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The hyperfine interaction constants of the 2p4(3P )3p 2Do
3/2,5/2, 4Do

1/2−7/2, and 4P o
1/2−5/2 levels in neutral fluorine

are investigated theoretically. Large-scale calculations are carried out using the multiconfiguration Hartree-Fock
(MCHF) and Dirac-Hartree-Fock (MCDHF) methods. In the framework of the MCHF approach, the relativistic
effects are taken into account in the Breit-Pauli approximation using nonrelativistic orbitals. In the fully relativistic
approach, the orbitals are optimized using the Dirac-Coulomb Hamiltonian with correlation models inspired
by the nonrelativistic calculations. Higher-order excitations are captured through multireference configuration
interaction calculations including the Breit interaction. In a third (intermediate) approach, the Dirac-Coulomb-
Breit Hamiltonian matrix is diagonalized in a relativistic configuration space built with nonrelativistic MCHF
radial functions converted into Dirac spinors using the Pauli approximation. The magnetic dipole hyperfine-
structure constants calculated with the three relativistic models are consistent and reveal unexpectedly large
effects of relativity for 2Do

5/2, 4P o
3/2, and 4P o

5/2. The agreement with the few available experimental values is
satisfactory. The strong J dependence of relativistic corrections on the hyperfine constants is investigated
through the detailed analysis of the orbital, spin-dipole, and contact relative contributions calculated with the
nonrelativistic magnetic dipole operator.
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I. INTRODUCTION

Atomic fluorine is a highly reactive free radical. Its natural
state is molecular fluorine, a poisonous and corrosive material
that makes experimental studies quite delicate and scarce [1,2].
The atomic resonance transitions lie in the ultraviolet region
but many of the transitions between excited states lie in
the visible and near-infrared and can be driven using diode
lasers, as explored by Tate and Aturaliye [3] who reported
for the first time high-resolution laser spectroscopy measure-
ments of hyperfine structures. These authors used Doppler-
free saturation absorption spectroscopy of excited states of
atomic fluorine to measure and analyze the hyperfine-structure
intervals of the 2p4(3P )3s 2PJ → 2p4(3P )3p 2Do

J ′ fine-
structure multiplet components. Using the observed hyperfine-
structure splittings (hfs), the magnetic hyperfine constants AJ

were determined for the levels involved in the transitions, with
a higher accuracy than those determined earlier by Lidén [4]
and Hocker [5]. The comparison of the experimental hfs
reveals large discrepancies [3]. For instance, hfs values for
the splittings of the 2p4(3P )3p 2Do

3/2 and 2Do
5/2 states have

been found to be negative in [5] while positive in [4] and [3],
with a large discrepancy (21%) between the two latter for the
hfs values of 2p4(3P )3p 2Do

3/2, well outside the error bars. In
contrast with the hyperfine study of the ground-state levels
2p5 2P o

1/2,3/2 for which observation [6–8] and theory [9–11]
have been compared, there is no theoretical prediction for
the hyperfine structure of the excited levels considered in [3],
except the pioneer work by Brown and Bartlett [12]. More
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recently, in a feasibility study of in-beam polarization of
fluorine, Levy et al. [13] measured the hyperfine structures
of 2p4(3P )3s 4P5/2 and 2p4(3P )3p 4Do

5/2,7/2 states via laser-
induced fluorescence and modulated optical depopulation
pumping. As for 2p4(3P )3p 2Do

3/2 and 2Do
5/2, no theoretical

values are available in the literature for these quartet levels, to
the knowledge of the authors.

The present work was originally motivated by the follow-
ing observation: On the one hand, a serious disagreement
appeared when comparing our first theoretical estimation of
the hyperfine constant of 2p4(3P )3p 2Do

5/2 based on robust
nonrelativistic calculations with the Doppler-free spectroscopy
value reported by Tate and Aturaliye [3]. On the other hand, ab
initio calculations of hyperfine constants for 14N and 15N [14]
were found to be in complete disagreement with the experi-
mental values of Jennerich et al. [15], also deduced from the
analysis of the near-infrared Doppler-free saturated absorption
spectra. This nitrogen theory-observation discrepancy problem
was recently solved through a reinterpretation of the recorded
weak spectral lines as crossover signals [16], leading to a
new set of experimental hyperfine constants in very good
agreement with the ab initio predictions [14]. Considering that
the apparition of crossover signals in Doppler-free saturated
absorption spectroscopy that has been used for both fluorine
[3] and nitrogen [15] is helpful in some cases but also
problematic in others, we investigate in the present work the
relativistic corrections that could explain the nonrelativistic
theory-observation discrepancy mentioned above for the A5/2

value of 2p4(3P )3p 2Do
5/2.

