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Higher ionization energies of atoms in density-functional theory
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Density-functional theory (DFT) is an exact alternative formulation of quantum mechanics, in which it is
possible to calculate the total energy, the spin, and the charge density of many-electron systems in the ground state.
In practice, it is necessary to use uncontrolled approximations that can mainly be verified against experimental
data. Atoms and ions are simple systems, where the approximations of DFT can be easily tested. We have
calculated within DFT the total energies, spin, and higher ionization energies of all the ions of elements with
1 � Z � 29. We find the calculations in close agreement with experiment, with an error of typically less than
ca. 1% for 1 � Z � 29. Surprisingly, the error depends on the electronic configuration of the ion in both local
spin density approximation and Perdew-Burke-Ernzerhof general gradient approximation and independent of
both self-interaction correction and relativistic corrections. Larger errors are found for systems in which the
spin-spin correlation is significant, which indicates the possible benefit from an orbital-dependent formulation
of the correlation energy functional.
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I. INTRODUCTION

Density-functional theory (DFT) [1–8] is the leading
theoretical framework for studying the electronic properties
of matter. Within the DFT formulation the electron density
plays the central role, instead of the many-electron wave
function. The approach in DFT is ab initio, which means that
in principle no experimental data are required to model the
system. DFT is currently applied to a variety of many-electron
systems [9,10]: Along with traditional applications to atoms,
molecules and solids, it is used for studying nano-objects,
impurities, surfaces, etc. The applications in all these fields
are, obviously, interrelated.

The many-body physics of Coulomb-interacting electrons
is represented in DFT by the exchange-correlation (xc) energy
functional Exc[n]. It is nonlocal, spin-dependent, has nonan-
alytical properties, and its exact form is not known [4,5,11].
There exist, however, many approximations to this functional
(e.g., [12–16]), based on numerical results for the homoge-
neous electron gas [17] and asymptotic analytical derivations
(see, e.g., [16] and references therein). An alternative approach
to approximating Exc[n] employs Kohn-Sham orbitals in
addition to the density, which allows an exact treatment
of the exchange (Fock) energy, opening the challenge of
formulating a compatible correlation energy, and introducing
additional complications [5,18]. The quality of the various
approximations can only be determined by testing them on a
wide range of systems, in comparison to the experimental data.

Atomic systems are a good class of systems to examine the
validity of the approximations introduced into the xc functional
of DFT. The combination of extensive and high-quality
experimental data on atoms and ions, which exhibit a rich
phenomenology as a function of atomic number and ionization
level, together with the relative computational simplicity,
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which reduces the scope of numerical error, are what makes
atomic systems an attractive choice.

DFT allows us to calculate the total energy of atoms or ions.
The ionization energy is obtained as the difference between
the energy of an ion and the energy of the same ion with one
additional electron, which is the neutral atom in the particular
case of the first ionization energy. By calculating the first
ionization energies and comparing the results to experimental
data, the quality of selected xc approximations (see [19] and
references therein), the self-interaction correction (SIC) [20],
hybrid functionals, e.g., [21], and the GW methodology,
e.g., [22–24] have been tested in the past. Extending this
analysis to higher ionization energies, where the interaction
with the nucleus prevails as the atomic number increases
and the number of electrons decreases, allows testing the
xc approximations over a much wider range of systems and
interaction strengths.

In previous work [19], the first ionization energy of all the
atoms with atomic number Z =1–86 in both the local-spin
density approximation (LSDA) [12–14] and Perdew-Burke-
Ernzerhof general gradient approximation (PBE-GGA) [16]
was calculated from the ground-state energies of the neutral
atoms and first ions. Good overall agreement with experi-
mental data was found, and compatibility with a previous
study [25] was maintained in the relevant cases. In addition,
it was found that when the electronic configuration was
determined ab initio rather than empirically, minimizing the
energy functional required introducing fractional occupations
of the Kohn-Sham orbitals for some atoms and ions. The total
spin of the neutral atoms and first ions was also calculated and
found to agree with experimental data, except in a few cases.
PBE-GGA calculations were found to modestly improve the
LSDA calculations.

