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Two-loop QED corrections with closed fermion loops are calculated for the 1s bound-electron g factor.
Calculations are performed to all orders in the nuclear binding strength parameter Zα (where Z is the nuclear
charge and α is the fine-structure constant) except for the closed fermion loop, which is treated within the
free-loop (Uehling) approximation in some cases. Comparison with previous Zα-expansion calculations is made
and the higher-order remainder of order α2(Zα)5 and higher is separated out from the numerical results.
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I. INTRODUCTION

Highly charged ions are often considered to be an ideal test-
ing ground for studying bound-state quantum electrodynamics
(QED) effects, in particular, the effects that are nonperturbative
in the binding nuclear strength parameter Zα (where Z is
the nuclear charge and α is the fine-structure constant). For
light atomic systems, the parameter Zα is small and the Zα

expansion is widely used as a convenient basis for theoretical
calculations. However, high accuracy achieved in modern
experiments often demands calculations of QED corrections
beyond the Zα expansion even for light atoms. For heavy
highly charged ions, the Zα expansion is not applicable at all
and calculations should be only carried out to all orders in Zα.

One of the prominent examples of experiments in light
atoms that require for their interpretation calculations of QED
effects to all orders in Zα is the determination of the bound-
electron g factor in hydrogenlike ions. A series of spectacular
measurements has been accomplished during the last two
decades [1–5], which brought the experimental accuracy on
the level of few parts in 10−11. These measurements triggered a
large number of calculations of various QED effects that were
required for advancing theory to the level of experimental
interest. In particular, all-order (in Zα) calculations of the
one-loop self-energy [6] and nuclear recoil [7] corrections
were accomplished, as well as Zα-expansion calculations of
the two-loop QED effects [8,9]. The comparison between the
experimental and the theoretical results not only constituted a
highly sensitive test of bound-state QED theory but also led to
an accurate determination of fundamental physical constants
such as the electron mass [10,11].

Despite all theoretical efforts, the present theory of the
bound-electron g factor is not able to match the experimental
accuracy for the heaviest measured ion, Si13+ [4]. The main
reason for this is the two-loop QED effects, which are presently
calculated within the Zα expansion up to order α2(Zα)4 only.
The uncertainty due to unknown higher-order two-loop effects
induces the dominant error in the theoretical prediction for
ions with Z > 6. For silicon with Z = 14, this uncertainty is
already by more than an order of magnitude larger than the
experimental error [4]. Scaling as Z5, it is going to become
even more crucial for comparison of theory with experiments
on heavier-Z ions, which should become feasible in the near
future [12].

Calculation of the two-loop QED corrections to all orders
in the nuclear binding strength parameter Zα is a very difficult
task. Such calculation for the Lamb shift in hydrogenlike
ions extended for over a decade (see Refs. [13–15] for the
present status). A similar calculation for the bound-electron g

factor should be feasible in principle but is going to be even
more difficult than for the Lamb shift, for several reasons.
First, Feynman diagrams for the g factor contain an additional
vertex representing the interaction with the external magnetic
field as compared to the diagrams contributing to the Lamb
shift. Second, the convergence of the partial-wave expansion
(which is usually the limiting factor for the accuracy of
calculations) is typically slower for the g factor than for the
Lamb shift. Third, the unknown higher-order remainder to
the Lamb shift is suppressed by the factor of (Zα)2 with
respect to the leading contribution, whereas for the g factor
the suppression factor is (Zα)5.

The two-loop QED effects can be separated into two large
pieces: the two-loop self-energy correction and the two-loop
corrections with closed fermion (vacuum-polarization) loops.
In the present study, we consider the latter part, leaving
the two-loop self-energy (being the most nontrivial part) for
future investigations. Calculations of the two-loop corrections
with vacuum-polarization loops are simplified by the fact
that such loops can be treated within the free-loop (Uehling)
approximation, which replaces the loop of the bound-electron
propagators by the leading term of its expansion in the binding
potential. In the one-loop case, such approximation leads to
the well-known Uehling potential and induces the dominant
part of the one-loop vacuum-polarization effect even for ions
as heavy as uranium. In the present investigation, we employ
the free-loop approximation for some corrections, namely, the
self-energy correction with the vacuum-polarization insertion
into the photon line and the two-loop vacuum-polarization
correction. In addition, there are several diagrams that vanish
in the free-loop approximation, namely, the diagrams with
the interaction with the external magnetic field attached
to the vacuum-polarization loop. The contribution of such
diagrams should be small, so they are omitted in the present
investigation.