For light atomic systems, the relativistic effects are usually
included with success in the Breit-Pauli approximation [17,18]
for fine-structure and transition probability calculations. In the
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case of fluorine, the relativistic corrections are expected to
be relatively small. We expect therefore that relativity could
be treated in a perturbation regime using either the Breit-
Pauli approximation [19,20] or the relativistic configuration
interaction approach in the Pauli approximation [21,22]. It is
worthwhile to investigate if these methods lead to hyperfine-
structure constants consistent with each other, with the fully
relativistic approach and with observation, when available. The
evaluation of hyperfine interaction structures for atomic states
provides a good opportunity to study the interplay between
the correlation and relativistic effects. Different theoretical
approaches can be used for estimating hyperfine structures,
with their advantages and disadvantages, depending on the
size and complexity of the targeted atomic systems. Fluorine
has a special place in this diversity. As a nine-electron atom,
it definitely lies outside the “few”-electron systems domain
for which the elaborate variational calculations in Hylleraas
coordinates can be successfully applied, usually giving rise
to the most reliable expectation values [23–25]. Moreover,
taken in its 2p43p excited configuration, neutral fluorine
constitutes a difficult target for many-body approaches that
are often restricted to single- or two-valence atoms or ions
[26–28]. The coupled-cluster theory is promising [29–31]
but investigation of hyperfine structures in more complex
systems remains scarce [32]. Although further developments
might be expected [33–36], the traditional multiconfiguration
methods combined with configuration interaction in their
nonrelativistic [14,37,38] and relativistic [39–43] versions
keep a respectable place in the ranking of ab initio methods
for hyperfine-structure calculations.

Section II describes the atomic state functions in the
nonrelativistic multiconfiguration Hartree-Fock, relativistic
Breit-Pauli, multiconfiguration Dirac-Hartree-Fock and Pauli
approaches. The theoretical background needed for under-
standing the hyperfine interaction is given in Sec. III. The
computational strategy is developed in Sec. IV. The theoretical
hyperfine constants calculated using the different models are
compared to each other and with observation in Sec. V.

II. ATOMIC STATE FUNCTION

A. Nonrelativistic approach

In the nonrelativistic multiconfiguration Hartree-Fock
(MCHF) approximation [44], the atomic state function (ASF)
is described as a linear combination of Nc configuration state
functions (CSFs)

�(αLSMLMSπ ) =
Nc∑
i

ci�(αiLSMLMSπ ) (1)

built on one-electron spin-orbitals

φnlmlms
(r,σ ) = Pnl(r)

r
Ylml

(θ,ϕ)χms
(σ ). (2)

The MCHF equations are the system of coupled, nonlinear
differential equations that arises when we require the energy
to be stationary with respect to variations in the radial functions
{Pnl(r)}. At the same time the energy must be stationary with
respect to variations in the mixing coefficients {ci}, leading to
a system of secular equations [17]. Once a set of one-electron

orbitals is optimized, a larger system of secular equations can
be solved for diagonalizing the nonrelativistic Hamiltonian
in an enlarged CSF basis to get a better description of the
desired eigenvector. In the present paper, we will refer to these
calculations as configuration interaction (CI).

B. Relativistic approach

1. Breit-Pauli approximation

Relativistic corrections to the MCHF or CI wave functions
can be included efficiently in the Breit-Pauli (BP) approxi-
mation [17] that consists in writing the ASF as the following
expansion:

�(αJMJ π ) =
Nc∑
i

ci�(αiLiSiJMJ π ). (3)

This wave function is the eigenvector of the Breit-Pauli
Hamiltonian matrix corresponding to the desired root. Note
that, opposite to Eq. (1), the ASF (3) allows LS mixing due to
the fine-structure BP Hamiltonian terms that do not commute
with L and S [17,45].

