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Quantum phase transitions via density-functional theory: Extension to the degenerate case
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According to the recently proposed density-functional analog of quantum phase transitions (QPTs) the
“density” determines the “control parameter” (corresponding to the density-functional theory “external
potential”). It was also proved that in the nondegenerate case there is a one-to-one map between the ground-state
wave function and the control parameter. It is now shown that there is a one-to-one map between the ground-state
subspace and the control parameter. It is pointed out that there is a one-to one map between the subspace density
and the control parameter. The Rényi entropies are proved to be strictly monotonic functions of the control
parameter in the neighborhood of the transition point. These properties are illustrated with the Dicke model which
exhibits a QPT from a normal phase (nondegenerate) to the superradiant case (degenerate) in the thermodynamic
limit.
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Quantum phase transitions (QPTs) are extensions of clas-
sical phase transitions to zero absolute temperature. Quantum
fluctuations, induced by a variation in the values of certain
control parameter(s), lead to an abrupt change in the physical
properties of the system [1]. On the other hand, density-
functional theory (DFT) (initiated by Hohenberg and Kohn
[2–4]) provides the density as the basic variable to obtain
properties of many-particle systems. So DFT can be used
to study QPTs. In fact, DFT has been shown to provide a
relationship between the QPT and entanglement; an analog of
the DFT density was introduced and it was shown that this
new “density” determines the control parameter(s) in QPTs
[5]. Entanglement has also been studied in density-functional
theory [6–8].

Recently, following the idea of Wu et al. [5], the DFT visu-
alization of QPTs has been extended [9] with the constrained-
search approach. It has been proved that, in the nondegenerate
ground state, there is a bijective map between the density
function and the control parameter(s). Moreover, any strictly
monotonic functional provides us a new “density” with a
different control parameter (or DFT “external potential”),
which is determined by the “new density”. In particular, a
bijection between the Rényi entropy and the control parameter
has been considered. In this paper we will generalize all these
results for a degenerate ground-state subspace.

Consider the Hamiltonian

Ĥ = T̂ + V̂ee +
N∑

i=1

v(ri), (1)

where T̂ and V̂ee are the kinetic energy and the electron-
electron energy operators, respectively. The Schrödinger equa-
tion can be written as

Ĥ |�γ 〉 = E|�γ 〉 (γ = 1,2, . . . ,g), (2)

where g is the degeneracy. The wave functions �γ span the
subspace S of the Hilbert space. Instead of the wave functions
�γ any other set of wave functions obtained from a unitary
transformation can be used. The total energy can be considered
as a functional of the subspace S. We can also construct density

matrices in the subspace S [10–13]:

D̂ =
g∑

γ=1

wγ |�γ 〉〈�γ |. (3)

The weighting factors wγ should satisfy the conditions

1 =
g∑

γ=1

wγ (4)

and

wγ � 0. (5)

The subspace (ensemble) density is given by

� =
g∑

γ=1

wγ

∫
|�γ |2ds1dx2 · · · dxN, (6)

where x stands for both the coordinates and the spin. Selecting
the weighting factors to be equal, the subspace density has the
symmetry of the external potential.

The energy can be written as

E = F +
∫

�(r)v(r)dr, (7)

where the functional F is the sum of the kinetic and electron-
electron repulsion energies. The ground-state energy is then
obtained by minimizing the energy in Eq. (7). The constrained-
search formalism [14,15] can be used as follows:

E[�] = min
S

g∑
γ=1

wγ 〈�γ |Ĥ |�γ 〉

= min
�

⎧⎨
⎩min

S→�

g∑
γ=1

wγ 〈�γ |Ĥ |�γ 〉
⎫⎬
⎭

= min
�

{
F [�] +

∫
�(r)v(r)dr

}
. (8)
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The functional F [�] can be expressed using the density
matrix as

F [�] = min
S→�

tr{D̂(T̂ + V̂ee)}. (9)

Then the generalized Hohenberg-Kohn theorem has the
form

F [�] +
∫

�(r)v(r)dr � E0, (10)

which can be readily proved as follows:

F [�] +
∫

�(r)v(r)dr = min
S→�

tr{D̂(T̂ + V̂ee)}

+
∫

�(r)v(r)dr = min
S→�

tr{D̂(T̂ + V̂ + V̂ee)} � E0,

(11)

where the last inequality follows from the variational principle.
There is an equality if and only if the trial subspace density �

is equal to the true subspace density. The functional derivative
of F gives the external potential up to a constant,

δF [�]

δ�
= −v(r). (12)

We would like to emphasize that it is crucial to use subspace
densities to ensure the one-to-one map between the density and
the potential. If we use degenerate densities (corresponding to
degenerate wave functions) instead of the subspace density, a
given density generally does not correspond to a unique ground
state and the map between the density and the potential is not
invertible as the wave function is not a unique functional of
the density. Consequently the problem is subtler (see, e.g.,
[16–18]). If, however, we use subspace densities, the problem
is as simple as the nondegenerate problem.