The remaining paper is organized as follows. In the next
three sections, we study three gauge-invariant subsets of two-
loop contributions with vacuum-polarization loops. Namely,
the self-energy correction with the vacuum-polarization
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insertion into the photon line is calculated in Sec. II, the
self-energy correction with the vacuum-polarization insertion
into the electron line is calculated in Sec. III, and the two-loop
vacuum-polarization correction is calculated in Sec. IV. In the
last section, we summarize the results obtained and discuss the
experimental consequences of our calculations.

The relativistic units (h̄ = c = 1) are used in this paper. We
will also use the abbreviations “SE” for the self-energy and
“VP” for the vacuum polarization.

II. SELF-ENERGY CORRECTION WITH
VACUUM-POLARIZATION INSERTION

INTO THE PHOTON LINE

We start with the set of combined SE and VP diagrams
depicted in Fig. 1, whose contribution will be referred to as the
S(VP)E correction. This correction can be regarded as the one-
loop SE correction to the g factor in which the standard photon
line in the SE loop is substituted by the “dressed” photon line
with the VP insertion. In this section, we will treat the VP
insertion within the free-loop approximation only. The part
of the S(VP)E diagram beyond this approximation involves
a light-by-light scattering subdiagram, whose calculation is
notoriously difficult but which usually leads to small effects.

The dressed photon propagator with the free-loop VP
insertion can be derived [16] in the form of an extension of the
standard photon propagator, both in momentum and coordinate
space. In the momentum space with D = 4 − 2ε dimensions,
the dressed VP photon propagator is given by [17,18]

D
μν

VP(k) = α

π
IVP(k)Dμν(k), (1)

where Dμν(k) is the standard photon propagator,

IVP(k) = −Cεk
2
∫ 1

0
dz

z2(1 − z2/3)

4[m2 − k2(1 − z2)/4 − i0]1+ε
, (2)

Cε = (4π )ε �(1 + ε), and k is a four vector with k2 = k2
0 − k2.

In the coordinate space, the expression for the dressed VP
photon propagator reads

D
μν

VP(ω,x12) = α

π

∫ ∞

1
dt IVP(t)Dμν(ω,x12; 2mt), (3)

(a) (b)

FIG. 1. The combined self-energy and vacuum-polarization cor-
rection to the bound-electron g factor with vacuum-polarization
insertion into the photon line, referred to as the S(VP)E correction.
Double lines represent an electron propagating in the binding nuclear
field, wave lines denote virtual photon, and the wave line terminated
by a cross denotes interaction with an external magnetic field.

where Dμν(ω,x; 2mt) is the standard propagator of a massive
photon with mass λ = 2mt and

IVP(t) =
√

t2 − 1
2t2 + 1

3t4
. (4)

In the Feynman gauge, the standard propagator of a massive
photon is given by

Dμν(ω,x12; λ) = gμν exp[i
√

ω2 − λ2 + i0 x12]

4πx12
. (5)

The above formulas demonstrate that the dressed VP photon
propagator can be effectively obtained from the standard
propagator of a massive photon (multiplied by a simple
function) by integrating over the effective photon mass.
Employing this fact, we can construct the calculation of the
S(VP)E correction to the g factor as an extension of our
previous calculations of the one-loop SE correction to the g

factor [6,19] and the S(VP)E correction to the Lamb shift [13].
Following the approach described in detail in Ref. [19], we

represent the S(VP)E correction to the g factor as a sum of
three contributions:

	gSVPE = 	gir + 	g(0)
vr + 	g(1+)

vr . (6)

The first term on the right-hand side of the above equation,
	gir, is the irreducible contribution, which is induced by the
irreducible (n �= a) part of the diagram in Fig. 1(a). The second
term, 	g(0)

vr , is the contribution of the free-electron propagators
in the vertex part [induced by the diagram in Fig. 1(b)] and
the reducible part [induced by the reducible n = a part of the
diagram in Fig. 1(a)]. The third term 	g(1+)

vr is the remainder
of the vertex and reducible parts that contains one or more
interactions with the nuclear binding field in the electron
propagators.

The irreducible part 	gir is relatively straightforward to
calculate. It can be represented by a nondiagonal matrix
element of the operator responsible for the S(VP)E correction
to the Lamb shift. So, we calculate 	gir by generalizing the
method developed by us for the calculation of the S(VP)E
correction to the energy levels [13].

