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Nonexistence of a Taylor expansion in time due to cusps
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In the usual treatment of electronic structure, all matter has cusps in the electronic density at nuclei. Cusps
can produce nonanalytic behavior in time, even in response to perturbations that are time analytic. We analyze
these nonanalyticities in a simple case from many perspectives. We describe a method, the s expansion, that
can be used in several such cases and illustrate it with a variety of examples. These include both the sudden
appearance of electric fields and disappearance of nuclei in both one and three dimensions. When successful, the
s expansion yields the dominant short-time behavior, no matter how strong the external electric field, but agrees
with linear-response theory in the weak limit. We discuss the relevance of these results to time-dependent density

functional theory.
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I. INTRODUCTION

Time-dependent quantum mechanics is used to calculate the
response of systems to time-varying external potentials [1], but
can be computationally demanding for many particles. Among
practical methods, time-dependent density functional theory
(TDDFT) excels as a computationally inexpensive method
for dealing with the interactions between electrons in time-
dependent quantum mechanics [2,3]. In the last two decades,
use of TDDFT has grown tremendously, especially for cal-
culations of transition frequencies of electronic excitations
in molecules [4] and solids [5,6]. The relative computational
ease with which TDDFT handles electron-electron interaction
make it the only viable quantum tool for systems with several
hundred atoms [2-4].

However, the validity of TDDFT relies on the cele-
brated Runge-Gross theorem [7], which proves, under certain
circumstances, that the time-dependent one-body potential
of an interacting electronic system is a functional of the
one-electron density. Modern TDDFT calculations also use
a Kohn-Sham scheme, in which fictitious noninteracting
fermions are propagated in a time-dependent multiplicative
potential, defined to reproduce the time-dependent density
of the interacting system. Use of such a scheme implicitly
supposes that such a potential exists (in technical jargon,
that the density is noninteracting v representable [2,3]).
Groundbreaking work by van Leeuwen [8] showed that, under
quite general assumptions, such a potential can always be
found, apparently ending this question within TDDFT.

However, nature can occasionally be both subtle and
malicious. The Runge-Gross theorem assumes time-Taylor
expandability (#-TE) of the time-dependent potential, while
van Leeuwen’s proof requires such expandability of the
density also. In recent work [9], we gave a very simple,
realistic case (a hydrogen atom in a suddenly switched static
electric field) in which the latter fails, thus reopening the
issue of v representability in TDDFT. This could only be
done convincingly by creating a methodology for explicitly
extracting the short-time asymptotic behavior in such cases
and demonstrating the nonexpandability of the density. This
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has reopened the question of the existence of a KS potential
in the common case of Coulomb attraction to the nuclei, and
recent work has focused on avoiding the Taylor expansion in
time [10,11].

These results were quite unexpected, as they are due to the
noninterchangeability of two commonly interchanged limits.
In fact, as we demonstrate explicitly here, the time-dependent
density in such cases, n(r,?), has no well-defined short-time
expansion. For finite distances from a cusp, one asymptotic
expansion applies, while for distances less than /7 from a cusp,
a different expansion dominates. [Atomic unitse =% = m, =
1/(4mep) = 1 are used throughout.] A related statement is that
we find that the radius of expansion of the time-Taylor series is
0. However, even if the density has no well-defined expansion,
integrals over the density, such as the time-dependent dipole
moment, are well defined, but can contain fractional powers
of t. Here we give further examples of the method developed
in Ref. [9] for calculating some of these quantities for several
cases. We also show how these features appear in various
alternative approaches to this problem.

Our work here is far from a complete analysis of these
behaviors, and we make no attempt at a general treatment of
this problem. Instead, we merely scratch the surface of the very
thorny issues created by the coupling between space and time
in the Schrodinger equation. We hope this work will inspire
more comprehensive study of these questions and perhaps lead
to a more straightforward computational scheme.

The paper is divided as follows. We begin by analyzing a
very simple illustration, the one-dimensional (1D) disappear-
ing nucleus, from many different viewpoints. Although this is
not a 3D Coulomb potential problem, this illustration is chosen
because we have closed analytic results. We next present the
s expansion as a general method for extracting the short-time
behavior of these systems. We then revisit 1D. We check that
our method reproduces the analytic results of the disappearing
nucleus problem and show what it produces for a nucleus in an
electric field. We then turn to 3D, applying the method to the
two previous cases, but in 3D. There are specific complications
for the H atom in an electric field. In the following section,
we examine the time-dependent dipole moment, rather than
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just the wave function, finding its behavior entirely in the
disappearing nucleus case, and partially in the electric-field
problem. Then we discuss more general potentials in space
and time (but not any general class of potentials). We close
with a discussion of the implications of these results for
many-electron systems and TDDFT.

II. WHEN NUCLEI VANISH

Here we study the failure of the Taylor series in the simplest
possible case, first studied in Ref. [12]. In 1D, we beginatt = 0
with a wave function,

Yo(x) = exp(—Ix]), (M

which has a cusp at x = 0. We propagate with the free-particle
Hamiltonian

R 1 d?
H="3a @
and find
Y(x,t > 0) = U() o), 3)

where the time-propagation operator U(r) = exp(—i Ht) be-
cause the Hamiltonian is ¢#-independent. The common trick of
t-TE uses

expl—iHtl =1 —iHt — B*2/2+---. (4)

Many textbooks either use the 7-TE interchangeably with
the correct spectral definition of the propagator [13—16] or
introduce the #-TE as a formal propagation method without
further discussion of the implications [1]. For the 1D example
system, we evaluate the time-dependent wave function with
the Taylor-expanded time-evolution operator,

Y > 0) = [Z(—iﬁ)ftf /j!} Yo(x)

j=0
=exp(—|x| +it/2), (x #0). (®)]

yielding the remarkable result that (for x # 0) the density
appears to remain stationary!

We refer to this example as a 1D vanishing nucleus, because
the initial wave function is the eigenstate of V (x) = —4&(x), and
decays exponentially like that of a hydrogen atom. According
to the Taylor expansion, we can instantly remove this potential
at t = 0, and the density does not change. Obviously, if we do
nothing to the potential, the density will not change either, in
apparent contradiction of the Runge-Gross theorem.

In this case, it is simple to find the true wave function. The
free-particle propagator in 1D is

: 00
Ulx,x' st > 0) ’—/ dk expliku — ikt /2]
27 J_so

_ explin?/(20)]
B 2wit

(6)

where u = x — x’, and convolution with ¥(x) yields

Vet > 0) = [exp(x+zt/2)erfc(\/¥>:| )
and S, f = [f(x) + f(—x)]/2 extracts the spatially symmet-

ric part of a function. We choose Vi= +1i)/ /2 and use this
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FIG. 1. (Color online) Time-dependent density of an exponential
that propagates freely after + = 0. The Taylor expansion fails to
change from its + = 0 value.

branch through the paper for square roots. Figure 1 confirms
that the wave function spreads and the cusp vanishes for ¢ > 0,
as intuition demands. An important feature of Eq. (7) is that
¥ (x,t)is not an analytic function att = 0 with respectto ¢, and
we denote this as time nonanalyticity throughout the paper. We
analyze the time nonanalyticity in detail in Sec. III.