Consider now a quantum system with the Hamiltonian

Ĥ = Ĥ0 +
∑

i

ξiÂi , (13)

where Ĥ0 is integrable and ξi are the control parameters
associated with Âi [5,19]. Note that Ĥ0 and Âi are known
Hermitian operators. The index i is discrete. For a continuous
case, the original DFT described above should be applied. We
mention in passing that the idea of adding various operators
to the Hamiltonian in a general density-functional context was
first discussed by Bauer [20]. The expectation value of Âi is
given by

ai = tr{D̂Âi}. (14)

The constrained search leads to the function

Q({ai}) = Min
S→{ai }

tr{D̂Ĥ0} = Min
D̂→{ai }

tr{D̂Ĥ0}, (15)

that is, the expectation value of the Hamiltonian Ĥ0 is
minimized subject to the constraint that each D (or S) yields
the given values ai . Note that ai are defined by the subspace of
degenerate eigenfunctions; these correspond to the “subspace
densities” of the original density-functional theory, while ξi

corresponds to the external potential.

The minimum of the energy is searched for in two steps:

E = Min
{ai }

[
Min

S→{ai }
tr{D̂Ĥ }

]

= Min
{ai }

[
Min

S→{ai }
tr{D̂Ĥ0} +

∑
i

ξiai

]

= Min
{ai }

[
Q(a1, . . . ,aM ) +

∑
i

ξiai

]
. (16)

We can also see that Q is the Legendre transform of E:

Q(a1, . . . ,aM ) = E −
∑

i

ξiai . (17)

From the Hellmann-Feynman theorem

∂E

∂ξi

= tr

{
D̂

∂Ĥ

∂ξi

}
= tr{D̂Âi} = ai (18)

it follows that
∂Q

∂ai

= −ξi . (19)

Theorem 1. If the inverse of the operator P̂ = ∑
i ciÂi − c0

exists for any real c0 and ci , there is a one-to-one map between
the subspace S spanned by the degenerate wave functions
�γ (γ = 1,2, . . . ,g) and the “external potential” {ξi}.

Proof. First, we prove that the “external potential” {ξi}
determines the subspace S. If {ξi} are known, the solution
of the Schrödinger equation with the Hamiltonian (13) gives
the wave functions �γ .

Second, we have to prove that the subspace S determines the
“external potential” {ξi}, that is, only one “external potential”
{ξi} corresponds to a given S. The proof proceeds by reductio
ad absurdum. Suppose that there are two “external potentials”
{ξ (1)

i } and {ξ (2)
i } with the same subspace. The corresponding

Schrödinger equations have the forms

Ĥξ (1)�γ =
[
Ĥ0 +

∑
i

ξ
(1)
i Âi

]
�γ = E(1)�γ (20)

and

Ĥξ (2)� ′
γ =

[
Ĥ0 +

∑
i

ξ
(2)
i Âi

]
� ′

γ = E(2)� ′
γ , (21)

where E(1) and E(2) are the eigenvalues of the Hamiltonians
Ĥ0 + ∑

i ξ
(1)
i Âi and Ĥ0 + ∑

i ξ
(2)
i Âi , respectively. The wave

functions �γ and � ′
γ with γ = 1,2, . . . ,g are related by a

unitary transformation:

�γ =
∑

κ

cγ κ�
′
κ . (22)

From Eqs. (20) and (22) we arrive at

Ĥξ (1)�γ = Ĥξ (1)

∑
κ

cγ κ�
′
κ = E(1)�γ = E(1)

∑
κ

cγ κ�
′
κ .