The zero-potential contribution 	g(0)
vr is calculated similarly

to the corresponding contribution to the SE correction to the g

factor from Ref. [19]. Some additional care is required in this
case, however, as the free SE and vertex operators with the
VP insertion are more complicated and, in particular, possess
a higher degree of UV divergence than the corresponding
one-loop operators (∼1/ε2 versus ∼1/ε). Evaluation of the
operators in momentum space and final calculational formulas
are summarized in the Appendix.

Numerical results of our calculations of the S(VP)E
correction for the 1s bound-state g factor are presented in
Table I. The calculation was performed for the point nuclear
charge. The uncertainty quoted in the table originates pre-
dominantly from the truncation of the partial-wave expansion
in the many-potential vertex and reducible contributions. In
our calculations, we included about 40 partial waves and
extrapolated the expansion to infinity by least-squares fitting
the partial sums to a polynomial in inverse cutoff parameter.

In order to improve convergence of the partial-wave
expansion and to better estimate the accuracy of our ex-
trapolation, we employed a modification of the standard
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TABLE I. The S(VP)E correction to the 1s bound-electron g

factor, in terms of δg = 	g/(α2/π 2). The second, third, and fourth
columns summarize the results of the present calculations, whereas
the last column presents results obtained within the Zα-expansion
approach.

Z ir vr Total Zα expansion

6 0.000 07 0.031 32 0.031 39 0.031 39
8 0.000 12 0.031 28 0.031 40(1) 0.031 40
10 0.000 20 0.031 22 0.031 42(1) 0.031 42
14 0.000 41 0.031 07 0.031 48(1) 0.031 48
20 0.000 96 0.030 74 0.031 70(1) 0.031 72
25 0.001 68 0.030 38 0.032 05(1) 0.032 11
30 0.002 72 0.029 92 0.032 65(1) 0.032 78
35 0.004 21 0.029 38 0.033 58(1) 0.033 86
40 0.006 27 0.028 74 0.035 01(1) 0.035 48
45 0.009 12 0.028 01 0.037 14(1) 0.037 81
50 0.013 03 0.027 20 0.040 23(1) 0.041 01
55 0.018 39 0.026 30 0.044 70(1) 0.045 31
60 0.025 71 0.025 34 0.051 05(1) 0.050 92
65 0.035 69 0.024 32 0.060 01(1) 0.058 09
70 0.049 24 0.023 28 0.072 52(1) 0.067 09
80 0.092 58 0.021 27 0.113 85(1) 0.091 76
83 0.111 64 0.020 75 0.132 39(1) 0.101 19
90 0.172 67 0.019 87 0.192 55(1) 0.127 50
92 0.195 67 0.019 75 0.215 42(2) 0.136 23
100 0.324 95 0.020 21 0.345 16(2) 0.177 23

potential-expansion renormalization approach first suggested
in Ref. [20]. In this modified approach, the energy in the
zero-potential contribution is shifted from its physical value
εa , εa → ε̃a = (εa + m)/2, where m is the electron rest mass.
The effect of this shift is compensated in the many-potential
term, which is evaluated as a point-by-point difference
of the unrenormalized contribution and the free-propagator
contribution (with exactly the same energy ε̃a as in the
zero-potential term). As a result, the sum of the zero-potential
and many-potential contributions should not depend on the
particular choice of ε̃a . Individual terms of the partial-wave
expansion, however, depend strongly on ε̃a . Comparing the

final results for the sum of the zero- and many-potential terms
for different choices of the free parameter ε̃a , we were able to
cross-check our estimation of uncertainty of the extrapolation
of the partial-wave expansion.

In Fig. 2, our numerical data are compared with the results
obtained previously within the Zα-expansion approach. The
Zα expansion of the S(VP)E correction reads

	gSVPE =
(

α

π

)2

[a0 + (Zα)2a2 + (Zα)4a4

+ (Zα)5GSVPE(Zα)], (7)

where the expansion coefficients ai for the 1s state are given
by [9]

a0 = 0.031 374 844, (8)

a2 = a0/6, (9)

a4 = 0.504 539 572, (10)

and GSVPE(Zα) is the higher-order remainder.
The results summarized in Table I indicate that the

irreducible term 	gir induces a negligible contribution to the
total correction in the low-Z region, whereas for high Z it
is clearly the dominant contribution. The low-Z behavior of
this term agrees with the fact that the first two terms of the
Zα expansion of the S(VP)E correction originate from the
anomalous magnetic moment of the electron (i.e., from
the vertex contribution) only.