2. Multiconfiguration Dirac-Hartree-Fock approach

Starting from the Dirac-Coulomb Hamiltonian [22]

HDC =
N∑
i

[
c αi · pi + (βi − 1)c2 + V nuc

i

] +
∑
i>j

1/rij , (4)

where V nuc is the monopole part of the electron-nucleus
Coulomb interaction, the atomic state function (ASF) of a
specific fine-structure level is described by a linear combina-
tion of relativistic configuration state functions �(γiJMJ π )

�(γ JMJ π ) =
Nc∑
i=1

ci�(γiJMJ π ), (5)

which are built on relativistic configurations γi involving the
jj coupling of subshell Dirac spinors [22]

φnκm(r,σ ) = 1

r

(
Pnκ (r) χκm(θ,ϕ)

iQnκ (r) χ−κm(θ,ϕ)

)
, (6)

where κ is defined as

κ =
{−l − 1 when j = l + 1/2,

l when j = l − 1/2.
(7)

Applying the variational principle, the radial functions
{Pnκ (r),Qnκ (r)} and the mixing coefficients ci appearing in
Eq. (5) are optimized by solving iteratively the self-consistent
field (SCF) problem and the secular equations. Calculations
can be performed not only for a single level, but also for a
portion of a spectrum in an extended optimal level (EOL)
scheme where optimization is applied on a weighted sum of
energies. In the EOL optimization scheme [22,46] that we
adopt for the present study (using the “standard” option of the
GRASP2K [47] computer code), the functional has the form

F =
Nc∑
r=1

Nc∑
s=1

drsHrs + L, (8)
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where L contains the Lagrange multipliers contributions and

drs =
(

nL∑
i=1

(2Ji + 1)cricsi

) / (
nL∑
i=1

(2Ji + 1)

)
. (9)

nL specifies the number of the targeted eigenvalues, each of
them weighted by the (2Ji + 1) degeneracy factor.

An extension of the MCDHF approach, allowing the mixing
coefficients to be varied but keeping the one-electron orbitals
frozen, is referred to in the present work as the relativistic
configuration interaction (RCI) method. In the latter, the
transverse photon interaction [48]

HTransv = −
N∑

i<j

[
αi · αj

cos(ωij rij /c)

rij

+ (α · ∇)i(α · ∇)j
cos(ωij rij /c) − 1

ω2
ij rij /c2

]
(10)

may be included in the Hamiltonian matrix. However ωij

appearing in this equation is the energy of the exchanged
photon between the two electrons (i,j ), and is not well
defined for correlation orbitals. Therefore, it is only possible
to estimate the low-frequency (ωij → 0) limit of Eq. (10) by
multiplying the computed photon frequency by a small number
to get the Breit interaction [48,49]

HBreit = −
N∑

i<j

1

2rij

[
αi · αj + (αi · ri j )(αj · ri j )

r2
ij

]
. (11)

3. Pauli approximation

Another interesting way to estimate relativistic effects is
to diagonalize the Dirac-Coulomb-Breit Hamiltonian (HDC +
HBreit) matrix, in a relativistic CSF basis built on Dirac spinors
whose large and small radial components are calculated
from nonrelativistic MCHF radial functions, using the Pauli
approximation [21,22,50]

Pnκ (r) = P MCHF
nl (r),

(12)

Qnκ (r) ≈ α

2

(
d

dr
+ κ

r

)
Pnκ (r),

where α is the fine-structure constant. This method based on
the use of the relativistic configuration interaction approach in
the Pauli approximation is labeled RCI-P in the present work.

III. HYPERFINE INTERACTION

The hyperfine contribution to the Hamiltonian is repre-
sented by a multipole expansion

Hhfs =
∑
k�1

T(k) · M(k), (13)

where T(k) and M(k) are spherical tensor operators of rank k

in the electronic and nuclear space, respectively [51,52]. The
k = 1 and k = 2 terms represent, respectively, the magnetic
dipole interaction and the electric quadrupole interaction. The
19F nucleus, the only stable fluorine isotope, has a nuclear spin
I = 1/2 and a magnetic moment μI = 2.628868μN [53–55]
but no quadrupole moment (Q = 0). The hyperfine shifts of the

fine-structure levels may be expressed to first order in terms of
the magnetic dipole AJ hyperfine interaction constant [56] that
is proportional to the reduced matrix element of the electronic
tensor operator of rank one

AJ = μI

I

1√
J (J + 1)(2J + 1)

〈γ J‖T(1)‖γ J 〉. (14)

In nonrelativistic calculations, the electronic matrix elements
are obtained by integrating the irreducible spherical tensors
[57,58]