In practice, we observe that the #-TE wave function works
when the initial wave function is space analytic, from which
wave functions with cusps are excluded. We define “cusp” in
a general sense as a discontinuity in the space derivatives of
a certain order of the concerned function. No matter what the
external potential is, a Hamiltonian always contains the kinetic
energy operator, a differential operator in space. According to
Eq. (5), the existence of a #-TE wave function requires the
initial wave function to be differentiable to infinite order at
any space point. However, infinite-order differentiable does
not guarantee the validity of the 7-TE wave function: The wave
function is differentiable in the distributional sense in the case
of cusps; in another case [17], one can construct a nontrivial
wave packet where the space derivative of all orders vanishes
at certain points; #-TE fails in both cases. The analyticity of
the initial wave function in space is linked to the analyticity
of the TD wave function in time. We provide more evidence
and a heuristic derivation of time nonanalyticities originating
from cusps in Sec. VI A.

For simplicity of notations, all time variables are greater
than 0 unless otherwise specified.

A. Interchanging orders of limits

The failure of #-TE is due to the interchange of the order of
limiting operations. For a time-independent Hamiltonian [9],

v, r)—ZcJ[Z ’;’) r”}s (). ®)

p=0

in which ¢; =

(9[¥o), while

V(e ) = Z |:ZCJ 161

p=0L j

¢j(r )}t" (€))

which is obtained by interchanging the order of the two
summations. If the initial wave function is composed of a
finite number of eigenstates, such an interchange is valid.
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More generally, one requires uniform convergence for two
summations of infinite number of terms to be interchangeable.

We now perform a ¢-TE on the integrand of Eq. (6) and
interchange the order of the integration and the summing of
t-TE,

. © 00 .12 1ANn
TE / 4 . (_lk /2) n
U " (x,x',t) E ngzo [w dk exp[zku]TI

[e¢] n

I LI (10)
= 2'n!

where u = x — x/, and 8 denotes the 2nth-order derivative
of the § function with respect to u. Thus, UTE only exists in a
distributional sense. Applying UE(¢) to Eq. (1) generates an
ill-defined wave function, even in the distributional sense:

TE _ ot
¥ > 0) = Yolx) — it) == 4 8(x) | Yolx)

41

- 8’(x>1/x5(x)} +0@?). (11)

1
58”(x> —8(x) + az(x)]%(x)

t-TE does not apply to systems with cusps due to the
problematic interchange of limiting operations. In many cases,
one can recover the correct result by introducing another
interchange of limiting operations. Here, we notice that the
initial wave function does not have a cusp in momentum space,

0 2
Wo(k) = / dx o(x) exp[—ikx] = el 12)

~ I

where we denote the Fourier transform of ¢ with respect of x
as W and the conjugate variable of x as k.

According to our previous argument, #-TE should be valid
for this case. By applying UTE to Eq. (12) and performing the
summation to infinite order of the ¢-TE, we obtain the ¢-TE
wave function in momentum space as

X a2 n
U 1) = Z M\lfo(k)t" =

72
Z . e exp(—ik“t/2),

13)

which is exactly the Fourier transform of Eq. (7), the correct
TD wave function. Taking the ¢-TE in momentum space is
equivalent to performing a Fourier transform on Eq. (11), and
then interchanging the order of the Fourier transform with
the summation of the ¢-TE series. By introducing this extra
interchange of orders, the correct TD behaviors are recovered.
The Borel summation of asymptotic series (as in Sec. IV A)
is another example of correcting the wrong result from
interchanging the order of limiting operations by introducing
another interchange of orders, and we develop in Sec. III a
method based on the Borel summation to obtain short-time
behaviors for systems with cusps. Unfortunately, there is no
general theorem about the applicability of such techniques,
and this topic remains under active research [18,19].

PHYSICAL REVIEW A 88, 042514 (2013)

FIG. 2. (Color online) The time-dependent wave function after
the nucleus vanishes.

B. Inner and outer regions

Here we define carefully the inner and outer regions,
each of which has a distinct asymptotic expansion. Figure 2
shows that the region far from the origin becomes oscillatory,
showing the plane-wave nature of the eigenstates of the
free-particle Hamiltonian; yet the region near the origin is
nonoscillatory, resembling the spread-out cusp. By carefully
taking the r — Oy limit as below, we notice that r — 0
actually corresponds to two different limits, with |x| > /f
and |x| < +/1, respectively. We denote the |x| >> /7 region
as the outer region and the |x| < /7 region as the inner region.
The correct short-time behavior is composed of the short-time
behaviors of these two regions.

The short-time series expansions for these two regions
can be obtained by changing the variables from (x,?) to the
following reduced variables:

s=+t, I= (14)

NIE
.

Figure 3 shows that such a change of variables effectively
zooms in to the inner region, and the cusp in the initial wave
function is removed in the reduced variables.

We can analytically extract the functions describing the
smooth and oscillatory parts of the wave function. Define the
following special functions:

Eo(5,%) = S¢ [eﬁ” erfc(%)}
(15)

2 2 - 2.,
F(s,x) = S,;[—ex/4 dte' +”+T],
v 0
where s = s £+ V2%,

Refy] ——

Im[y]
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FIG. 3. (Color online) Same as Fig. 2, but as a function of s = 4/t
and ¥ = x/+/21.
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The TD wave function Eq. (7) is then

) = %ﬁ[EC(m) — iF*(s,%)]. (16)

For the wave function, the E. part is smooth, and the —iF* part
oscillates. Since at t+ = 0 the oscillatory part does not exist,
it must be the effect of the vanishing cusp. In terms of error
functions [20],

F(s,%) = ieﬁ”{ erf[«/?(x - %)]

—erf<¢>} (17)

If |x| > /f as t — 0, the arguments of the error functions
in Eq. (17) approach co. On the other hand, when |x| < /7
as t — 0, these arguments approach 0.

The inner-region expansion can be obtained by Taylor
expanding ¥ (s,X) as s — 04 while holding X fixed:

Y (s, 8) 1 4 s[—y/2i /7 expli )
— 25 erf(\/lT*X)] + 0(s%)

12X f ,/i*
= -— — X€er — X
2 2t
2i ix?
—J=exp| — |Vi+---. (18)
T 2t

The outer-region expansion can be obtained by expanding
Y (s,X) as X — oo while holding s fixed:

A~ exp(—«/zslil +is?/2)

1)[foutf:r(s,)z) =
+— exp(i)sE 2 + OG )
2
it
= exp(—|x|)<1 + 5)

e C)
+\/§ Mﬁ/u..., (19)

X

The truncated inner-region and outer-region expansions
are plotted in Fig. 4. These two together define the correct
short-time behavior of the wave function. It should be noted
that the usual + — Oy limit corresponds only to the outer

W(x,t=0.1)

x(a.u.)

FIG. 4. (Color online) y(x,r = 0.1) after the nucleus vanishes,
plotting the truncated inner-region expansion and the outer-region
expansion.
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region, and thus it does not contain all the information of
the system at t+ — O,. Since these two expansions both
contain time nonanalyticities, such as half-powers in 7 and
explix?/(2t)], the t-TE cannot describe the correct short-time
behavior.