(23)

Combining Eqs. (20), (21), and (23) we are led to the equations

R̂
∑

κ

cγ κ�
′
κ = (E(1) − E(2))

∑
κ

cγ κ�
′
κ , (24)
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where

R̂ =
∑

i

(
ξ

(1)
i − ξ

(2)
i

)
Âi . (25)

The operator R̂ maps the states of S into the states of S,
that is, S is an invariant space of the operator R̂. A theorem
of linear algebra states that if a Hermitian operator leaves a
finite-dimensional subspace invariant then this operator has
eigenstates in this subspace [21]. But R̂ has no eigenstates in
the Hilbert space unless it is constant. We can immediately see
this as follows: Suppose that 	 is an eigenfunction of R̂,

R̂	 = λ	 (26)

or

Ĝ	 = 0, (27)

where

Ĝ =
∑

i

(
ξ

(1)
i − ξ

(2)
i

)
Âi − λ. (28)

We can exclude the solution of 	 = 0 (everywhere or in a
domain of nonzero measure). Equation (27) gives the kernel
Ĝ. (The definition is KerĜ = {	 ∈ H : Ĝ	 = 0}, where H
denotes the Hilbert space.) As the inverse of an operator P̂ =∑

i ciÂi − c0 exists for any real c0 and ci , the inverse of Ĝ also
exists (ci = ξ

(1)
i − ξ

(2)
i and c0 = λ). Therefore KerĜ = {0}

and this leads to ξ
(1)
i = ξ

(2)
i . �

The Hamiltonian (13) can be rewritten as

Ĥ = Ĥ0 +
∑

i

ζi B̂i , (29)

where B̂i = Âiξi/ζi , bi = tr{D̂B̂i} = aiξi/ζi and ζi �= 0. We
can reformulate theorem 1 as follows:

Corollary 1. If ζi = fi(ξi) and fi are strictly monotonic
functions, there is a one-to-one map between the subspace S

and the “external potential” {ζi}.
ζi are the “new” control parameters associated with the

“new subspace density” bi .
Theorem 2. There is a one-to one map between the subspace

spanned by “subspace densities” {ai} and the “external
potential” {ξi}.

Proof. If {ξi} are known, the subspace density {ai} can be
calculated from the Schrödinger equation with the Hamilto-
nian (13) and Eq. (14). If, on the other hand, the subspace
density {ai} is available, the subspace S should be first
found by minimizing the expectation value of the Hamiltonian
[see Eq. (15)]. Knowing S, we have to find {ξi} for which any
independent set of basis functions of S fulfills the Schrödinger
equation. �

From Corollary 1 and Theorem 2 we have the following:
Corollary 2. If ζi = fi(ξi) and fi are strictly monotonic

functions, there is a one-to-one map between the “subspace
density” bi and the “external potential” {ζi}.

Theorem 3.

Q(a1, . . . ,aM ) +
∑

i

ξiai � Egs, (30)

where Egs is the ground-state energy of the Hamiltonian (13).
Equality holds if and only if {ai} is the ground-state “subspace
density”.

Proof. See the constrained-search approach [Eqs. (15)
and (16)].

Corollary 3.

Q(b1, . . . ,bM ) +
∑

i

ζibi � Egs. (31)

Equality holds if and only if {bi} is the “new ground-state
subspace density”.

The Rényi entropy is defined as

Rα = 1

1 − α
ln

∫
ρα(q)dq (32)

where α > 0 and ρ is the normalized density. In the following
the position representation of the wave function is utilized.

The ground-state subspace density can be defined as

ρ(x) =
g∑

γ=1

wγ |�γ (x)|2 (33)

or

ρ(x) =
g∑

γ=1

wγ

∫
|�γ (x,q)|2dq, (34)

that is, in the case of a many-variable wave function the Rényi
entropy (32) can be determined for several (reduced) densities
depending on how many variables [if any, (33)] are integrated
out (34). The following theorem is valid for any case.

As it was pointed out by Wu et al. [5] one can split the
Hamiltonian (13) in several ways. It is possible to focus on
only one control parameter and merge the other parts of the
sum

∑
i ξiÂi into Ĥ0. Theorem 4 and Corollary 4 are valid for

this special case.
Theorem 4. The Rényi entropy Rα of the ground-state

subspace density, if it exists, is a strictly monotonic (increasing
or decreasing) function of the control parameter ξ in the
neighborhood of the transition point ξc, and its derivative
dRα/dξ diverges at ξc in the thermodynamic limit.