T(1) = α2

2

N∑
i=1

{
2l(1)(i)r−3

i − gs

√
10[C(2)(i) × s(1)(i)](1)r−3

i

+ gs

8

3
πδ(ri)s(1)(i)

}
(15)

using the ASF of the form (1) adapted to the J = L + S
symmetry

�(αLSJMJ π ) =
Nc∑
i

ai�(αiLSJMJ π ), (16)

i.e., an expansion similar to Eq. (3), but restricted to the
same LS values. For light atoms in which the LS coupling
remains valid to a good approximation, relativistic corrections
can be introduced in the BP approximation. The resulting
wave functions (3) used to evaluate the matrix elements of
the electronic tensor operator (15) allow LS mixing for a
specific J value. In both cases, the hyperfine constant defined
by Eq. (14) is composed of the orbital, spin-dipole, and contact
contributions

AJ = Aorb
J + Asd

J + Ac
J , (17)

which are evaluated using the eigenvectors (1) or (3). In cases
where LS coupling is strictly valid, i.e., omitting the (L′ 	= L)
and (S ′ 	= S) off-diagonal relativistic matrix elements, the
three contributions to the hyperfine constant appearing in
Eq. (17) take the form

Aorb
J = Gμ

μI

I
alForb(L,S,J ), (18)

Asd
J = 1

2
Gμ gs

μI

I
asdF sd(L,S,J ), (19)

Ac
J = 1

6
Gμ gs

μI

I
acF c(L,S,J ), (20)

where the J -independent orbital (al), spin-dipole (asd), and
contact (ac) electronic hyperfine parameters are defined as
[57,58]

al ≡ 〈αLSMLMS |
N∑

i=1

l
(1)
0 (i)r−3

i |αLSMLMS〉, (21)

asd ≡ 〈αLSMLMS |
N∑

i=1

2C
(2)
0 (i)s(1)

0 (i)r−3
i |αLSMLMS〉,

(22)

ac ≡ 〈αLSMLMS |
N∑

i=1

2s
(1)
0 (i)r−2

i δ(ri)|αLSMLMS〉, (23)
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with ML = L and MS = S. The dimensionless factors
F i(L,S,J ) can be evaluated from the following expectation
values:

Forb(L,S,J ) = 〈 L · J 〉
LJ (J + 1)

, (24)

F sd(L,S,J ) = 3〈L · S〉〈L · J〉 − L(L + 1)〈S · J〉
SL(2L − 1)J (J + 1)

, (25)

F c(L,S,J ) = 〈S · J〉
SJ (J + 1)

. (26)

Expressing the electronic parameters al , asd and ac in atomic
units (units of a−3

0 ) and μI in nuclear magnetons (μN ), the
magnetic dipole hyperfine-structure constants AJ are calcu-
lated in units of frequency (MHz) by using Gμ = 95.410 67.

In fully relativistic calculations, the structure of the
magnetic dipole electronic tensor is much simpler than the
nonrelativistic form (15) [57,59]

T(1) = −iα

N∑
j=1

[αj · lj C(1)(j )]
1

r2
j

. (27)

The hyperfine constant AJ is estimated from the expectation
value of this operator, using Eq. (14) and the atomic state
function (5).

IV. COMPUTATIONAL MODELS

A. Nonrelativistic calculations

We perform two types of nonrelativistic calculations. The
first one is based on the multiconfiguration Hartree-Fock
approach [17,60] with configuration expansions generated
by single (S) and double (D) excitations from the single
reference. For a given calculation, the orbital active space (AS)
is characterized by [nmax] when no angular limitation applies.
The active set is specified by [nmaxlmax] when angular orbital
limitation is introduced. We have performed systematic SD-
MCHF calculations, considering angular momentum values
up to l = 5 (h electrons), and concluded that truncating the
AS at lmax = 3 is safe for getting hyperfine constants within
0.2%. These calculations are denoted SD-MCHF in Table I.