Note that the outer-region expansion can also be found via
the stationary phase approximation [18], applied to the propa-
gated wave function in momentum space. The stationary phase
approximation is a method yielding the leading asymptotic
behavior (as £ — o0) of integrals of the following form:

b
1) = / def () expligg(©)]. 20)

Write out the time-dependent wave function using the Green’s
function [21],

Y(x,t) = ° f kdk / dx' exp(—ik’t/2)
2

- k2
x G <x,x’, —) Yo(x")

2
_ 1/°°dk ik exp(—|x]) n exp(ik|x])
T Jo k2 + 1 k2 + 1
x exp(—ik’t/2), (21)

where the time-domain Green’s function G is related to
the time-propagation operator introduced in Sec. II by
G(x,x',t) = —i(x|]U@®)|x'), and G is its Fourier transform
with respect to . Equation (21) is equivalent to Eq. (3).

The first term in the integral gives the ¢-TE wave function,
and we apply the stationary phase approximation [18]. The
stationary point is k = |x|/t, and the second term of Eq. (21)
correctly yields the leading time nonanalyticity:

% )
+\/§ SR/ 3ny L )
b

X

v AT

By change of variables, one can see the limit to which
the stationary phase approximation corresponds. Letting k =
(|x|/t)¢, the second term in Eq. (21) becomes

> x? |x|¢
d (=04 20) |5 23
fO ¢exp[12t( ¢+ c)}ngzﬂz (23)
Equation (23) is in the form of Eq. (20), with x2 /(2t) as & in
Eq. (20). Thus, the stationary phase approximation Eq. (22)
corresponds to the x2/(2t) — oo limit, i.e., the outer-region
expansion.

C. Radius of convergence

Next we consider the radius of convergence of the Taylor
expansion. We study the wave function in the vanishing
nucleus problem, beginning at fy after the nucleus vanishes.
This wave function has no cusp and has a well-behaved Taylor
expansion.

The ¢-TE of the time-evolution operator is

A i1/2) 9%
TE[e—'”’]=Z(”]/.,) YT (24)
J
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The exact TD wave function is Eq. (7). Instead of #-TE at
t = 0, we pick a later time £, as the expansion point and derive
the radius of convergence of this ¢-TE.

In the outer region (x >> ./fy), it is easy to show that

9" (x,1) T
8x2n & (_1) ! 2n—-3/2 C’ x> \/5, (25)

Iy

where C = (i — 1)e!*/@)/ /r. In the inner region (x <
1), we have

3%y (x,t i"~t2on — DI
LS (n71 3 ) C, »r K \/t—() (26)
dx2n 1 /

Then the radii of convergence for the inner and outer regions
are given by

Rouler = 00, Rinner = to, (27)

separately. Thus, the radius of convergence for the inner region
vanishes as ty — 0.

III. THE s EXPANSION

Here we introduce the s-expansion method [9]. Our notation
is for 3D problems, but the method applies equally to 1D
problems. Based on the previous analysis, we begin with a
change of variables:

r
s=+t, F=—. (28)
Va2t
With these reduced variables, we can describe the time
nonanalyticities which are not covered by the form of the #-TE.
The time-dependent Schrodinger equation (TDSE) becomes

-5 ) A oy _ -
Vo — 457V iy 4 2i sa——r-le =0. (29)
s
In the vanishing nucleus case, ¥ is equal to its Taylor expansion

in powers of s for fixed r, and thus we assume the following s
expansion ansatz in the more general case:

YE.s) =D YuE)s". (30)
n=0
This yields a set of differential equations,
n—2
Vzlﬂ(n) — 2ir - Vlﬁ(n) + 2ni1ﬁ(n) -4 Z V(p)llf(n_p_z) = 0,
p=-2

€29

in which we assume the potential has a simple form of
V(r,t) = Z;o:d V(p)(F) sP. Thus, each power of s produces
a second-order differential equation for a function of F.
Equation (31) requires proper boundary conditions for the
solution to be well defined. Equation (31) is equivalent to
the TDSE whenever the wave-function ansatz Eq. (30) is
applicable. This requires the boundary conditions to be derived
from the initial condition of the TDSE, which is the initial wave
function y(r) = lp()(ﬁfs). For finite argument r, s — 0
implies 7 — 00, so the expansion of the initial wave function
at s — 0 determines the large r behavior of the v, (F), i.e.,
provides the boundary conditions of Eq. (31).
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We first check that for the trivial case where a system stays
in an eigenstate, the s-expansion reduces to the ¢-TE result.
Assume the system stays in an eigenstate ¢(r) with eigenvalue
E, Eq. (29) becomes

0 _
—4s2E1/f+2i{s8—‘/’—f-V1/f} =0, (32)
S
and Eq. (31) becomes

—4EY(u—2) + 200y — 20T - Vi) = 0. (33)

Equation (33) can be trivially solved, and the coefficients
originating from the differential equations are determined by
the initial condition of the TDSE. Inserting v, s into Eq. (30),
we obtain

Y (F,5) = ¢(0) + v/2F¢'(0)s
+[—i E$O0) + F¢"(O)]s* +---,  (34)

where the derivatives of ¢ are taken with respect of r.
Equation (34) is identical to the ¢-TE result.

Several examples of using the method are provided in
Secs. IV A, IV B, and V B. For the 1D vanishing nucleus case,
we solve Eq. (31) directly in Sec. IV A. Partial differential
equations as in Eq. (31) are difficult to solve exactly except
for the most simple systems. For the 1D/3D hydrogen in
turned-on static electric field shown in Secs. IVB and V B,
we are not able to solve Eq. (31) directly. For these more
general cases, we find that although ¢-TE does not describe the
correct short-time behaviors as a whole, it works fine before
the occurrence of the first time-nonanalytic term. Thus, instead
of solving the short-time behaviors directly, we solve for the
simpler corrections from the ¢-TE with the method of dominant
balance (described in Sec. IV A). The correction from the t-TE
is expressed as asymptotic series. By performing the Borel
summation as in Sec. IV A, we obtain the short-time behavior
in closed form.

This method is not intended to be applied to all systems.
The formulation only applies to one-electron systems. Second,
although the theory is applicable for short-time behaviors
to any order, the method depends on the ability to solve
differential equations analytically in closed form—either di-
rectly or through the use of Borel summation—which requires
asymptotic expansions in closed form. The requirement of
closed-form solutions makes numerical approximation diffi-
cult. Although several approximation methods exist for the
Borel summation [18] requiring only part of the asymptotic
series, it is not clear to us whether they are applicable in
this case. Third, the short-time behavior obtained from the
method is that of the TD wave function, which is not an
observable. It is usually more important to be able to predict
nonanalyticities in observables, such as the @ 7? in the
high-frequency oscillator strengths of atoms. However, there
is no guarantee that the leading-order time nonanalyticity of
the TD wave function is sufficient to determine that of a
desired observable. Sections V B and VI demonstrate such a
situation for the 3D hydrogen atom in a turned-on static electric
field. Aside from these restrictions, a more subtle restriction
of the method is related to having more than one time scale
introduced by cusps and is discussed in Sec. IV C.
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IV. APPLICATIONS IN 1D

Here we show how the s expansion works, by applying it to
several different problems. We already have the exact solution
for a vanishing nucleus, so this works as a demonstration of
our method.