For the higher ionization energies, there exists an abundance
of high accuracy experimental data. Indeed, for atomic
numbers Z =1–29, all ionization energies have been measured
experimentally to good accuracy [26]. In particular, this allows
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us to obtain from experiment the total energy by summing the
ionization energies.

Several calculations of selected higher ionization energies
by both ab initio and empirical methods have been reported in
the literature. Within the ab initio approach are included very
accurate quantum chemical methods, which can be applied
only to systems with a small number of electrons, e.g., [27,28],
as well as density-functional methods that can be applied
to a wide range of systems, in particular to systems with
many electrons. In addition, extensive Hartree-Fock (HF)
and relativistic Dirac-Fock calculations of ground-state total
energies of atoms and ions have been performed [29,30].
The higher ionization energies can be obtained from these
calculations.

Some simple empirical methods for calculation of the
ionization energies have also been reported. An example is
Ref. [31], where the author reports on a simple formula for the
ionization energies that depends only on the atomic number
and number of electrons. Although this formula is valid only
for atoms and ions with two and three electrons, it predicts
ionization energies, including higher ionization energies, to
very good accuracy, in these cases.

The total energies of higher ions, in the isoelectronic
series 2–18, were calculated within DFT and compared with
nonrelativistic estimates of the total energy [32]. However,
as we shall show below, this total energy is a relatively
insensitive measure of accuracy compared to the ionization
energy, which is a differential quantity and therefore a
more sensitive measure of accuracy. To the best of our
knowledge, no extensive calculations of the higher ion-
ization energies within density-functional theory, and in
particular with self-interaction correction (SIC), have been
reported.

In the current contribution we present results of self-
consistent ab initio nonrelativistic DFT calculations for atoms
and all their ions with 1 � Z � 29, within the spherical
approximation for the density, and the LSDA and PBE-GGA
of the xc energy with and without self-interaction corrections.
The objectives of the work are as follows: (1) to systematically
calculate ab initio the total energies, ionization energies, and
spin of atoms and ions within density-functional theory; (2)
to explore the effect of the choice of xc functional between
LSDA and PBE-GGA on these calculations; (3) to explore
the effect of the SIC on the error in the calculated ionization
energies. Together these objectives may provide some physical
insight into the missing physics in the LSDA and PBE-GGA
functionals.

The rest of the paper is organized as follows. In Sec. II
we present briefly the theoretical background, in Sec. III
the numerical details are given, in Sec. IV the ionization
energies and total energies for all atoms and ions with
1 � Z � 29 are reported and compared to experimental data
[26], Sec. V contains a discussion of the errors of the total
energies and ionization energies relative to experiment and
their dependence on the transition between the Kohn-Sham
electronic configurations. Consequently, an orbital-dependent
contribution to the correlation functional aimed to better
address the spin-spin interactions within the KS system is
suggested.

II. THEORY

Within the Kohn-Sham (KS) scheme in density-functional
theory (DFT) [2–4], it is required to solve a set of one-particle
Schrödinger equations,(

− h̄2

2me

∇2 + veff ,σ (�r)

)
ψiσ = εiσψiσ , (1)

to obtain the eigenvalues {εiσ } and the orbitals {ψiσ } of the KS
system. The KS equations introduce an auxiliary system of
noninteracting electrons subject to an effective potential veff ,
chosen so that the density of the KS system equals the density
of the interacting system.

The total energy of the interacting system can be expressed
in terms of the KS system as

E = TKS[n↑] + TKS[n↓] +
∫

vnd3r + EH [n] + Exc[n↑,n↓],

(2)

where TKS is the Kohn-Sham kinetic energy functional, v is
the external potential, and EH and Exc are the Hartree and the
exchange-correlation energies, respectively.