We observe remarkable agreement between our numerical
and the Zα-expansion results. Noticeable difference arises
only for heavy ions with Z > 70. This is due to the com-
bination of factors that the higher-order remainder G(Zα)
(i) is highly suppressed [by a factor of (Zα)5], (ii) is small
numerically, and (iii) changes its sign around Z = 60.

It can be seen that the accuracy of our numerical results is
not high enough to directly identify the higher-order remainder
G(Zα) for light ions with Z < 20. In order to get G(Zα)
for the experimentally interesting cases of carbon, oxygen,
silicon, and calcium, we extrapolated our results towards lower
values of Z. For this, we used the extrapolation procedure
suggested in Ref. [21]. The results of such extrapolation are
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FIG. 2. (Color online) The S(VP)E correction to the 1s bound-electron g factor. The left graph presents our numerical all-order results
[dots and solid line (red)], together with the Zα-expansion result [dashed line (black)], in terms of δg = 	g/(α2/π 2). The right graph shows
the corresponding results for the higher-order remainder G(Zα).
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FIG. 3. The combined self-energy and vacuum-polarization correction to the bound-electron g factor with vacuum-polarization insertion
into the electron line, referred to as the SEVP correction.

Gextr(Z = 20) = −0.230(21), Gextr(Z = 14) = −0.152(43),
Gextr(Z = 8) = −0.05(12), and Gextr(Z = 6) = −0.00(15).

III. SELF-ENERGY CORRECTION WITH
VACUUM-POLARIZATION INSERTION

INTO THE ELECTRON LINE

We now turn to the set of combined SE and VP diagrams
depicted in Fig. 3, whose contribution will be referred to as the
SEVP correction. This correction can be regarded as the one-
loop SE correction to the g factor, in which one of the bound-
electron propagators is modified by the VP insertion. Since the
VP insertion into the electron line can be represented by a local
potential, the simplest way to calculate the SEVP correction
is to redefine the bound-electron propagator by adding the
VP potential to the binding nuclear potential. In this case,
the SEVP correction can be obtained as a difference of the g

factor values with and without the VP addition in the binding
potential.

The dominant part of the one-loop VP potential is given by
the well-known Uehling potential:

VUehl(r) = −Zα
2α

3π

∫ ∞

0
dr ′ 4πr ′ρ(r ′)

×
∫ ∞

1
dt

(
1 + 1

2t2

) √
t2 − 1

t2

× e−2m|r−r ′ |t − e−2m(r+r ′)t

4mrt
, (11)

where Zρ(r) is the density of the nuclear charge distribution
[
∫

ρ(r)dr = 1]. The remaining part of the one-loop VP poten-
tial is given by the so-called Wichmann-Kroll potential VWK.
For the purpose of the present investigation, it is sufficient to
evaluate it by approximate formulas obtained in Ref. [22]. The
one-loop VP potential is then obtained as a sum of the Uehling
and Wichmann-Kroll parts, VVP(r) = VUeh(r) + VWK(r).

In the present work, we calculate the SEVP correction
by calculating the SE correction to the g factor in the
combined Coulomb and VP binding potential and subtracting
the corresponding contribution evaluated with the Coulomb
potential only. The result obtained in this way contains small
additional contributions induced by second and higher-order
iterations of the VP potential, but they may be disregarded at
the present level of interest. The general scheme of calculation
of the SE correction to the bound-electron g factor was
developed in our previous studies [6,19]. In the present
work, we extended this scheme for the case of the general
binding potential. To this end, we employed the numerical
approach for evaluation of the Dirac Green function for the

arbitrary spherically symmetric potential (behaving as ∼1/r

for r → ∞) developed in Ref. [23].
Numerical results of our calculations of the SEVP cor-

rection for the 1s bound-state g factor are presented in
Table II. Our calculation was performed with the Fermi
model of the nuclear charge distribution. The one-loop VP
potential included both the Uehling and the Wichmann-Kroll
contributions.

Comparison of our numerical results with the Zα-
expansion results is shown graphically in Fig. 4. The Zα

expansion of the SEVP correction is given by [9]

	gSEVP =
(

α

π

)2

(Zα)4

[
4

15
+ (Zα)GSEVP(Zα)

]
, (12)

where GSEVP(Zα) is the higher-order remainder. Note that the
Zα expansion of the SEVP correction starts with the (Zα)4

term, so that the higher-order remainder is suppressed only by
first power of Zα in this case.