A. Vanishing nucleus revisited

In this case, Eq. (31) becomes

1”(/;,) — 21’)?1/;(’”) +2inyu =0, (35)
with general solution
V() = @, Ha (Vi) + by fu(F), (36)
where
= expliz')’]
£.(7) = H,(Vi%) fo dx ey M oeven, a7
F]( 2,;,1x2) n odd,

H is the Hermite polynomial, and |F; is Kummer’s confluent
hypergeometric function [20].
Expanding Eq. (1) at s — 0 yields

o0 —
_ =2z,
Yox) = exp(—v2s|x) = ) ————s". (38
—~ n!
Thus, the boundary conditions for Eq. (36) are
Yo () ~ (—V2)"Z]"/nl,  |F| — oo. (39)
With Eq. (39), we find ay,,+| = by, = 0 and
(_l)n \/Ein+l/2
oy = ———, by = (40)
(2n)12" Qn+ D7

With Egs. (36) and (40), we obtain the inner-region expansion
from Eq. (30). It agrees with the previously shown Eq. (18),
which is obtained from exactly solving the entire TDSE.

The short-time behavior of the time-dependent wave func-
tion is described by the inner-region and the outer-region
expansions together. The inner-region expansion corresponds
to expanding the exact time-dependent wave function at s — 0
while holding F = r/+/2¢ constant, but there is no requirement
on the magnitude of the constant. Therefore, the outer-region
expansion is obtained by expanding the inner-region expansion
Eq. (30) for ¥ — oo. For the 1D vanishing nucleus case,
expanding Eq. (30) for |¥| — oo yields

1// outer( )

%>

(= 25 |%] + 5282+ )
+%<1—ﬁsm+---)

T )
i sexp(ix
p( )+...

2 2
Y GO UM P S Y
= X 2 2 X
[2i " explix®/ (2t
4 l%z/()]ﬁﬂ_,_..._ (41)
T X

This result agrees with Eq. (19), except that the exp(—|x|)
envelope of the regular terms in Eq. (19) is expanded at x — 0
as the price paid for obtaining the outer-region expansion from
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the inner-region expansion. The same result is obtained with
the stationary phase approximation [18].

To find the asymptotic behavior without solving TDSE, we
use the method of dominant balance [18]. For this case the
leading-order time nonanalyticity is in v;)(X). We use the
following ansatz for y(:

Y1)(X) = exp[P(X)]. 42)
Inserting Eq. (42) into Eq. (35) yields
P"(%)+[P'(X)]* = 2ixP'(X) +2i = 0. (43)

One consistent balance is assuming P”(¥) < [P/(¥)]*>. We
obtain the reduced differential equation corresponding to this
balance by removing P”(x) from Eq. (43),

P(%) ~ x>, (44)

which is the first order in the asymptotic series of P(X — 00),
corresponding to this balance. The next order is found by
inserting

P(%) ~ ix> 4+ C(%) (45)
into Eq. (43), which yields
C(x) ~ —21In(%). (46)

Thus, ) has the following asymptotic behavior from the
balance P”(%) <« [P'(%)]*:

P22
) = e explP()] ~ PG, 7)

More terms are obtained by iteration, and inserting results of
Eq. (46) yields ) as

(48)

) exp(i%?) e 2n + DI(=i)" __,,
VoE) ~e——rjy Z; > X
Another consistent balance is assuming —2ix P'(x) > P"(X),
[P’(x)]. The asymptotic series corresponding to this balance

is
Yy(X) ~ . (49)

The complete asymptotic behavior is then a summation of
Eqgs. (48) and (49):
exp(ix?) 3i 15
252 4x¢
Borel summation is a method of extracting information
and yields the closed-form formula of a function from its
asymptotic series under certain restrictions [18,22]. Consider
a divergent series,

Y(X) ~c1——5— 2 + > + %, (50)

S(p) =Y Bup" (51)
n=0
The Borel sum of the series is defined as
Sp(p) = /0 dE exp(—E)p(pt), (52)
in which
= Bup”
p(p) = ;O o (53)

042514-6



NONEXISTENCE OF A TAYLOR EXPANSION IN TIME ...

As an example, we do the Borel sum of the series in Eq. (50).
The original divergent series is

exp(ix?) i Qn+ D=,
X .

S = = > (54)

n=0
The Borel sum of Eq. (54) is

o exp(ix?) [ 2\ 2n + DI(—i)En
sp(0) = SO /0 do=6) 3 S
exp(ix?) [* 1
— fo d& exp(—é)—(l e

= —2iexp(i¥?) + 2v/inx erfe(\/i %), (55)
which is the exact form of ;) as in Eq. (36),

Yy () = 2% + ¢1[—2i exp(ix2) + 2v/im % erfe(v/i X)),
(56)
and c; and ¢, are obtained by matching with Eq. (39):

Cc] = \/Z , (= —\/E. (57)
b4

This result agrees with Eq. (36), so the method worked.

B. Suddenly switched electric field

Next we apply the method on a more complicated 1D one-
electron case. Consider a system with the following potential:

V(x,t) = —8(x) + ExO(1). (58)

The initial state is Eq. (1), the ground state of the “1D
hydrogen.” The system stays in that state for # <0, and a
static linear electric field with field strength £ is turned on at
t = 0. Though we cannot obtain the full analytic wave function
for this system, the first-order perturbative wave function
(sans £) ¥ [21] is exactly solvable and is given in Sec. VIC.
Its outer expansion to the leading time-nonanalytic order is

x — sgn(x) ,  ilx — sgn(x)]tg
2 8

r“} exp(—|x|)

—0
VARIERS! o {—ixt +

x — sgn(x)
48

T )
- 4\/§ explix” /D) 5/ @lor 4 0w, (59)
T X

Below we show that the s-expansion method reproduces the
%72 term in Eq. (59).

Although V has no explicit time dependence for ¢ > 0, the
potential in the reduced variables has explicit s dependence,
which is

—8(x)+ Ex = —7 +EsiV2. (60)

With the s-dependent potential Eq. (60), the differential
equations Eq. (31) become a system of inhomogeneous
differential equations:

Winy — 20X, + 2int) + 2V 28(R) Yn-y
— 4NV2E5 Y3 = 0. 61)

Vix,t >0)=

PHYSICAL REVIEW A 88, 042514 (2013)

The boundary conditions for Eq. (61) is the same as Eq. (39),
since the initial condition of TDSE does not change from
Eq. (1). A general formula for vy, (x) like Eq. (36) is not
available in this case.

Converting the 7°/? term in Eq. (59) to (s,%) variables, we
observe the leading-order time nonanalyticity occurs at fourth
order in s, and we solve for y4)(¥) for this time nonanalyticity.
Since ¥4)(x) depends on all the previous V,)(X)’s as shown
in Eq. (61), we need () () to ¥(3)(X) to solve for yr).

In this case, Y)(¥) and 3)(X) can be obtained easily
from Eq. (61). For a more complicated system, there may be
more such extra work to do before reaching the leading-order
time nonanalyticity, and it is cumbersome having to solve for
the first few V,)’s, which are analytic in time. We observe
that though the ¢-TE wave function does not have the correct
short-time behavior, it can be used to facilitate the process of
obtaining the leading-order time nonanalyticity in v (x,?), as
described below.