The partial spin densities nσ have the form,

nσ =
∑

i

giσ |ψiσ |2, (3)

where giσ are the occupation numbers, which obey

giσ =

⎧⎪⎨
⎪⎩

Diσ : εiσ < εFσ

xiσ : εiσ = εFσ

0 : εiσ > εFσ

. (4)

Here εiσ is the energy of the ith KS level of the σ system, Diσ is
the maximal number of electrons that can occupy the ith level,
εFσ and xiσ ∈ [0,Diσ ] are the energy and the occupation of the
highest occupied level(s), which can, in principle, be integral
or fractional.

S, the z projection of the total spin (referred to in this article
as spin), is a functional of the partial densities n↑,n↓:

S = 1

2

∫
(n↑ − n↓) d3r = 1

2

∑
i

(gi↑ − gi↓) = 1

2
(N↑ − N↓),

(5)

where N↑ and N↓ is the number of electrons with spin ↑
and ↓, respectively. Therefore, the spin of the KS system is
identical to the spin of the interacting system. However, the
occupation numbers {giσ } are internal quantities of the KS
systems determined by Eq. (4). They are not necessarily equal
to the occupation numbers that are available for atoms and ions
in the experimental literature [26].

In the current work the physical quantities obtained in DFT
calculations are the partial densities n↑ and n↓ and E(Z,N )—
the total energy of a system with atomic number Z and N

electrons. The ionization energy,

I (Z,N ) = E(Z,N − 1) − E(Z,N ), (6)

and the spin S are derived from these quantities [see Eq. (5)].
The problem of self-interaction in DFT is well known [13],

and it becomes obvious when considering one-electron sys-
tems. In this case, the standard energy functional includes the
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following contributions from electron-electron interactions:
electrostatic energy, exchange energy, and correlation energy,
all three of which, of course, do not exist in one-electron
systems and should cancel out for the exact xc functional.
However, in any approximate functional these three terms do
not cancel out and a residual self-interaction error remains.
We note that this problem does not exist in the Hartree-
Fock method because the self-interaction electrostatic energy
exactly cancels the self-interaction exchange energy and no
correlation term exists.

In the one-electron case, a self-interaction correction is
easily applied by removing all electron-electron interactions.
In a more general case, where the systems considered include
more than one electron, implementation of an SIC becomes
more complex. A first version of SIC was proposed by Fermi
and Amaldi in 1934 [33], within the Thomas-Fermi theory.
Later, Perdew and Zunger [13] formulated a SIC by requiring
that

EH [niσ ] + Exc[niσ ,0] = 0, (7)

where niσ = |ψiσ |2 is the density of the iσ th orbital. In a more
detailed form,

EH [niσ ] + Ex[niσ ,0] = 0, (8)

and

Ec[niσ ,0] = 0. (9)

So, in a given approximation of Exc, the excess self-interaction
can be corrected by replacing the xc functional Exc with

ESIC
xc [n↑,n↓] = Exc[n↑,n↓] −

∑
iσ

(EH [niσ ] + Exc[niσ ,0]).

(10)

In principle, in the Perdew-Zunger SIC approach, one must
correct the potential and the density, as well as the energy
functional. However, due to the variational nature of the
problem, the total energy is independent, to the first order,
of changes in the density and the self-interaction correction
may be approximated by correcting just the energy. Therefore,
in the current work we apply the SIC corrections to the energy
values only, after performing the standard self-consistent DFT
calculation.

III. NUMERICAL METHODS

As in earlier studies of atomic systems [19,25,34,35], in the
current work the density was approximated by its spherical
average nσ (r) = (4π )−1

∫ 2π

0 nσ (�r)d�. Since v is spherical,
the effective potentials are spherical, too. This approximation
reduces a three-dimensional problem to a one-dimensional
problem. With a spherical potential, the wave functions take
the form ψnlmσ (�r) = Rnlσ (r)Ylm(θ,φ), where Ylm(θ,φ) are the
spherical harmonics and Rnlσ (r) are radial wave functions that
obey the following differential equation:

R′′
nlσ + 2

r
R′

nlσ +
{

2
me

h̄2 [εnlσ − veff ,σ (r)] − l(l + 1)

r2

}
Rnlσ

= 0. (11)

Since the energy levels do not depend on m, Dnlσ = 2l + 1
where Dnlσ = 2l + 1 is the degeneracy of the nlσ th level.