Proof. The Hamiltonian can be reformulated as μ = ξ − ξc:

Ĥ = ˜̂H0 + μĤ ′, (35)

where ˜̂H0 = Ĥ0 + ξcÂ, Ĥ ′ = Â, and μ = ξ − ξc. It is enough
to show that ωα ≡ ∫

ρα(x)dx is a strictly monotonic function
of μ in the neighborhood of μ = 0. As the logarithm is
an increasing function the Rényi entropy has the same
monotonic behavior. In perturbation theory the ground-state
wave function can be written as

�γ = �(0)
γ + μ�(1)

γ + O(μ2), (36)

where the zero-order (�(0)
γ ) and first-order (�(1)

γ ) wave
functions can be expressed with degenerate nonperturbative
eigenfunctions and eigenenergies.

Substituting Eq. (36) into Eqs. (33) and (34) we arrive at

ρ = ρ0 + μρ1 + O(μ2), (37)

where

ρ0 =
g∑

γ=1

wγ

∣∣�(0)
γ

∣∣2
, (38)

ρ1 = 2
g∑

γ=1

wγ Re
[
�(0)∗

γ �(1)
γ

]
(39)
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in case 1 [Eq. (33)] and

ρ0 =
g∑

γ=1

wγ

∫
dq

∣∣�(0)
γ

∣∣2
, (40)

ρ1 = 2
g∑

γ=1

wγ

∫
dqRe

[
�(0)∗

γ �(1)
γ

]
(41)

in case 2 [Eq. (34)]. (Note that the position representation is
applied.) Finally, ωα(μ) is expanded around μ = 0,

ωα(μ) = ω(0)
α + μαP + O(μ2) (42)

with

ω(0)
α =

∫
ρα

0 (43)

and

P =
∫

ρα−1
0 ρ1. (44)

ω(0)
α and P are independent of μ. Thus, we have that dωα/dμ =

αP . As P is nonzero (either strictly positive or negative) and,
therefore, ωα(μ) is strictly monotonic in the neighborhood of
μ = 0. It is shown in the Appendix that, in the thermodynamic
limit (that is, when E

(0)
k → E

(0)
0 for one or several values of k),

P and consequently the functional derivative of the Rényi
entropy diverge. �

Corollary 4. As the Rényi entropy Rα is a strictly monotonic
function of ξ in the vicinity of the transition point, there is also
a one-to-one map between the Rényi entropy of a given order
Rα and the “external potential” ξ .

As an illustration of these results we will consider the Dicke
model [22–25]. This model describes an ensemble of N two-
level atoms with level splitting ω0 coupled by a single-mode
bosonic field with frequency ω, and its Hamiltonian has the
form

H = ω0Jz + ωa†a + λ√
2j

(a† + a)(J+ + J−), (45)

where Jz and J± are the angular momentum operators for a
pseudospin of length j = N/2, and a and a† are the photon
annihilation and creation operators of the field. It is known
that the Dicke model exhibits a second-order phase transition
at the critical point λc = √

ωωc/2 in the superradiant one in
the thermodynamic limit N → ∞, where the energy levels
are nondegenerate in the normal phase and degenerate in the
superradiant one [26].

Let us rewrite the Dicke model Hamiltonian as

Ĥ = Ĥ0 + λÂ, (46)

where

Ĥ0 = ω0Jz + ωa†a, Â = 1√
2j

(a† + a)(J+ + J−). (47)

Now, we can solve the eigenvalue problem numerically,
diagonalizing the matrix representation of the Ĥ operator (in
the basis set of the Hilbert space {|n〉 ⊗ |jm〉}, with {|n〉}∞n=0
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FIG. 1. (Color online) Rényi entropy R2(λ) (top) and derivative of
the Rényi entropy dR2(λ)/dλ (bottom) as a function of the parameter
λ for different values of N = 6, 10, and 20 for the Dicke model and
for ω0 = ω = 1. (Atomic units.)

the number states of the field and {|jm〉}jm=−j the so-called
Dicke states). See [27,28] for more details and [29–33] for
a study of the QPT in this model in terms of information
measures.

In Fig. 1 we can see the Rényi entropy R2 of the ground-state
subspace density in the Dicke model as a function of the
parameter λ around the transition point λc for different values
of N = 6,10,20. We realize that it is an increasing function
of the parameter λ in the vicinity of the transition point.
Additionally, we have plotted dR2/dλ at the transition point,
and we can see that this function is always positive. Its
slope goes to infinity in the thermodynamic limit N → ∞.
As we said above, the superradiant phase is degenerate in
the thermodynamic limit, so this result is valid in both
normal (nondegenerate) and superradiant (degenerate) phases
for N → ∞ in accordance with Theorem 4.