The results of our calculations indicate that the higher-
order contribution for the SEVP correction is remarkably
large. Even for light systems such as carbon and oxygen,
the total correction is twice as large as the leading-order
contribution, which is rather unusual. Notably, a large higher-
order contribution stemming from the SEVP correction was
previously reported also for the Lamb shift [13].

TABLE II. The SEVP correction to the 1s bound-electron g factor,
in terms of δ(4)g = 	g/[(α2/π 2)(Zα)4].

Z δ(4)g Zα expansion

6 0.62(2) 0.2667
8 0.736(3) 0.2667
10 0.845(2) 0.2667
12 0.948(2) 0.2667
14 1.045(1) 0.2667
20 1.310 3(9) 0.2667
24 1.472 5(8) 0.2667
30 1.702 2(8) 0.2667
32 1.776 7(4) 0.2667
40 2.074 1(4) 0.2667
50 2.467 8(2) 0.2667
54 2.640 3(3) 0.2667
60 2.924 3(2) 0.2667
70 3.486 0(6) 0.2667
80 4.222 3(6) 0.2667
83 4.488 0(3) 0.2667
90 5.206 1(7) 0.2667
92 5.429 6(9) 0.2667
100 6.561(2) 0.2667
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FIG. 4. (Color online) SEVP correction to the 1s bound-electron g factor. The left graph presents our numerical all-order results [dots and
solid line (red)], together with the Zα-expansion result [dashed line (black)], in terms of δg = 	g/[(α2/π 2)(Zα)4]. The right graph shows the
results for the higher-order remainder G(Zα).

IV. TWO-LOOP VACUUM-POLARIZATION CORRECTION

In this section we calculate the set of two-loop VP diagrams
depicted in Fig. 5, referred to as the VPVP correction. The
four diagrams in the set can be divided into two parts. The two
diagrams on the left are induced by the second-order iteration
of the one-loop VP potential, whereas the two diagrams on
the right are induced by the two-loop VP potential. The
complete form of the two-loop VP potential is not known
at present. Its dominant part, however, is delivered by the
free-loop approximation and has been known for a long time,
first derived by Källén and Sabry [24]. In the present work,
we also treat the two-loop VP potential within the free-loop
approximation only.

The VPVP contribution is given by the following
expression:

	gVPVP = 2〈δVPa|VVP|δga〉 − 2〈a|VVP|a〉〈δVPa|δga〉
+ 〈δVPa|Vg|δVPa〉 − 〈a|Vg|a〉〈δVPa|δVPa〉
+ 2〈a|VKS|δga〉, (13)

where |a〉 is the reference-state wave function with a fixed
momentum projection μ = 1/2, |δVPa〉 and |δga〉 are first-
order perturbations of the reference-state wave function by the
one-loop VP potential VVP and the effective g-factor potential
Vg ,

|δVPa〉 =
∑
n�=a

|n〉〈n|VVP|a〉
εa − εn

, (14)

|δga〉 =
∑
n�=a

|n〉〈n|Vg|a〉
εa − εn

, (15)

the effective g-factor potential Vg is

Vg = 2m[r × α]z, (16)

and VKS is the Källén-Sabry potential (see, e.g., Ref. [25]
for explicit formulas). Note that the effective potential Vg is
defined so that its matrix element on the reference-state wave
function with momentum projection μ = 1/2 is the Dirac
value of the bound-electron g factor, 〈a|Vg|a〉 = gD .

The numerical calculation of the VPVP correction is quite
straightforward. It was performed by obtaining the perturbed
wave functions with help of the dually kinetically balanced B-
spline basis set method [26]. Numerical results for the VPVP
correction for the 1s bound-electron g factor are presented in
Table III. A comparison of our numerical all-order results with
the Zα-expansion results is given in Table III and graphically
in Fig. 6. The Zα expansion of the VPVP correction reads

	gVPVP =
(

α

π

)2

(Zα)4

[
−328

81
+ (Zα)GVPVP(Zα)

]
, (17)

where GVPVP(Zα) is the higher-order remainder. The leading
term of its Zα expansion was obtained previously in Ref. [27],
GVPVP(Zα) = 7.441 518 7 + O(Zα).