The electronic configuration in the KS system is determined
ab initio, by requiring the total energy to be a minimum for any
fixed number of electrons. Relying on a previous study [19],
we expect systems from the s and p blocks of the Periodic
Table to follow Hund’s rule [36]. In the d block, however, i.e.,
for 21 � Z � 29, where the 3d and the 4s levels are rather
close, we explicitly checked for a possible degeneracy leading
to fractional occupation.

In all calculations, a high numerical convergence of
10 μHartree for the total energy was obtained. To assure
the desired accuracy in energy, Eq. (11) was solved on a
logarithmic grid with 5000 points, on the interval (e−a/Z,L)
in Bohr radii, with a = 13 and L = 25 for both LSDA and
PBE-GGA.

IV. RESULTS

The ground-state energy, the spin, and the KS electronic
configuration have been obtained for all the atoms and ions
with atomic number Z = 1 − 29, within both LSDA and
PBE-GGA. Self-interaction corrections to the total energy
have been also calculated for all atoms and ions with Z =1–18.
The numerical uncertainty was estimated to be less than
10 μHartree for the total energy (see above). Therefore
we assume below that the entire difference between the
calculated and measured ionization energies is due to physical
approximations in the energy functional.

All the experimental ionization energies with which com-
parison is made are taken from the Handbook of Chemistry
and Physics [26], except for the ionization energy of Fe23+,
which was obtained following the analysis of Ref. [37]. The
results are of this section are detailed in tabular form in the
Supplemental Material [38].

A. Total energy

We first focus our interest on the relative error in the total
ground-state energy determined for a system with N electrons
and atomic number Z. The ground-state total energy of such
a system can be calculated from experimental data as follows:

E
expt
tot (Z,N ) = −

N∑
M=1

I expt(Z,M), (12)

where I expt(Z,M) is the experimental ionization energy of the
atom or ion with atomic number Z and number of electrons
M . The relative error is then defined as

	E = Ecalc
tot − E

expt
tot

E
expt
tot

, (13)

where Ecalc
tot is the calculated ground-state energy. The relative

error for the ionization energy is defined in a similar manner.
Figure 1 presents the relative error in the total energy of

atoms and ions as a function of N and Z, for Z =1–29,
obtained within the LSDA and PBE-GGA. It is immediately
evident from the figure that the PBE-GGA shows better
agreement with the experimental data than the LSDA, as the
GGA error surface lies closer to the zero error plane for any
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FIG. 1. (Color online) Relative error in the total energy as a
function of the atomic number Z, and the ionic charge q. (a) LSDA
and PBE-GGA; (b) enlargement of a section of the PBE-GGA error
surface exhibiting undulatory structure.

value of (Z,N ). The error is negative, i.e., the total energy
estimated by DFT is less than that obtained experimentally,
and in general the error is smoothly dependent upon (Z,N ).
The magnitude of the relative error is seen to increase for small
N , as would be expected for DFT, and for large values of Z due
to relativistic effects (for an overview on relativistic DFT, see,
e.g., [4–6,35,39]). We note that there is a deviation from the
smooth dependence of the error for ions with four electrons.
Close inspection, performed in Fig. 1(b), shows that the error
surface is in fact not entirely smooth over the (Z,N ) plane and
exhibits several oscillations.

We compare our LSDA and PBE-GGA calculations with
HF results obtained by Clementi and Roetti [29]. It can
be seen in Fig. 2 that the errors in the calculated total
energy within all approximations decrease initially with atomic
number. The errors in the HF approximation approach the error
of the PBE-GGA faster than those of the LSDA. At higher Z

the relativistic effects increase and are not included in any
of the approximations above, so that the relativistic error is
the same in all approximations and is expected to become
dominant at higher values of Z.

In Fig. 3 we see that the relative error in the total energy
within a given xc approximation varies slowly with the nucleus
charge Z, and is almost independent of the number of electrons
represented by the net ionic charge, q = Z − N . From this
result, together with the dominant contribution of the core
electrons to the total energy, we can conclude that the dominant
contribution to 	E arises from errors associated with the core
electrons. Therefore, it is of interest to analyze the error in the
ionization energy, which is obtained as a difference between
total energies, and in which therefore the errors originating in
the core electrons cancel, to a large extent.