¥ TE(x,1) of this system is

YR, = wooc){l - n(% + gx>

21
- 5[1 + Esgn(x) — Ex + 82x2“ + 0.
(62)
Converting Eq. (62) to (s X) variables and collecting the s”
terms gives a set of w(n)(x) w&‘;: for n =0 ~ 4 are listed
below:

TE = TE =
1/’(,,:0,1,2)()5) = 1/’(,,),5:0()5)»

YEE) = Y& emo(®) — iV2EX, (63)
Yy (X) = Y e_o(X) — € sgn(x)(5 — 2i%?),

with Y05 e_o(%) = (n!) 719" [Wo(s,%) exp(is®/2)]1/s" |s=o-

Yoy (X) to Y5 (%) satisfy both the differential equations
Eq. (61) and the boundary conditions Eq. (39), which is
expected since the outer-expansion Eq. (59) suggests that the
leading-order time nonanalyticity does not occur until ¥).
Inserting (%) into the left-hand side of Eq. (61) yields
—&8'(X), showing that w E(#) does not satisfy the differential
equation. Then we only need to solve the differential equations
starting from v 4)(%).

We define the difference between v4) and ) as

A(X) = Yay(X) — Yy (%) (64)
Then Eq. (61) in terms of A becomes
A" —2ixA +8iA — E8(x)=0. (65)
We obtain the complete asymptotic expansion of the general
solution A, for ¥ — oo by the method of dominant balance
(as described in Sec. IV A),

3
Ag(X) ~ ¢ (x“ +3ix? — 4> + QM

i

1 & Qm+6)(—iy+!
[ 3—2_: TESTE 2 ] (66)
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in which ¢; and ¢, are coefficients to be determined later. We
apply a Borel summation to Eq. (66), which yields the exact
formula for A,(X):

1
Ag(®) = (B 4 3i%% — 3/4) + ¢ [—5 exp(ix)x(5i + 2x%)

1 —i "
+— l\/g(—3 F12i2% + 48 erfe(Vi x)}.

(67)

The coefficients ¢ and ¢, are determined using the boundary
conditions Eq. (39), yielding

Ven® = ¥ 1 g2 - ]
@\X) = 6X le 3
) .
— 8{ gx“ sgn(x) + 3://; exp(ix2)x(5i + 2x2)
2 1 %
+ (5)24 +2i% — 5) erf(Vi )'c)}. (68)

We obtain the leading time-nonanalytic term in the outer-
region expansion similarly as in Sec. IV A, which is verified
by Eq. (59).

Unlike Eq. (59), no expansion in powers of £ was needed.
Equation (61) shows that 1) (¥) contains the first £ 2 term, and
V(9)(X) contains the first £ term.

C. Time-varying nuclear charge
Here we discuss a more subtle restriction of the method.

We study a 1D system with Eq. (1) as the initial wave function
and with the following potential:

V(x,t) = —[1 4 €0(1)]8(x). (69)

In this system, the strength of the § well changes at t = 0,
causing the shape of the cusp at x = 0 to change. The analytic
form of the exact wave function can be written out, and the
exact leading-order time-nonanalytic term is

— é €2+ (1 + O)x[1e/@x=232 (70)

However, that derived with the method in Sec. III is

Tk
g 6eixz/(ZI‘)x72t3/27 (71)
T

which is only a part of Eq. (70). The reason for this discrepancy
is that there are two time scales in the short-time behavior of
this system: One is determined by the cusp in the initial wave
function, and the other one is determined by the § well whose
strength has changed. The simple boundary-layer analysis in
Sec. I does not apply here, as the boundary-layer structure is
too complicated here.

V. APPLICATIONS IN 3D

The essential methodology remains the same when turning
to 3D, but the equations become substantially more complex.
For brevity, we normalize 3D wave functions to m instead of 1.

PHYSICAL REVIEW A 88, 042514 (2013)

A. Vanishing nucleus

One point needs to be changed for the s-expansion method
in 3D. Consider a system whose initial wave function equals
the ground-state wave function of the hydrogen atom:

Yo(r) = exp(—r). (72)

Free propagation of this wave function yields a similar
situation as in the 1D vanishing nucleus case, as the system is
effectively 1D due to the spherical symmetry. By expanding
the initial wave function Eq. (72) as

U(s.F) R — s 2 (73)

We only obtain one boundary condition [y, (F — 00)] for
Eq. (31) instead of two boundary conditions as in 1D cases
[Yn)(¥ = Fo0)]. Equation (31) requires another boundary
condition to be well defined, and it is related to how ¢-TE
behaves in 3D cases. For the 3D vanishing nucleus case, the
t-TE wave function is

it
Y IE(r 1) = exp(—r + it/2)(1 - ’—)
p
: i+ 272 +3i+272 2L oY), (4
= — S S S7).
V2F 2

Unlike in the 1D examples, all w(Tn])E(f') satisfy Eq. (31), but
1) (F) diverges at 7 = 0 for any nonzero time. Thus, the other
boundary condition for Eq. (31) is that v,(F) must be regular
at7r =0.

B. Suddenly switched electric field

We discussed 3D systems in our previous paper [9]. Here
we provide a more detailed derivation for 3D hydrogen atom in
a turned-on static electric field. Aside from the dimensionality
change, the main change from 1D cases to 3D cases is that
the Coulomb potential replaces the §-function potential as
the singular potential. Unlike the §-function potential, the
Coulomb potential is long ranged, which makes 3D wave
functions more complicated than their 1D counterparts.

The system has the following potential:

Vit = —% +E20(0). (75)

One can easily check with perturbation theory that the t-TE
wave function of this system does not have a convergent norm,
and thus it must have time nonanalyticities. Define reduced
variables:

r Z
s:\/;, F=—, ZI=—. (76)
V2t V2t
The external potential in these reduced variables is
1
Vrt>0)=— + EN/2s7. (77)
ﬁs?

Inserting the wave function ansatz Eq. (30) into Eq. (31) yields

. 22 ]
(L +2in) ) + — VYo-n - A2z =0,  (78)
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where

32 02 0\2 9 0 0
L=—+— l+z2—= == -2i{F—=+Z=—=).
8724—822+—< +2 >_ z(raf-+z )

For £ = 0, the TE is simple, and
Yoy e—o(®) = ()19 [Wo(s.F) exp(is®/2)]/0s" [;=o.  (80)
In the presence of the electric field,
Vo ) = Y eco® +iE2 (), n <4, 8D
with

fn< =0, f3) = —V2, fa () = 1/(127%) + 1/(2F) + 2F.
(82)

The w(Tn')a(f’)’s before the occurrence of the leading-order time
nonanalyticity are identical to ¥, (F), and we only need to
solve for ) (F) if w(?;:(f') fails to satisfy the differential
equation Eq. (78) and the boundary conditions. Since 3} (F)
diverges as ¥ — 0, the leading-order time nonanalyticity is in
Y (F).