With these MCHF orbital sets, we investigate the use of
SD-multireference expansions by performing configuration
interaction calculations (MR-CI) based on expansions
generated by allowing SD excitations from the three
configurations {2s22p43p,2s22p23p3d2,2s2p43p3d}. To
keep the size of the interaction matrices manageable, the three
CSFs of the MR space are not treated identically in terms of
SD excitations, considering a smaller orbital active set [6f ]
for the two {2s22p23p3d2,2s2p43p3d} components than the
one adopted [10f ] for the major (2s22p43p) component. We
observe that the use of a multireference space is worthwhile,
bringing a 3.6% variation in the hyperfine constants of the
4P o

1/2 level. For the 4Do symmetry, we test a “reduction
strategy” that consists in limiting in the final expansions
the excited CSFs that interact with at least one of the three

TABLE I. Hyperfine-structure constants AJ (in MHz) of 2p4(3P )3p 4Do
J , 4P o

J , and 2Do
J . Upper part: nonrelativistic values obtained with the

multiconfiguration Hartree-Fock method using single- and double-monoreference expansions (SD-MCHF), and multireference configuration
interaction (MR-CI) calculations. Lower part: relativistic values calculated in the Breit-Pauli (BP and MR-BP) and the Pauli (RCI-P)
approximations.

4Do 4P o 2Do

Method AS A1/2 A3/2 A5/2 A7/2 A1/2 A3/2 A5/2 A3/2 A5/2

HF 2466 987 1109 1538 −1991 1260 731 1862 2037

SD-MCHF [3] 1535 1152 1433 1919 −454 1935 1274 1509 2387
[4] 2275 893 1033 1474 −1961 1226 674 1768 1954
[5] 2087 931 1113 1579 −1820 1330 744 1705 2058

[6f ] 2161 925 1093 1551 −1712 1370 783 1733 2032
[7f ] 2156 931 1098 1554 −1739 1354 773 1731 2037
[8f ] 2157 929 1096 1550 −1738 1350 770 1730 2031
[9f ] 2163 925 1091 1546 −1759 1343 763 1732 2027
[10f ] 2152 926 1094 1549 −1743 1349 768 1727 2030

MR-CI [10f ] 2114 930 1103 1561 −1682 1374 788 1711 2041
MR-CI-red [10f ] 2119 929 1102 1559
MR-MCHF {10s9p8d4f } 2122 930 1102 1560 −1697 1369 784 1715 2040

BP [8f ] 2102 839 1099 1543 −1616 1742 1007 1763 1685
[9f ] 2110 835 1093 1538 −1637 1737 1001 1772 1686
[10f ] 2100 837 1095 1542 −1620 1745 1007 1768 1691

RCI-P [8f ] 2103 839 1097 1540 −1615 1737 1005 1763 1686
[9f ] 2112 835 1091 1536 −1636 1732 999 1772 1686
[10f ] 2101 836 1093 1540 −1620 1740 1005 1768 1691

MR-BP [10f ] 2073 846 1107 1553 −1572 1762 1022 1759 1701
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MR components. These calculations are performed using
LSREDUCE, which is part of the utilities provided in the MCHF
atomic-structure package [60], and are labeled MR-CI-red in
the present work. While the number of CSFs is sensitively
decreased by this reduction strategy (from 394 190 to 206 340),
the hyperfine constants are not affected, as illustrated by
Table I.

The use of the multireference is also tested in the orbital
optimization by performing MR-MCHF calculations to cap-
ture higher-order correlation effects. For the latter, we use the
above reduction strategy, adopting the reversed orbital order
consisting in coupling sequentially the subshells by decreasing
n and l. This technique indeed reduces substantially the size of
the MCHF expansions while keeping the dominant correlation
contributions [14]. For specifying the AS, it is sometimes more
convenient to use another notation involving curly brackets
instead of brackets, where the number of orbitals for each
angular symmetry is specified, i.e., {10s9p8d7f } = [10f ].
The {10s9p8d4f } AS used for the MR-MCHF calculations
means that for its three multireference components, the orbital
angular momentum is limited to lmax = 3 for n � 7 and
lmax = 2 for n � 8. As shown by Table I, the inclusion of
the MR in the MCHF model reproduces the MR-CI results
within less than 1%.

B. Relativistic calculations

In the Breit-Pauli (BP) approximation, the CSF expansions
of the atomic state function (3) are constructed in the same
way as in the SD-MCHF calculations, but including all
possible symmetries LiSi for a given J value. The radial
functions spanning the CSFs are taken from the [nf ] SD-
MCHF calculations. All the Breit-Pauli operators are taken
into account.

Relativistic configuration interaction calculations are also
performed in the Pauli approximation (RCI-P) by generating
jj -coupled relativistic configuration state function expansions
(5) from SD excitations of the monoreference configuration
using the [10f ] active set. The radial functions are the non-

relativistic MCHF radial functions converted to approximate
Dirac spinors according to Eq. (12).