B. Ionization energies

All the higher ionization energies (IE) for systems with
Z =1–29 were calculated within both LSDA and PBE-
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FIG. 2. (Color online) Relative error 	E in the total energy in
LSDA, PBE-GGA, and HF [29] approximations: (a) neutral atoms,
(b) + 1 charged ions, and (c) + 4 charged ions.

GGA. The typical error is of the order of 1% relative to
experiment, except for several low ionization energies. Both
LSDA and PBE-GGA appear to be satisfactory choices of the
xc functional for calculating the higher ionization energies
as discussed below. In the context of ionization energy, the
notation N idenotes the number of electrons of the atom or ion
before ionization.

The first, second, 10th, and 17th ionization energies as a
function of atomic number are calculated within the LSDA
are compared with experimental ionization energies [26] in
Fig. 4. The results for the first ionization energy are the same
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FIG. 3. (Color online) Relative error 	E in the total energy with
a different ionic charge, q = Z − N . (a) LSDA, (b) PBE-GGA (this
work), and (c) HF (Ref. [29]).
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FIG. 4. (Color online) Higher ionization energies as a function
of atomic number, calculated within the LSDA and compared with
experimental data. (a) First, (b) second, (c) 10th, and (d) 17th
ionization energies.

as obtained in [19]. At higher ionization energies the detailed
structure of the atomic subshells and orbitals diminishes, and
the Z dependence is dominated by the shell structure. Similar
results are obtained in the PBE-GGA.

It can also be seen from Fig. 4 that when the p shell
is half-filled, the first ionization energy decreases in both
theory and experiment. For the second ionization energy, this
behavior is also observed. At higher ionization energies this
effect disappears because of the stronger interaction with the
nucleus.

The magnitude of the ionization energy increases rapidly
with ionic charge making comparison of errors difficult.
Therefore, further analysis should focus on the relative, rather
than the absolute errors, as defined in Eq. (13).

In Fig. 5 we present the relative error in the ionization
energies of atoms and ions with Z =1–29, calculated in
both the LSDA and PBE-GGA as a function of Z and N .
It can be seen that the relative error has a certain pattern:
In the background of the figure, which corresponds to the
first ionization energies, the errors are large, decreasing
to the foreground, which corresponds to higher ionization
energies. Furthermore, the decrease is not uniform. Instead,
we see dips, i.e., large negative errors across the (Z,N )
plane for certain values of N , which correspond to transitions
between specific electronic configurations. For example, a
large negative error is found in the ionization energy from
the four-electron configuration 1s1

1 2s1
1 to the three-electron

configuration 1s1
1 2s1

0 , correlated with the structure seen in the
error of the total energy for four-electron ions.

In Fig. 6 we can see a cut in the error surface of the
ionization energies along the (Z,N ) plane at constant atomic
number so that every point on the graph represents a different
configuration. In this figure it is easy to see that the increased
magnitude of error occurs at specific configurations namely
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FIG. 5. (Color online) Relative error surfaces of the ionization
energy in (a) LSDA and (b) PBE-GGA. The error surfaces are not
smooth and exhibit structural dips at transitions between specific elec-
tronic configurations in both PBE-GGA and LSDA approximations.

2s1
1 → 2s1

0 , 2p3
1 → 2p3

0. This finding remains unchanged
between the LSDA and PBE-GGA.

The effect of the atomic number on the error for a fixed
electronic transition from four to three electrons is presented in
Fig. 7 for both the LSDA and the PBE-GGA. The dependence
of the error on Z is similar in both approximations, so
that, also here, the PBE-GGA does not make a qualitatively
difference relative to the LSDA. Furthermore, we see a rise
in the relative error for high values of Z, due to relativistic
effects.