We observe that our numerical all-order results agree well
with the previous Zα-expansion results. In particular, they
confirm the conclusion of Ref. [27] that the higher-order VPVP
contribution G(Zα) is rather large in the low-Z region. In the
high-Z region, however, the large contribution of the (Zα)5

coefficient is compensated by higher-order terms, so that the
total value of G(Zα) is significantly reduced and even changes
its sign eventually as Z increases.

FIG. 5. The two-loop vacuum-polarization correction to the bound-electron g factor (the VPVP correction).
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TABLE III. VPVP correction to the 1s bound-electron g factor,
in terms of δ(4)g = 	g/[(α2/π 2)(Zα)4].

Z δ(4)g Zα expansion

4 −3.8556(1) −3.832 17
6 −3.7731(1) −3.723 56
8 −3.6983(1) −3.614 96
10 −3.6303(1) −3.506 35
12 −3.5686(1) −3.397 74
14 −3.5127(1) −3.289 14
16 −3.4619(1) −3.180 53
18 −3.4161(1) −3.071 92
20 −3.3749(1) −2.963 31
24 −3.3053(1) −2.746 10
26 −3.2765(1) −2.637 49
28 −3.2516(1) −2.528 89
30 −3.2303(1) −2.420 28
32 −3.2126(1) −2.311 67
40 −3.1771(1) −1.877 25
50 −3.2108(1) −1.334 21
54 −3.2502(1) −1.117 00
60 −3.3406(1) −0.791 18
70 −3.5857(1) −0.248 15
80 −3.9942(1) 0.294 89
83 −4.1575(1) 0.457 80
90 −4.6298(1) 0.837 92
92 −4.7845(1) 0.946 53
100 −5.6198(2) 1.380 96

V. RESULTS AND DISCUSSION

We now summarize our results obtained for the two-loop
QED corrections with closed fermion loops. Since the previous
investigations of these corrections have been performed within
the Zα expansion and provided results complete up to order
α2 (Zα)4, we identify the higher-order remainder of our
numerical results that can be directly added to the results
obtained previously [9]. The higher-order remainders induced
by the three sets of two-loop diagrams with closed fermion

TABLE IV. The higher-order contribution to the 1s bound-
electron g factor induced by the two-loop QED diagrams with closed
fermion loops, in terms of δ(5)g = 	g/[(α2/π 2)(Zα)5], where 	g is
the contribution to the g factor.

Z S(VP)E SEVP VPVP δ(5)g 	g × 106

6 0.00(15)a 7.97(36) 6.31 14.28(39) 0.000 012 4(3)
8 −0.05(12)a 8.03(6) 6.01 14.00(13) 0.000 051 2(5)
14 −0.15(4)a 7.62(1) 5.25 12.72(4) 0.000 764 (3)
20 −0.23(2)a 7.15(1) 4.62 11.54(2) 0.004 12(1)
30 −0.27(2) 6.56 3.74 10.03(2) 0.027 2(1)
40 −0.22 6.19 2.99 8.96 0.102 4(1)
50 −0.12 6.03 2.30 8.21 0.286 5(1)
60 0.01 6.07 1.62 7.70 0.668 2(1)
70 0.16 6.30 0.91 7.37 1.382 3(2)
80 0.33 6.78 0.09 7.20 2.632 7(3)
83 0.38 6.97 −0.18 7.17 3.155 0(3)
90 0.53 7.52 −0.88 7.17 4.726 (1)
92 0.58 7.69 −1.10 7.18 5.281 (1)
100 0.81 8.63 −2.15 7.28 8.134 (3)

aExtrapolated value.

loops considered in the present work are summarized in
Table IV. We observe that the S(VP)E diagram yields a very
small contribution to the higher-order remainder, whereas the
remainders from the SEVP and VPVP diagrams are large and
comparable in magnitude and enhance each other.