Replacing the monoreference by a MR model in the
nonrelativistic framework brings variations of a few percent
in the hyperfine constants, as shown in the previous section.
It is therefore worthwhile investigating the multireference
approach in the Breit-Pauli approximation. For these cal-
culations (denoted MR-BP), we build the CSF expansions
by including SD excitations from the three-configuration
{2s22p43p,2s22p23p3d2,2s2p43p3d} multireference, using
respectively, the [10f ], [5d], and [5d] active space. For
a given J value, all symmetries resulting from the main
reference (2s22p43p) are included, while for the other two
references {2s22p23p3d2,2s2p43p3d} only the 2(S,P,D)
and 4(S,P,D) symmetries are considered. The size of the
spaces are reduced with LSREDUCE. The three sets of BP,
RCI-P, and MR-BP results are presented in the second half of
Table I.

In Table II, we report fully relativistic results. In the nonrel-
ativistic approximation, the desired states 2p43p 4Do, 4P o, 2Do

are the lowest of their symmetry. This is not true anymore in
the relativistic framework for the J = 1/2,3/2 levels for which
the interaction with the ground configuration 2p5 should be
taken into account. The simplest model is therefore a two-
configuration model {2p43p + 2p5} for these J subspaces.
MCDHF calculations are performed by using the active space
approach inspired from the nonrelativistic SD-MCHF correla-
tion models. Denoting the nth root of the J block by E(nJ ) and
referring to Eqs. (8) and (9), the EOL strategy is applied to op-
timize separately three orbitals sets, using the following energy
functionals: [6E(1 5

2
) + 4E(2 3

2
) + 2E(2 1

2
)]/12, [8E(1 7

2
) +

6E(2 5
2
) + 4E(3 3

2
) + 2E(3 1

2
)]/20, and [6E(3 5

2
)+4E(4 3

2
)]/10,

describing, respectively, the fine-structure levels J of the three
terms 2p4(3P )3p 4P o, 4Do, and 2Do.

The number of CSFs in SD-MCDHF expansions increases
drastically with the extension of the AS compared to SD-
MCHF ones. To keep the size of the multiconfiguration
expansions manageable the reduction strategy, which has
been proven to be efficient in the nonrelativistic MR-CI

TABLE II. Hyperfine-structure constants AJ (in MHz) of 2p4(3P )3p 4Do
J , 4P o

J , and 2Do
J obtained with the fully relativistic multiconfiguration-

Dirac-Hartree-Fock method using single- and double-monoreference expansions (SD-MCDHF), and multireference relativistic configuration
interaction (MR-RCI) calculations.

4Do 4P o 2Do

Method [AS] A1/2 A3/2 A5/2 A7/2 A1/2 A3/2 A5/2 A3/2 A5/2

{2p43p + 2p5} 2250 809 1125 1529 −1772 1811 1045 1795 1633

SD-MCDHF [3] 1380 1086 1532 1883 −317 2418 1525 1362 1914
[4] 2120 746 1035 1461 −1769 1713 948 1783 1630
[5] 2027 785 1109 1533 −1708 1790 995 1748 1673

[6f ] 2087 782 1083 1511 −1663 1777 992 1788 1650
[7f ] 2061 805 1131 1526 −1601 1818 1023 1818 1739

{8s7p6d4f } 2037 814 1127 1529 −1583 1807 1017 1814 1738
{9s8p7d4f } 2065 812 1109 1523 −1624 1780 998 1784 1660
{10s9p8d4f } 2060 818 1111 1526 −1606 1784 1002 1789 1666

MR-RCI {10s9p8d3f }/[5d] 2071 850 1127 1546 −1555 1784 1028 1772 1700
(see text)
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calculations for the 4D symmetry, is applied by using the
JJREDUCE code [61]. Moreover, the orbital active sets are
restricted to lmax = 2 from n = 8, as indicated by the curly
bracket notation used in Table II. Another difference with the
SD-MCHF strategy is that the calculations are carried out
layer by layer, i.e., optimizing only the correlation orbitals
of the added layer together with the mixing coefficients.
The Breit interaction (11) is taken into account in the
subsequent RCI computations. The configuration space is built
by allowing SD excitations from the same multireference
{2s22p43p,2s22p23p3d2,2s2p43p3d} as the one used in
the nonrelativistic calculations. To keep the configuration
interaction problem tractable, we adopt two different active
spaces: {10s9p8d3f } for the major component 2s22p43p

and [5d] for the two others. Moreover, for 2s22p23p3d2, the
excitations are restricted to the ones in which the 1s shell
remains closed.