In passing, we wish to draw the attention to the deviation
of the curves in Fig. 7 from the trend around Z =17–18.
The same pattern in the error was discovered by Chung
et al. [28] using a completely different method. The magnitude
of the deviation from experiment is similar to our PBE-
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FIG. 6. Relative error of the ionization energies in the PBE-GGA
calculations in constant atomic number Z = 10.
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GGA and LSDA calculations, of the order of 0.1%. This
deviation might be explained by assuming that there is a
small error in the experimental data, not unlike the case of
Fe23+ [37].

C. Self-interaction correction

Further insight into the origin of the pattern in the error
surface presented in Fig. 5 might be obtained by considering
the effect of self-interaction corrections. We have calculated
the higher ionization energies with a first-order SIC to the
total energy, as explained in Sec. II, for Z =1–18. The relative
error surface calculated with SIC across the (Z,N ) plane is
shown in Fig. 8 similar to Fig. 5. From Fig. 8 it can be seen
that the agreement between the calculated ionization energy
and experiment is not always improved by SIC (despite an
improvement in total energy values as was previously observed
in Ref. [20]). In particular, the pattern of the relative error in the
ionization energy observed in LSDA and PBE-GGA remains
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FIG. 8. (Color online) Relative error in the ionization energy,
obtained for the LSDA with SIC. The dips in the error surface retain
after SIC is applied.

essentially unchanged after performing the self-interaction
correction.

D. Ab initio configuration and spin

In a previous work [19], it was found that for all atoms
and first ions with atomic number Z =1–29 the calculated
total spins agree with the experiment, except for the Ti and
V atoms. In addition, Fe and Co atoms and Sc and Ti
first ions were found to have fractional occupation numbers
in the KS system. Moreover, the Ni atom was found to
have a KS electronic configuration that is different from the
reported experimental (empirical) configuration [26], although
the total spin is predicted correctly. As is discussed in [19], the
Kohn-Sham configuration does not have to be the same as the
experimental configuration.

For higher ions (ionization level greater than 1) with
atomic number Z =1–29, we have found that all the KS
electronic configurations, obtained both with the LSDA and
the PBE-GGA fit the reported experimental data. Additional
cases of fractional occupation were not found. This finding
is not unexpected, because of the stronger interaction with
the nucleus in higher ions which results in a larger separation
between the 3d and 4s KS levels. This reduces the possibility
of their fractional occupation and therefore precludes the
appearance of ensemble-state solutions.

V. DISCUSSION

We have seen that the error in the ionization energy relative
to experiment is of the order of 1% and that it does not evolve
uniformly across the (Z,N ) plane. Instead, at certain electronic
configuration transitions it experiences dips—a sharp increase
in the absolute value of 	I , while it becomes negative. This
occurs at the transitions 2s1

1 → 2s1
0 , 2p3

1 → 2p3
0, and 3s1

1 →
3s1

0 , for both the LSDA and the PBE-GGA, as can be seen on
Fig. 5.

The error in the ionization energy of ions can originate from
several sources, and we discuss them below. One possible
source of error is relativistic effects. In an arbitrary atom
or ion, it is difficult to isolate the error introduced by using
nonrelativistic DFT. However, in the case of one-electron ions,
we obtain the relativistic contribution to the error exactly: It
equals the difference between the ground-state energy obtained
via an analytical solution to the one-electron nonrelativistic
Schrödinger equation and the experimental ionization energy.
In Fig. 9 one observes the deviation of the analytical solution
from the experimental data, which increases with atomic
number, as expected. On the same figure we plot the relative
errors for one-electron ions obtained with LSDA and PBE-
GGA calculations. We recall that in this specific case the
ionization energy equals minus the ground-state energy in
the 1s1

0 configuration, and that the error in DFT result comes
from two sources: self-interaction and relativistic effects.
Comparing the curves in Fig. 9 we see that the PBE-GGA
solution converges to the analytical solution faster than the
LSDA solution. That is, the energy of one-electron ions is
represented more accurately in PBE-GGA. Surprisingly, we
see that for one-electron systems, the relativistic contribution
to the error dominates in the LSDA already for Z > 20 and
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FIG. 9. (Color online) Relative error in the LSDA and PBE-GGA
calculations and relative error in the nonrelativistic analytic solution
for hydrogen-like ions.

in the PBE-GGA even for Z > 10. This is contrary to the
view that relativistic effects are important only for heavy
atoms.