In Table V, we collect all presently available contributions
for the 1s bound-electron g factor for four hydrogenlike ions
that are most relevant from the experimental point of view.
For three of them (carbon, oxygen, and silicon), accurate
experimental results are already available [1,2,4], whereas
for calcium the experiment is under way [28]. Since most
of the results collected in Table V appeared previously in the
literature, we give here only short comments about the data
presented in the table. The finite-nuclear-size correction is
evaluated with the standard two-parameter Fermi model of
the nuclear charge distribution and the root-mean-square radii
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FIG. 6. (Color online) VPVP correction to the 1s bound-electron g factor. The left graph presents our numerical all-order results [dots and
solid line (red)], together with the Zα-expansion results [dashed line (black)], in terms of δg = 	g/[(α2/π 2)(Zα)4]. The right graph shows
the corresponding results for the higher-order remainder G(Zα).
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TABLE V. Individual contributions to the 1s bound-electron g factor. The abbreviations used are as follows: “h.o.” stands for a higher-order
contribution, “VP-EL” for the electric-loop vacuum-polarization correction, “VP-ML” for the magnetic-loop vacuum-polarization correction,
and “TW” indicates the results obtained in this work. 〈r2〉1/2 is the root-mean-square nuclear charge radius in fermi.

12C5+ 16O7+ 28Si13+ 40Ca19+ Ref.
〈r2〉1/2 2.4703 (22) 2.7013 (55) 3.1223 (24) 3.4764 (10)
m/M 4.5728 × 10−5 3.4307 × 10−5 1.9614 × 10−5 1.3731 × 10−5

Dirac value (point) 1.998 721 354 39 1.997 726 003 06 1.993 023 571 6 1.985 723 203 7
Finite nuclear size 0.000 000 000 41 0.000 000 001 55 (1) 0.000 000 020 5 0.000 000 113 0 (1)
1-loop QED (Zα)0 0.002 322 819 47 0.002 322 819 47 0.002 322 819 5 0.002 322 819 5

(Zα)2 0.000 000 742 16 0.000 001 319 40 0.000 004 040 6 0.000 008 246 2 [33]
(Zα)4 0.000 000 093 42 0.000 000 240 07 0.000 001 244 6 0.000 002 510 6 [8]

h.o., SE 0.000 000 008 28 0.000 000 034 43 (1) 0.000 000 542 8 (3) 0.000 003 107 7 (2) [6,8]
h.o., VP-EL 0.000 000 000 56 0.000 000 002 24 0.000 000 032 6 0.000 000 172 7 [30,31]
h.o., VP-ML 0.000 000 000 04 0.000 000 000 16 0.000 000 002 5 0.000 000 014 6 [32]

�2-loop QED (Zα)0 −0.000 003 515 10 −0.000 003 515 10 −0.000 003 515 1 −0.000 003 515 1
(Zα)2 −0.000 000 001 12 −0.000 000 002 00 −0.000 000 006 1 −0.000 000 012 5 [33]
(Zα)4 0.000 000 000 06 0.000 000 000 08 −0.000 000 001 3 −0.000 000 010 9 [9]
h.o. 0.000 000 000 01 (3) 0.000 000 000 05 (11) 0.000 000 000 8 (17) 0.000 000 004 1 (100) TW

Recoil m/M 0.000 000 087 73 0.000 000 117 10 0.000 000 206 1 0.000 000 297 4 [7]
h.o. −0.000 000 000 10 −0.000 000 000 13 −0.000 000 000 2 −0.000 000 000 3 [34,35]

Total 2.001 041 590 20 (3) 2.000 047 020 38 (11) 1.995 348 958 7 (17) 1.988 056 950 7 (100)
Experiment [1,2,4] 2.001 041 596 (5) 2.000 047 025 4 (46) 1.995 348 959 10 (81)

taken from Ref. [29]. The error of this correction originates
both from the quoted uncertainty of the rms radius and from
the dependence of the result on the model used for the
nuclear-charge distribution.

The results obtained in the present work for the higher-
order two-loop corrections with closed fermion loops are listed
in the table under the labels “�2-loop QED, h.o.” Since we
did not calculate the complete two-loop QED correction in
the present work (the two-loop self-energy contribution is left
out), we do not decrease the overall uncertainty as compared
to the previous investigations. The same as previously [9],
the uncertainty due to higher-order two-loop contributions is
estimated as

g
(2)
h.o. = 2g

(1)
h.o.

g(2)[(Zα)2]

g(1)[(Zα)2]
, (18)

where g
(n)
h.o. is the n-loop higher-order QED contribution and

g(n)[(Zα)2] is the n-loop (Zα)2 QED contribution. We observe
that the size of the two-loop contributions calculated in
the present study is about 50% of the total uncertainty to
the higher-order effects. So, we might refer to the size of
the calculated effects as “expected.”