V. RESULTS AND DISCUSSION

The convergence of the hyperfine-structure constants with
the progressive extension of the orbital active sets within
a given correlation model is satisfactory, as illustrated by
Tables I and II for the nonrelativistic SD-MCHF and relativistic
SD-MCDHF results, respectively. The excellent agreement
between the BP and the RCI-P results is rather comforting.
Both sets arise from the same radial one-electron orbitals
optimized through the nonrelativistic MCHF approach, but
relativity is included not only through different approaches
but also by using independent computational tools (ATSP2K

[60] and GRASP2K [47] codes). The Breit-Pauli Hamiltonian
is indeed a low-order approximation of the Dirac-Coulomb
Hamiltonian and the expectation values of its operators are
evaluated using nonrelativistic LSJ -basis functions, while
the RCI-P method diagonalizes the Dirac-Coulomb-Breit
Hamiltonian in a jjJ -CSF basis built on approximated Dirac
spinors. Moreover the evaluation of the expectation values of
the magnetic dipole electronic tensors (15) and (27) is done

within radically different frameworks. The effect of enlarging
the reference set that can be estimated by comparing the
MR-CI and SD-MCHF values for a given active set [10f ]
is coherent with the MR-BP and BP differences found in
the Breit-Pauli approximation. This means that enlarging the
multireference space mostly captures electron correlation. A
detailed cross-comparison of the most elaborate calculations
reported in Tables I and II shows that enlarging the reference
space improves the agreement between the Breit-Pauli and
fully relativistic values.

We present in Table III the magnetic dipole hyperfine
constants corresponding to the largest AS for each theoretical
model and compare them with experimental values when
available. As already observed above, the two sets of non-
relativistic MR-MCHF and MR-CI values are consistent with
each other, but the comparison with the SD-MCHF values
indicates the significant effect of higher-order excitations. In
the monoreference model, the comparison between the SD-
MCHF and BP values reveals the importance of the relativistic
corrections for some levels. This is a priori unexpected for a
light system such as neutral fluorine. Among the nine levels
considered, the hyperfine constants of 4P o

3/2 and 4P o
5/2 are the

most affected by relativity, the difference between the BP and
SD-MCHF results reaching as much as 30%. This effect is
less important but still quite large for 2Do

5/2(17%), 4Do
3/2(10%),

and 4P o
1/2(7%). The same observation can be made from the

relativistic configuration interaction calculations in the Pauli
approximation (RCI-P).

The fully relativistic results (MCDHF) confirm the large
relativity effects found in the Breit-Pauli approximation. The
comparison between the MCDHF, BP and RCI-P values,
all based on monoreference correlation models, is by itself
interesting, illustrating the rather good coherence (within 2%)
of the hyperfine constant values. The agreement between the
Breit-Pauli and fully relativistic values is maintained when
enlarging the reference space. The agreement between MR-BP
and MR-RCI is indeed better than 1.8%. Going from MCDHF
to MR-RCI, one takes into account, not only the higher-order

TABLE III. Comparison of the hyperfine constants AJ (in MHz) estimated from nonrelativistic (SD-MCHF, MR-MCHF, and MR-CI) and
relativistic calculations. From the nonrelativistic MCHF orbitals, relativity is included in the Breit-Pauli approximation, monoreference (BP) and
multireference (MR-BP), or through relativistic configuration interaction calculations using one-electron orbitals built in the Pauli approximation
(RCI-P). Fully relativistic multiconfiguration Dirac-Hartree-Fock (MCDHF) and multireference relativistic configuration interaction (MR-RCI)
are also reported and compared with observation.

Nonrelativistic Relativistic

Mono- Multi-reference Mono- Multi-reference

Term AJ SD-MCHF MR-MCHF MR-CI BP RCI-P MCDHF MR-BP MR-RCI Observed

2p4(3P )3p 4Do A1/2 2152 2122 2114 2100 2101 2060 2073 2071
A3/2 926 930 930 837 836 818 846 850
A5/2 1094 1102 1103 1095 1093 1111 1107 1127 1148(1) [13]
A7/2 1549 1560 1561 1542 1540 1526 1553 1546 1564(1) [13]