However, the nonuniform pattern in 	I is not of a
relativistic source: From the work of Chung et al. [27,28]
one can deduce that the difference between relativistic and
nonrelativistic ionization energies for four-electron systems
with a low Z, for which we observe the first dip, is much
smaller than the magnitude of the dip.

Although the self-interaction correction improves the total
energy obtained, albeit overcorrecting somewhat, we see from
Fig. 8 that the self-interaction correction does not remove
the aforementioned pattern in the ionization energy error
surface. Moreover, the influence of the spherical approxi-
mation is also ruled out, at least for the transitions 2s1

1 →
2s1

0 and 3s1
1 → 3s1

0 , because both ions are then completely
spherical.

Therefore, we reach the conclusion that neither the locality
of the xc energy, nor the self-interaction, nor relativistic errors,
nor the spherical approximation to the density are the reason
for the nonuniform pattern in the error 	I (Z,N ).

In search of a possible explanation, we note that the dips in
the error 	I occur when the final configuration has a fully
polarized (say, ↑) subshell at the highest level, while the
initial configuration has an additional electron in the other
(say, ↓) subshell. It is therefore reasonable to assume that in
these cases the spin-spin interaction is rather significant, and
probably is not described accurately enough by common xc
functionals.

To further analyze the dependence of the error 	I on the
electronic configuration transition, we determine the ionization
energies in the Hartree-Fock approximation from the total
energies obtained by Clementi and Roetti [29] for atoms and
ions. The relative error in the ionization energy as a function
of Z and N is presented in Fig. 10. From this figure it can be
seen that 	I possesses the same pattern as in the LSDA and
PBE-GGA cases. Furthermore, Fig. 11 presents the absolute
error, δI = IHF − I expt – the difference between the HF and
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FIG. 10. (Color online) Relative error in the ionization energy in
the HF method.

the experimental ionization energies, for Z = 10. Here we
clearly see the dip that corresponds to the transition 2s1

1 → 2s1
0 ,

followed by a plateau of almost zero error for N = 5,6,7, i.e.,
when filling the ↑-p subshell of the ion, and another plateau of
an error of ∼0.06 Hartree for N = 8,9,10, i.e., when filling
the ↓-p subshell of the ion.

Recall that the HF method does not include correlation
effects, while treating the exchange exactly. Therefore the
absolute error in the ionization energy δI may be considered
as a rough approximation to the correlation energy associated
with the last electron. From Figs. 10 and 11 we learn that
the correlation energy of the last electron depends strongly
on the orbital and its spin occupancy, and only weakly on the
densities n↑ and n↓. In particular, the correlation energy of
the last electron is significantly increased if it is in a doubly
occupied orbital.

This analysis leads us to a conclusion that a local (or
a semilocal) density-based correlation energy is insufficient
to accurately obtain the correct total and ionization energies
for ions, due to an insufficiently accurate description of the
spin-spin interaction. Alternative perturbation-based orbital
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FIG. 11. Absolute error in the ionization energies δI in the HF
method with Z = 10.
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approaches to the correlation energy, e.g., Ref. [40] are also
inadequate as they focus on interaction with unoccupied
orbitals. Therefore, we suggest considering a contribution
to the correlation energy functional in terms of the Kohn-
Sham orbitals [18] a conclusion similar to that obtained
from different considerations in a study of self-interaction
corrections in atomic systems by Klüpfel et al. [20]. In the
limit of a fully delocalized electron gas this formulation should
reduce to the LSDA. Let us introduce