In Fig. 2 (top) we have plotted the “subspace density”
a = 〈Â〉 and the “external potential” λ. This behavior is in
accordance with Theorem 2. In Fig. 2 (bottom) we can see that
there is a one-to-one map between the subspace density a and
the Rényi information R2 in the Dicke model (in agreement
with Corollary 2).
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FIG. 2. (Color online) The “subspace density” a as a function of
(top) the parameter λ and (bottom) the Rényi entropy R2, for N = 20,
in the Dicke model and for ω0 = ω = 1. (Atomic units.)

Summarizing, we have studied via DFT a connection
between the control parameter in a QPT and an analogous
DFT subspace density in the case of a degenerate ground
state. In particular (i) we have found that there is a one-to
one map between the expectation value of a local function
and the control parameter, and (ii) we have considered the
Rényi entropy case for which there is a one-to-one map
with the control parameters. Finally, we have illustrated these
properties with the Dicke model, which exhibits a QPT from
a normal phase (nondegenerate) to the superradiant case
(degenerate) in the thermodynamic limit.
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APPENDIX

The ground state of the nonperturbed operator ˜̂H0 is degen-
erate. The degenerate ground-state energy is E

(0)
0 . Consider

a unitary transformation of the original set of nondegenerate
basis functions. Let the new set 	γ with γ = 1, . . . ,g so that
using it as a basis diagonalizes the operator H ′ [Eq. (35)].
The nonperturbed excited-state eigenfunctions are denoted
by �k,κ , κ = 1, . . . ,gk . Then the first-order correction to the

ground-state wave function in Eq. (36) can be written as [34]

�(1)
γ =

∑
k �=0

gk∑
κ=1

∑
γ ′ �=κ

	γ ′
H ′∗

0,κ,γ ′H
′
k,κ,γ(

E
(1)
γ − E

(1)
γ ′

)(
E

(0)
0 − E

(0)
k

)
+

∑
k �=0

gk∑
κ=1

�k,κ

H ′
k,κ,γ

E
(0)
0 − E

(0)
k

, (A1)

where

E(1)
γ = 〈	γ |H ′|	γ 〉, (A2)

the subscript 0 and superscript 0 refer to the ground
state and the unperturbed state, respectively, and H ′

k,κ,γ ≡
〈�k,κ |H ′|	γ 〉. The first-order correction to the ground-state
subspace density in Eq. (37) takes the form

ρ1 = 2
g∑

γ=1

wγ Re
[
�(0)∗

γ �(1)
γ

] = 2
g∑

γ=1

wγ

× Re

⎡
⎣�(0)∗

γ

∑
k �=0

gk∑
κ=1

∑
γ ′ �=κ

	γ ′
H ′∗

0,κ,γ ′H
′
k,κ,γ(

E
(1)
γ − E

(1)
γ ′

)(
E

(0)
0 − E

(0)
k

)

+
∑
k �=0

gk∑
κ=1

�k,κ

H ′
k,κ,γ

E
(0)
0 − E

(0)
k

⎤
⎦ (A3)

in case 1 [Eq. (39)]. On the other hand, the first-order correction
to the ground-state subspace density in Eq. (41) reads as

ρ1 = 2
g∑

γ=1

wγ

∫
dqRe

[
�(0)∗

γ �(1)
γ

]

= 2
g∑

γ=1

wγ

∫
dqRe

⎡
⎣�(0)∗

γ

∑
k �=0

gk∑
κ=1

∑
γ ′ �=κ

	γ ′

× H ′∗
0,κ,γ ′H

′
k,κ,γ(

E
(1)
γ − E

(1)
γ ′

)(
E

(0)
0 − E

(0)
k

)
+

∑
k �=0

gk∑
κ=1

�k,κ

H ′
k,κ,γ

E
(0)
0 − E

(0)
k

⎤
⎦ (A4)

in case 2 [Eq. (34)]. Then we readily obtain the derivative of
ωα from Eq. (44).

If the degeneracy is not completely removed, another
unitary transformation should be performed [35]. The new
functions should be selected so that the matrix

tγ,γ ′ =
∑
k �=0

gk∑
κ=1

H ′∗
0,κ,γ ′H

′
k,κ,γ

E
(0)
0 − E

(0)
k

(A5)

is diagonal. In this case the terms with zero in the denominator
in Eq. (A1) disappear and the sum can be obtained.

In the thermodynamic limit E
(0)
k → E

(0)
0 for one or several

values of k. It can be seen from Eqs. (A3) and (A4) that ρ1

and therefore P , the derivative of ωα and the derivative of the
Rényi entropy, diverge.
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