As before, we use the method of dominant balance and
Borel summation to solve for A(F) = ) (F) — Ilfgf)i(l"). Since
¥y, satisfies Eq. (78), the equation can be rewritten as

(L +8i)A =0, (83)

As7 — 0, the divergence in 1&(21)5 is proportional to Z, and A(F)
must cancel this divergence to satisfy the boundary conditions.
Therefore, A(F) has the following form:

A(F,z) = g(r)z. (84)

The method of dominant balance (Sec. IV A) yields the entire

asymptotic expansion of g(r):

9iFr 9 3i ) exp(iF?)
(&)

=\ -3 -2 Il
g(r)_c'<r Ty Ty e 78

1 o (=) (m 4+ 4)2m + 6)!
* [Hﬁmzo (m + 1)22m+572m ] (85)

Performing the Borel sum, we find

ciy =Pl 2 2L
2 4 8

oF
+ CQT‘/__;[NZ exp(iF2)F(=3 + 16i7> + 47%)
7
— V27 (3i — 1872 + 36i7* + 87%) erfe(v/i F)]. (86)
The coefficients ¢; and ¢, are determined by the boundary
conditions as 7 — 0 and 7 — oo, yielding
—k
l

— £ (87)
bid

=0, o=~

Expanding s*y4)(7) for 7 — oo yields the outer-region
expansion:

. 8V2i & ir?
wouter(r’t) 290 . — % exp (%)tn/z. (88)
r
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Although ¥4)(s,T) contains the leading-order time nonanalyt-
icity in the wave function, that knowledge is insufficient [9]
to derive the correct coefficient of the leading half power in
the TD dipole moment (Sec. VI). Due to the coupling between
r and ¢ in the wave function, higher order terms in the s
expansion can contribute to integrated properties such as the
TD dipole moment. We have evidence that both 4 and v s)
contribute, but we have been unable to find a closed-form
expression for V¥ s).

Finally, we obtain the leading-order time-nonanalytic term
in the outer-region expansion of this system by applying the
stationary phase approximation (as in Sec. II B) to first order in
sV (' t") = 7/6(¢'). The change in the wave function (sans
E)is

v (r,1) =i/d3r’ GV ,nyOa,0), (89)

in which ¥© is the ground-state wave function of 3D
hydrogen, and

t
GV r,r' 1) = /d%”/ dt" GOyt — 1"
0
X 5V<l)(P//,l‘”)Gw)(P//,l‘/,t”) (90)

is the first-order change of the Green’s function, with

GOrx' 1) = =i Y exp(—ie, Y ),  O1)

where ¥, and €, are atomic orbitals and orbital energies of the
3D hydrogen atom, respectively. Only the well-known [23]
unbound p orbitals in the sum of Eq. (91) contribute to the
time nonanalyticity in ¥ "’, and the sum in Eq. (91) becomes
an integration for unbound orbitals. Applying the stationary
phase approximation (as in Sec. II B) to this integration, we
obtain the leading nonanalytic short-time behavior shown in
Eq. (88).

VI. DIPOLE MOMENTS

Our results so far, using the s expansion, have been
for the time-dependent wave function. There is no simple
result for its short-time dependence, due to the existence of
distinct expansions in the inner and outer regions. However,
expectation values over wave functions do have well-defined
expansions for small times, although more complex than a
simple Taylor expansion.

In the present section, we extract results for dipole moments
induced by turning on an electric field, in both 1D and 3D.
Note that our s expansion is not a perturbation expansion
in the applied field, but rather demonstrates that the leading
corrections to the wave function for short-time behavior are
linear in the applied field. On the other hand, we deduce
dipole moments only within linear-response theory, but we
find consistent results, as shown below.

A. Linear-response theory

The linear (first-order) change in the density dn(r,t) is
described by the linear-response function x and its Fourier
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transform j:

sn(r,t)
su(r' 1)’

X(r’r/’t - t/) =
N | 92)
x(r.r'w) =/ dt x(r,r',v)e'".

(o]

For one-particle systems, there is a simple relation between ¥
and the frequency-domain Green’s function G [24]:

X, w) = /n@n)Gr.r,o + ¢) + G*(r,r'¢) — )],
93)
where € is the ground-state energy of the system. Aside from

the definition Eq. (92), the linear-response function can also
be expressed in the Lehmann representation:

Y i U\ (P A N
F,r,w) = lim g {< ol _,I.n(r)| 0)
T w—w;+in

(94)

n (Wol AW ;) (W |A(r)| Wo) }
—w—w; —1in ’

where W is the many-body eigen-wave-function of the cor-
responding system labeled with j, and w; = €; — ¢q is the
transition frequency between state j and the ground state. For a
system with only a discrete spectrum, one can take &« — oo for
each separate term, yielding O (w~?) high-frequency behavior
[25]. However, when the system has a continuum, the sum
must be performed before taking the w — oo limit, and this
produces fractional decay.

Consider a perturbation potential £x6(¢). The first-order
dipole moment (sans &) is

t
Mfﬁ(z):/ dt/fd3r/d3r’ xx'x(r,x't —1t), (95)
0
and its transform, the polarizability in x direction, is

oy (@) = / d’r / & xx'5(r,r ,w). (96)

The subscripts denote the direction on which these observables
are measured. o,,(w) and ;L)((l) (t) are related by Fourier
transform, and the high-frequency behavior of «,, (@) depends
on the short-time behavior of ,u,fcn(t).

B. Known results

The high-frequency part of the photoabsorption cross
section of all atoms decays as w~"/? [26-28], which means
that the Ima decays as w =% (Im denotes the imaginary part).
For a hydrogen atom, Im[a(w — 00)] is [26]

oo 42

Im[a(w)] ~ EVTR CH)

where « is a spherical average. Thus,

t—04

wl@) ~ ; / dr’ / oodw Im[a(w)] sin[w( — )], (98)
0 W,
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where o, > 1 is a cutoff, yielding

) /tdt’ {16‘/50;’/) _ &y
0 1571'&)6/2 9na)g/2
P Ut i ” } (99)
31507

As w, — 0o, we find the leading time-nonanalytic term in
uh (e — 04):
-0, 256

My o 22
pt (1) +2835ﬁ +

(100)

C. Origins of nonanalyticity and relation to time dependence
To trace clearly the origin of these nonanalytic behaviors,
we begin with the simplest case, a free particle in 1D. The
Green’s function is simply
exp(iku)
ik

where # = |x — x’| and k = ~/2w. Insertion into Eq. (93)
yields ¥

G (x,x'\w) = (101)

exp(—ku) + i exp(iku)
k .

Even for a free particle, there are nonanalytic behaviors in the
frequency-dependent response due to the continuum, which
are not apparent in the Lehmann representation Eq. (94).

Our next example is the 1D H atom. Here

1 . 2 . .
G ) = _iV 2mit xp [%} a lzexp <% B X)
f( X ”) (103)
x etfc] — —,/ — ),
J2it 2

where X = |x| 4 |x’|, leading to a response function of the
form

7 (x,x w) = (102)

exp(iuky)  exp(iXky)

2P ) = —i eXp(—X)[

K4 ilci + K4
exp(—iux®) exp(—iX«*)
- - , (104
K* iK? —k* (104)

where ki = +/£2w — 1. Equation (104) clearly has nonana-
lytic behavior for large w.

For a 1D H atom in a turned-on linear electric field, we can
explicitly calculate the first-order perturbative wave function
(sans &),

vVx,r) = \/;exp[iiz])?t + W{m(m) + h_(x,t)

+[(1x] + £2) sinh(x) — x(|x| + 2it) cosh(x)]},
(105)
where  hi(x,t) = —exp(£x)(x F yi)erf[«/i/(Zt)*yi]/Z,
with yp = £x 4+ it,and X = x/\/z as before.

