-order
correlation effects in �̂, screening the Coulomb interaction,
and hole-particle interaction.

The ladder column presents contributions from ladder dia-
grams given by (7). We present these contributions separately

for the convenience of the discussion. We would like to
emphasize the role of ladder diagrams since it is the latest
addition to our all-order technique, which has been tested
before only for cesium and thallium atoms [22]. If ladder
diagrams are not included, the all-order correlation potential
method developed in Ref. [21] gives good accuracy for s and p

states of alkali-metal atoms and their isoelectronic sequences.
As demonstrated in Ref. [22], adding ladder diagrams widens
the range of atomic systems for which the technique gives good
accuracy. The ladder diagram contributions do not affect the
s and p states of alkali-metal atoms much while significantly
improving the accuracy for d states. They also significantly
improve the accuracy for such complicated systems as the
thallium atom [22]. As one can see from Table I, ladder
diagrams are important for all systems considered in the
present paper, leading to significant improvements of the
results. Breit and QED corrections are relatively small.
However, adding them generally leads to better agreement
with experiment. The data for Breit and QED corrections for
Fr and E119 are in good agreement with recent calculations by
Thierfelder and Schwerdtfeger [27]. A detailed discussion of
the QED corrections and a comparison with other calculations

TABLE II. Removal energies (cm−1) of Cs, Fr, E119, and E120+ and comparison with experiment [25,26], our earlier calculations [16,22],
and the CCSD calculations of Eliav et al. [15].

Atom State This worka CCSD [15] Expt.b Atom/ion State This work Ref. [16] CCSD [15]

Cs 6s1/2 31384 31485 31407 E119 8s1/2 38536 38852 38577
6p1/2 20185 20233 20229 8p1/2 23236 23272 22979
6p3/2 19632 19681 19675 8p3/2 18036 18053 18007
5d3/2 16932 19909 16908 7d3/2 16711 16505
5d5/2 16849 16809 16810 7d5/2 16435 16297
7s1/2 12886 12872 9s1/2 14061 14079 14050
7p1/2 9642 9641 9p1/2 10439 10415 10365
7p3/2 9462 9459 9p3/2 8882 8866 8855
6d3/2 8815 8818 8d3/2 8513 8455
6d5/2 8772 8775 8d5/2 8399 8338
8s1/2 7082 7090 10s1/2 7521 7536 7519
8p1/2 5689 5698 10p1/2 6024 6018 5997
8p3/2 5606 5615 10p3/2 5334 5328 5320
7d3/2 5354 5359 9d3/2 5177 5154
7d5/2 5333 5338 9d5/2 5118 5092

Fr 7s1/2 32746 32930 32849 E120+ 8s1/2 89523 89931
7p1/2 20617 20597 20612 8p1/2 64929 65080
7p3/2 18913 18918 18925 8p3/2 51805 51874
6d3/2 16630 16527 16619 7d3/2 64354
6d5/2 16405 16339 16419 7d5/2 62183
8s1/2 13075 13131 13116 9s1/2 40085 40110
8p1/2 9730 9732 9736 9p1/2 32618 32604
8p3/2 9184 9190 9191 9p3/2 27978 27951
7d3/2 8584 8597 8604 8d3/2 31489
7d5/2 8490 8507 8516 8d5/2 30727
9s1/2 7160 7184 7178 10s1/2 23307 23357
9p1/2 5726 5738 10p1/2 19887 19926
9p3/2 5477 5493 10p3/2 17664 17678
8d3/2 5209 5243 5248 9d3/2 19293
8d5/2 5162 5198 5203 9d5/2 18921

aResults for Cs are taken from Ref. [22].
bCs data are from Ref. [25]; Fr data are from Ref. [26].
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are presented in our previous work [16]. Our final results for
Ba+, Ra+, and Fr (see Table I) differ from the experimental
data by a small fraction of a percent only.

Final results for Fr and superheavy elements E119 and
E120+ are presented in Table II together with the results of
our previous calculations for Cs [22], E119, and E120+ [16];
the results of the coupled-cluster calculations by Eliav
et al. [15] for Cs, Fr, and E119; and experimental data
for Cs and Fr. Judging by the data in Table II, we believe
that the accuracy of the calculated energies is at the level
of 0.2%.

There are two important differences between the present
calculations and those of Ref. [16]. Ladder diagrams were
not included in [16]. On the other hand, the ab initio
results for superheavy elements were corrected in [16] by
extrapolating the theoretical error from lighter elements. This
extrapolation assumes a similar electron structure of the
elements. In contrast, the present calculations are pure ab initio
calculations with no fitting or extrapolating. The calculation
of the ladder diagrams reveals some small differences in the
electron structure of superheavy elements and their lighter
analogs. Indeed, the contribution of the ladder diagrams
tends to be larger for superheavy elements. This is consistent
with larger removal energies. Larger removal energies mean
that the valence electron is closer to the core; therefore its
residual Coulomb interaction with the core described by ladder
diagrams should be larger as well. Note that the difference
between our present and previous [16] results is sometimes
larger than 0.2% (the accuracy of the present calculations).
This is particularly true for the ground-state energies. We
believe that the accuracy of the present calculations is better
than in Ref. [16] since they are pure ab initio calculations with
no fitting and no extrapolation and they do take into account

small differences in the electron structure between superheavy
elements and their lighter analogs.

Table II shows very good agreement between the present
results and the results of the coupled-cluster calculations of
Ref. [15]. The agreement is better than with our previous
calculation [16]. In the end, both methods, the method of
the present work and the CCSD method used in Ref. [15],
demonstrate very similar levels of accuracy.

Table II also presents the energies of the d states of E119
and E120+. Correlations for d states are usually larger than
for s and p states, and the accuracy of the calculations is
lower. That was part of the reason why these states were not
considered before. However, as is evident from the data in
Table I, the inclusion of ladder diagrams leads to practically the
same accuracy for d states as for s and p states. Therefore we
include the results for the energies of the d states of superheavy
elements in Table II.

IV. CONCLUSION

The results of this paper are twofold. First, we demon-
strate that supplementing the previously developed all-order
correlation potential method with ladder diagrams leads to a
significant improvement in the accuracy of calculations not
only for alkali atoms but also for their isoelectronic ions.
Second, we apply the developed technique to perform very
accurate calculations of the spectra of superheavy elements
E119 and E120+.
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