Qiσ,jτ =
∫

ψ∗
iσ (�r)Âiσ,jτψjτ (�r)d3r (14)

as an interaction between KS orbitals characterized by the
quantum numbers (i,σ ) and (j,τ ), correspondingly, via an
undefined operator Âiσ,jτ . Next, inspired by Fig. 11, we
suggest that every orbital (i,σ ) will interact only with the
orbital that has the same spatial quantum numbers and
a different spin. Mathematically, this requirement can be
expressed as Âiσ,jτ = Âiσ δij (1 − δστ ). Because of the term
(1 − δστ ) we do not include any correction to the interaction
of the orbital with itself. Then, the proposed contribution to
the correlation energy equals

Ecorr
c [{ψiσ }] = 1

2

∑
iσ

∑
jτ

giσ gjτQiσ,jτ

= 1

2

∑
iσ

giσ giσ̄

∫
ψ∗

iσ (�r)Âiσψiσ̄ (�r)d3r, (15)

where σ̄ =↓ when σ =↑, or vice versa and giσ are the
occupation numbers defined in Eq. (4). The exact form of
the term Âiσ is currently unknown. Possibly relevant work in

this direction may be the application of GW methodology
to the calculations of atomic systems, as, for example, in
Refs. [22,23]. We expect, though, that such an additional term,
which includes interaction between orbitals of opposite spins,
will be able to remedy the errors in the ionization energies
discussed above.

VI. SUMMARY

We have calculated the total energies of all ions and
atoms with 1 � Z � 29 in the LSDA and PBE-GGA in
density-functional theory. We find that the absolute value of the
relative error in the total energy decreases with increasing Z in
the nonrelativistic regime. The lowest error is obtained in the
PBE-GGA, followed by the HF approximation, and finally the
largest error is found in the LSDA. From the total energies it is
possible to obtain the ionization energies as finite differences
and compare these directly to experiment. It is found that the
ionization energies are typically reproduced to an accuracy of
better than 1% with the error decreasing and becoming (more)
negative as the atomic number increases. At low atomic num-
bers, for a given number of electrons, the error is apparently
dominated by electron-electron interactions whereas at high
atomic numbers the electron-nucleus interaction dominates
and introduces a relativistic error. It was found that the error in
the ionization energy strongly depends on the configuration
transition in the LSDA, PBE-GGA, LSDA-SIC, and HF
calculations. As a result, employment of an orbital-dependent
correlation energy that includes interaction between opposite
spin channels was proposed.
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At. Data Nucl. Data Tables 86, 117 (2004).

[31] H. Elo, Naturwissenschaften 95, 399 (2008).
[32] A. A. Jarzecki and E. R. Davidson, Phys. Rev. A 58, 1902

(1998).
[33] E. Fermi and E. Amaldi, Accad. Ital. Rome 6, 119 (1934).
[34] V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated

Electronic Properties of Metals (Pergamon, New York, 1978).
[35] E. Engel, T. Auth, and R. M. Dreizler, Phys. Rev. B 64, 235126

(2001).

[36] L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-
Relativistic Theory) (Pergamon, New York, 1991).

[37] J. Reader, J. Sugar, N. Acquista, and R. Bahr, J. Opt. Soc. Am.
B 11, 1930 (1994).

[38] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.88.042504 for tabular form of all the results
presented in this paper.

[39] J. Autschbach, J. Chem. Phys. 136, 150902 (2012).
[40] P. Mori-Sanchez, Q. Wu, and W. Yang, J. Chem. Phys. 123,

062204 (2005).

042504-9

http://dx.doi.org/10.1016/j.adt.2003.11.005
http://dx.doi.org/10.1007/s00114-007-0338-8
http://dx.doi.org/10.1103/PhysRevA.58.1902
http://dx.doi.org/10.1103/PhysRevA.58.1902
http://dx.doi.org/10.1103/PhysRevB.64.235126
http://dx.doi.org/10.1103/PhysRevB.64.235126
http://dx.doi.org/10.1364/JOSAB.11.001930
http://dx.doi.org/10.1364/JOSAB.11.001930
http://link.aps.org/supplemental/10.1103/PhysRevA.88.042504
http://link.aps.org/supplemental/10.1103/PhysRevA.88.042504
http://dx.doi.org/10.1063/1.3702628
http://dx.doi.org/10.1063/1.1904584
http://dx.doi.org/10.1063/1.1904584