The induced first-order time-dependent dipole moment
(sans &) u is related to ¥ 1) by

() = 2Re(y ¥ x|y M), (106)
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(Re denotes the real part) so u‘! of this system is then

12 A1 cos(t/2)
Dty= —— @ +6)+ —L=> =32+ 7t + 15
ut (@) 12(+)+ 12\/;( + 7t +15)
Visin(t/2) 5
-+ 3"+ Tt —15
NG @ +3t" + )

Loy . 3 2 .
+2Re ﬁ(t —4it’ + 61~ 4+ 12it — 15)

()

The leading short-time behavior is

(107)

t—0, 12 32

t4
~ + 22— — 4+ 0@1?. (108)

7
105/7 ! 12

To see the connection with the s expansion in this case,
we note simply that the fourth-order contribution Eq. (68),
inserted in Eq. (106), recovers the same leading nonanalytic
behavior. Thus, here the leading-order nonanalyticity in the
wave function is sufficient to determine the leading-order
nonanalyticity in the dipole moment, at least to first order
in the external electric field.

na)

VII. MORE GENERAL POTENTIALS

Here we explore what happens for other potentials.

A. Different spatial dependence

We provide a heuristic demonstration that the time nonan-
alyticities originate from the specific form of the TDSE and
show that the time nonanalyticity of the time-dependent wave
function is determined by the space nonanalyticity of the initial
wave function.

Consider a perturbed 1D one-electron model system de-
scribed by the following potential:

V(x,t) = Vo(x) + Ex"0(1). (109)

The structure of the problem is exposed by taking a space-
Fourier transform and a time-Laplace transform of the TDSE,

k2. . _
?\ll(k,v) + Vo(k) * U(k,v) + ETD(k,v)

—ivW(k,v) +iWy(k) = 0, (110)

where W (k,v)is the time-Laplace and spatial Fourier transform
of Y (x,t), Wo(k) is the spatial Fourier transform of ¥y(x), *
denotes convolution, and the superscript (n) denotes nth-order
derivative with respect to k. For analytic Vp(x), the Vy(k) *
¥ (k,v) term is composed of derivatives of W (k,v). Our goal
is to find out the short-time behavior of the time-dependent
wave function. Dividing through by v and taking v large, the
highest derivative is multiplied by a small parameter, and the
solution of such an equation has a so-called boundary-layer
behavior [18,19]. This means the solution changes its behavior
rapidly in a narrow region whose thickness is determined by
the small parameter. Using boundary-layer theory, we obtain a
very crude estimate of the outer-region expansion of the time-
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dependent wave function by dropping all derivative terms [18],

k? -
?\Il(k,v) —ivW(k,v) +iWy(k) =0, (111)
yielding
- 2iW(k)
V(k,v) = ———7T-. 112
V=20 (12

This specific pole structure is due to the specific form of
the TDSE, that of a second-order differential equation in
space, but a first-order differential equation in time. This
pole structure generates the time nonanalyticities shown in the
previous examples. One recognizes this by doing the inverse
Laplace/Fourier transform of the pole:

[ (ixz)
Y(x,t)=,— exp|— ), for Wok)=1. (113)
Tt 2t

Though the form of the TDSE implies time nonanalyticities,
such nonanalyticities do not show up in every system. If
the initial wave function is analytic in space, then the time-
dependent wave function of the system described by Eq. (109)
is analytic in time; if the initial wave function has cusps, the
time-dependent wave function is not time analytic, and the
time nonanalyticities have the form "/ and exp[ix?/(2t)].

The inverse Laplace transform of Eq. (112) is
W(k,t) ~ —exp(—ik*t /2)Wy(k). (114)

The outer-region asymptotic behavior of ¥ (x,t — 04) is
obtained from the inverse Fourier transform of Eq. (114):

_ explix?/(20)]
Jit

in which % denotes convolution. If yr(x,?) is space analytic, it
equals its Taylor expansion,

D)
wnin = o 2

j=0

Yx,t) ~ * Wo(x), (115)

(116)

where gh(()j ) here denotes Jjth-order space derivative of ¥y. Then
the convolution in Eq. (115) can be evaluated term by term,
with the jth term being proportional to

4 I—j 1 ix? 1— (=1
(—D/2 . . —
t F s+ , 1= ,
! ‘( 2 2 2;) 2

where |F; is Kummer’s confluent hypergeometric functions
[20]. The F;’s in Eq. (117) are polynomials that involve
only positive integer powers of f, so there are no time
nonanalyticities starting from a space-analytic initial wave
function for the model system Eq. (109).

For initial wave functions with cusps, we modify Eq. (116)
to be

(117)

o T,ﬁ(j)(O) )
pe = Y Tox o) — 0(-x)],  (118)
j=0j#m 7"
which contains a derivative discontinuity (i.e., “cusp”) in the
mth order. The convolution in Eq. (115) for the 6(x) part of
Eq. (118) is proportional to

1 ix? l—m 3 ix?
my2 m_ 1 (m—1)/2 L2

¢ Fi-——;=; — ¢ F ——;=:— ).
! ]< 22 2t ) : l( 2 272t )

(119)
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The convolution with the 6(—x) part yields a similar result.
As in previous case, the ;F)’s in Eq. (119) are regular
polynomials. Equation (119) contains ¢ half powers for all
values of m, and thus the initial wave function with cusps has
time nonanalyticities in its short-time behavior for the model
system Eq. (109).

We provide the free propagation of a Gaussian initial wave
function as an example in which there is no nonanalytic short-
time behavior starting from a smooth initial wave function.
The initial wave function is

exp[—x?/(20)°]
e

in which o characterizes the width of the Gaussian. Combining
Eqgs. (114) and (115) yields
i 20m!/* ix?

ex
Vi—io? P20 —io?)
Equation (121) has no time nonanalyticities at the initial time.
The radius of convergence of the ¢-TE at the initial time is o2
In the limit of 0 — 0, the Gaussian becomes a § function and
no longer smooth. The pole in Eq. (121) coincides with ¢ = 0,
and as a consequence the radius of convergence of the t-TE
becomes exactly zero (just as in Sec. II C).

Yo(x) = (120)

Yx,t) ~ — } (121)

B. Different time dependence

Next we consider cases other than sudden switching. For
ease of discussion, we limit ourselves to 1D systems with the
time-dependent potential

V(x,t) = —8(x) + Va(x) + EV I (x,1), (122)

where V,(x) is an analytic potential, SVI(x,t) = x" £ (1),
and f(r) determines how the perturbation is turned on. At
t = 0, the system starts in the ground state ¥(x) of potential
—4&(x) + V,(x), whichhas a cusp at x = 0 due to the §-function
part of the potential.

To show that the information at the cusp is enough to
determine the leading half-power term in time, we make a
drastic approximation: The wave function is approximated by
an envelope function for all x # 0. Write

Yo(x) = glax) Y d;x/,

j=0

(123)

where g(x) is some decaying envelope function, a is a positive
constant, and d;’s are the Taylor coefficients of ¥o(x)/g(ax).
Choosing g(x) = exp(—|x|) and applying Kato’s cusp
condition [29], we obtain
Yo(x) = exp(—alxN(¥p(0-) — ¥(0+4) + x{p(04)
+alyg(0-) = Y001} + x*{avg(04)
+a’[¥(0-) = Y01 + Y5 (0} + - ).
We can still use Eq. (98) for the dipole moment even though

the potential is more general, by defining Im[&(w)] in analog
of the dynamic polarizability as

Im[é(w — 00)] ~ Em (Wolx Y, ) (W, 18V (x,0)]¥0),
(125)

(124)
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where v is the continuum wave function whose energy
difference to the ground state is w, and SV (x,w) is the
Fourier transform of 8§V (x,t). Inserting Eq. (125) into
Eq. (98), we find that there is one term of the result which
does not depend on the cutoff w, and the envelope parameter
a, which is the term of the leading time nonanalyticity. This
result does not depend on what smooth-decaying envelope
function is chosen for g(x).