Finally, we comment on the small differences (in the
last significant digit) between the data in Table V and the
previous compilation in Ref. [9] for the recoil corrections.
The difference in the first-order (∼m/M) recoil correction is
due to the updated value of the nuclear masses, whereas the
difference in the higher-order recoil correction is due to the
updated theoretical result obtained in Ref. [35] for the arbitrary
nuclear spin.

It is interesting to note that the theoretical prediction for sili-
con reported in Table V nearly coincides with the experimental
result, leaving almost no space for the higher-order two-loop
self-energy correction, which remains uncalculated at present.

Indeed, the difference between theoretical and experimental
results for Si amounts to 4 × 10−10, which is twice smaller than
the two-loop contribution calculated in the present work. This
indicates that either the two-loop self-energy contribution is
relatively small or it changes its sign in the vicinity of Z = 14.
In order to test these assumptions, a g-factor measurement
in a heavier system would be of great help. Table V shows
that already for calcium, the uncertainty due to the two-loop
self-energy is by two orders of magnitude larger than the other
theoretical errors. So, a measurement of the bound-electron g

factor in Ca19+ with the same accuracy as in Si would lead to an
unambiguous experimental determination of the higher-order
two-loop self-energy contribution.

Summarizing, we have calculated three sets of two-loop
QED diagrams with the closed fermion loops to the 1s

bound-electron g factor. Calculations were performed to all
orders in the nuclear binding strength parameter Zα except for
the closed fermion loop, which was treated within the free-loop
(Uehling) approximation in some cases. Our numerical data
were shown to agree well with the Zα-expansion results
previously obtained for these corrections. The higher-order
remainder [of order α2(Zα)5 and higher] was separated
out from our numerical results. Its size agrees well with
previous estimations for the two-loop higher-order effects.
Our calculations do not improve the total uncertainty of the
two-loop QED effects in the theoretical predictions since the
most nontrivial two-loop correction, the two-loop self-energy,
still remains to be calculated.
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APPENDIX: S(VP)E CORRECTION: ZERO-POTENTIAL CONTRIBUTION

The zero-potential contribution of the S(VP)E correction can be derived by the method described in Ref. [19] (Sec. III A) for
the one-loop SE correction to the g factor. Derivation requires explicit expressions for the free SE and vertex operators with the
VP insertion into the photon line, which were obtained previously in Ref. [13] (Sec. III C). The total zero-potential contribution
of the S(VP)E correction to the g factor is separated into three parts, which have the same meaning as in Ref. [19]:

	g(0)
vr = 	g

(0)
ver,1 + 	g

(0)
ver,2 + 	g

(0)
red. (A1)

The results for the three terms in the above equation are

	g
(0)
ver,1 = − α2

4π5

∫ ∞

0
p2

r dpr

∫ 1

0
dx dz

z2(1 − z2/3)

1 − z2

1 − x

	(ρ)

[
ga(εaga + prfa) − 1

3
fa(εafa + prga)

]
, (A2)

	g
(0)
ver,2 = α2

12π5

∫ ∞

0
p2

r dpr

∫ 1

0
dx dz

z2(1 − z2/3)

1 − z2

1 − x

	(ρ)

×
{
	(ρ) ln

	(ρ)

	(0)

[
2

pr

gafa + gaf
′
a + fag

′
a

]
+ 2(1 − x)(εafa + pr ga)fa − 4f 2

a

}
, (A3)

	g
(0)
red = gD

α2

16π5

∫ ∞

0
p2

r dpr

∫ 1

0
dx dz

z2(1 − z2/3)

1 − z2

1 − x

	(ρ)

×
{
	(ρ) ln

	(ρ)

	(0)

(
g2

a + f 2
a

) − 2εa(1 − x)
[
εa

(
g2

a + f 2
a

) + 2prgafa

] + 4εa

(
g2

a − f 2
a

)}
, (A4)

where 	(ρ) = x(1 − ρ) + ρ + 4(1 − x)/[x(1 − z2)], ρ = (m2 − p2)/m2 = (m2 − ε2
a + p2

r )/m2, gD is the lowest-order (Dirac)
bound-electron g factor, which for the 1s state is given by

gD = 2
3 (1 + 2

√
1 − (Zα)2), (A5)

εa is the reference-state energy, ga ≡ ga(pr ) and fa ≡ fa(pr ) are the upper and the lower components of the reference-state wave
function in the momentum representation, respectively, and g′

a and f ′
a denote derivatives of ga(pr ) and fa(pr ) with respect to pr .
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