In previous examples, the time-dependent perturbation is
always turned on with f(¢) = 0(¢), allowing the possibility
that the time nonanalyticity is related to this specific turning-
on method. Here we test different turn-on functions f(z). If
f(t) = 8(t), we obtain the leading half-power term in u!" as

(@t = 04) ~ -+ 2(95(04) — Yo (0)FPT(=2 = n/2)
x F(l’l + 2)t2+n/22737n/2[_1 + (_1)}1]
x (=1 +i"Yexp(=3inmw/4)+---. (126)

In another case, if f(¢) = ¢, we obtain the leading half-power
term as

[/ (04) — ¥/ (0_)]? csc(nm/2)

L4 +m+n/2)
X TR (1)) (=1 4 i)
x (1 + m)['(2 + n)exp(=3inm/4) + - - -.
(127)

M(1>(l»_>0+)'\/...—2

It is clear that the effect of different turning-on method
only changes the order of the nonanalytic behavior, so the
previously shown time-nonanalytic behavior is not the result
of the 6 function turning on. Similarly, the spatial part
of the time-dependent perturbation potential also does not
need to be in the form of x”, and it can be easily tested
that a perturbation of 8 V") (x,t) = sin(kx — wot)8(t) also has
time nonanalyticities in the short-time behavior of the wave
function.

C. Onset of nonanalytic behavior

A nucleus has a finite radius, and one may argue that the
failure of the #-TE due to cusps is artificial. To examine this
effect, we provide a numerical example similar to the 1D
hydrogen in a turned-on static-electric-field case, but with a
rounded cusp. This is done by substituting the potential in
Sec. IVB —48(x) + £x0(t) with

exp[—xz/(202)]
o 21

We set £ =1 for the numerical calculation. In the limit of
o — 0, the case in Sec. IVB is recovered. We solve the
ground-state wave function of this system for t < 0 on an
unevenly distributed grid, which has more points near x = 0
to ensure that the cusplike structure in the wave function is
well resolved. We propagate the TD wave function with the

Vix,t) =— + Ex6(1). (128)

TABLE I. Relation between the coefficient of ¢ in u(¢) and o.

400 1 12 14 18 1/16 1/32
—1000(c +1/2) 866 419 201 932 398 132
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FIG. 5. (Coloronline) 1000[w(t)/t> — c(o)] for o listed in Table I
and o — 0. [32000¢%/2/(105./7) is plotted for the o — 0 curve.]
The errors between the exact ¢ — 0 curve and the fit curves show
systematic behavior.

t-TE-based Crank-Nicolson method [30] and a sufficiently
small time step considering the radius-of-convergence prob-
lem. We then calculate the numerical TD dipole moment p(¢)
and fit p(¢) with

32
2 72
t) ~ct t'=, 129
u(t) ~ct™ + 1057 (129)
which are the first two terms of Eq. (108). In the limit o — 0,
¢ = —1/2; with finite value of o, we list the corresponding

values of ¢ in Table 1.

Table I shows that although the system does not have a
cusp, the TD behavior in Sec. IV B heavily influences the
TD behavior here. This is hardly surprising as Sec. IVB
correspond to the o — O limit. We used the 7-TE-based
propagation scheme in the numerical example, and the ¢t7/2-like
behavior is mimicked by all the integer ¢ powers in the t-TE
when o is small. Figure 5 shows that the ¢”/? term in Eq. (108)
and u(t) — c(o)t* with small o are nearly identical. Thus, the
time nonanalyticity is still relevant in numerical situations. On
the atomic time scale, the time evolution is indistinguishable
from that with a cusp.

VIII. DISCUSSION: MANY-ELECTRON
SYSTEMS AND TDDFT

The original motivation for this study was concern about
the fundamentals of TDDFT [2,3]. Since the proof of a
general theorem [7], the number of applications of TDDFT
in chemistry and physics has grown phenomenally [31]. In its
standard form, TDDFT translates the many-electron problem
into a fictitious many-fermion problem without interaction be-
tween the particles, thereby greatly reducing the computational
cost and allowing calculations with several hundred atoms.
While all such applications rely on approximate functionals,
their validity as an alternative to solving the time-dependent
Schrodinger equation relies on several exact statements and
the existence of exact functionals.

The most basic requirement for construction of a formally
exact density functional theory is a proof of uniqueness of
the one-body potential that can give rise to a given density.
The Runge-Gross theorem [7] shows that, for a given initial
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wave function and electron-electron repulsion, there is at most
one v(r,t) that can produce a given n(r,r) when solving
TDSE. Thus, v(r,t) is a functional of n(r,t). Applying the
same logic to the fictitious KS system yields the TD KS
equations that can be applied to many-electron systems, once
the many-electron effects are approximated in the mysterious
exchange-correlation potential. A linear-response analysis
[32-34] yields an extremely efficient scheme for calculating
low-lying electronic excitations in molecules and solids [35].

The proof of Runge-Gross was constructed only for one-
body potentials that are analytic in ¢ and can therefore be
Taylor expanded about # = 0. The proof demonstrates that
two distinct such potentials must give rise to densities whose
nth derivative at t = 0 differ for some finite 7.

The present and previous [9] works show that, in the case of
ahydrogen atom in a suddenly switched electric field, the time-
dependent density has nonanalytic contributions, so that the
Taylor series does not converge. Nonetheless, if two densities
differ in their jth time derivative, they must be different,
even if neither matches its Taylor expansion. Thus, the
uniqueness proof of Runge-Gross remains valid even for such
problems.

This suggests that these results apply to many-electron
atoms, although they have only been proven for one-electron
cases. If one considers the TD KS equations for, e.g., a He
atom in a suddenly switched field, in the region of the nucleus,
the density, which is a sum of occupied orbitals, will contain
the same features (via the occupied 1s orbital). However, this
argument presupposes the existence of such a KS potential for
this case.

Even in the simpler ground-state DFT, there are no known
general conditions on densities that guarantee that a density
is in fact a ground-state density for some electronic problem,
although this is rarely a problem in practice, even for strongly
correlated systems [36].

A second important theorem in TDDFT was van Leeuwen’s
constructive proof of the TD KS potential. Assuming that both
the density and the potential are Taylor expandable, a relatively
simple procedure yields, power by power, a prescription for
finding the potential [8]. Clearly, this theorem does not apply
to the cases studied here. Since all atoms, molecules, and solids
have cusps at their nuclei (within the Born-Oppenheimer and
point nuclei approximations), this theorem cannot be applied
as is to such cases. Earlier work [12] had already shown that
such cases could be constructed in 1D, but these could be
regarded as pathological. The motivation to develop the s
expansion described here was to show convincingly that such
effects are generic, rather than unusual, once the ground-state
wave function contains spatial cusps. In the past few years,
much work toward a proof of existence of the KS potential
without a Taylor expansion has been performed [10,11].
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