2p4(3P )3p 4P o A1/2 −1743 −1697 −1682 −1620 −1620 −1606 −1572 −1555
A3/2 1349 1369 1374 1745 1735 1784 1762 1784
A5/2 768 784 788 1007 1004 1002 1022 1028

2p4(3P )3p 2Do A3/2 1727 1715 1711 1768 1768 1789 1759 1772 1857.1(2.1) [3]
A5/2 2030 2040 2040 1691 1691 1666 1701 1700 1746.5(1.5) [3]
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TABLE IV. Comparison of the orbital, spin-dipole, and contact contributions to the hyperfine-structure constants (all numbers in MHz)
calculated with the nonrelativistic SD-MCHF method and including the relativistic Breit-Pauli corrections (BP). The �Ai/Atot contributions
are defined in the text [see Eq. (28)].

J = 1/2 J = 3/2 J = 5/2 J = 7/2

SD-MCHF BP �Ai/Atot SD-MCHF BP �Ai/Atot SD-MCHF BP �Ai/Atot SD-MCHF BP �A/Atot

4Do Aorb 4360 4028 −15.4% 1744 1562 −19.7% 1370 1287 −7.6% 1246 1246 0%
Asd −2099 −1821 12.9% −840 −759 8.7% −317 −244 6.7% 257 248 −0.6%
Ac −109 −107 0.1% 22 34 1.3% 40 52 1% 47 47 0%

Atot 2152 2100 −2.4% 926 837 −9.6% 1094 1095 0% 1549 1542 −0.5%

4P o Aorb −1454 −1159 16.9% 582 1012 31.9% 872 983 14.5%
Asd −497 −668 −9.8% 676 641 −2.6% −179 −51 16.7%
Ac 208 207 0% 91.5 92 0% 75 75 0%

Atot −1743 −1620 7% 1349 1745 29.3% 768 1007 31.1%

2Do Aorb 2618 2657 2.2% 1745 1691 −2.7%
Asd −848 −836 0.7% 242 −32 −13.5%
Ac −43 −53 −0.6% 43 32 −0.5%

Atot 1727 1768 2.4% 2030 1691 −16.7%

excitations beyond the monoreference model (including the
interplay between electron correlation and relativity), but
also the Breit interaction (11). The corresponding variation
systematically improves the theory-observation agreement in
the four AJ values for which experimental data are available
[3,13]. The remaining discrepancies between experiment
and theory arise most likely from higher-order electron
correlation. Unfortunately, experimental values are limited to
four levels among the nine considered. Taking these values as
the truth, the uncertainty of the (MR-BP and MR-RCI) average
values is estimated to be better than 3%. With this respect, the
5% difference between theory and observation for 2Do

3/2 is
somewhat surprising, as suggested by the following detailed
analysis.

To get some insight into the origin of the strong level
dependence of relativistic effects, we report in Table IV the
SD-MCHF and BP values of the three different hyperfine
contributions Ai (i = orb, sd, c). The ratios of the SD-MCHF
values, for a given contribution i, are strictly conditioned by
the factors Forb(L,S,J ), F sd(L,S,J ), and F c(L,S,J ) defined
in Eqs. (24), (25), and (26). These are explicitly reported in
Table V. For instance, the first line numbers (4360 : 1744 :

1370 : 1246) appearing in Table IV and corresponding to the
Aorb contributions of 4Do

J are in the ratios (35 : 14 : 11 : 10)
which can be found in the Forb column of Table V. Similarly,
the sixth line numbers (−497 : 676 : −179) reporting the Asd

values for 4P o
J in Table IV follow theF sd ratios (50 : −68 : 18)

of Table V. As can be realized from the BP values reported in
Table IV, these ratios are strongly affected by the relativistic
corrections in the Breit-Pauli approximation due to the LS

mixing in Eq. (3). For example, the ratios (35 : 14 : 11 : 10)
and (50 : −68 : 18) calculated from the corresponding Aorb

and Asd MCHF values, respectively, become (32.3 : 12.5 :
10.3 : 10) and (70.9 : −68 : 5.4). Table V includes the LS

composition of the BP wave functions. The strongest LS

mixing appears for the 2Do
5/2 and 4Do

5/2 terms, but the purity of
all 4P o

J levels remains high. One can then conclude that there
is no trivial correlation between the LS-mixing magnitude and
the relativistic effect on the hyperfine constant value.

In the Table IV, we report the relative differences between
the SD-MCHF and BP values

�Ai

Atot
= Ai(SD-MCHF) − Ai(BP)

Atot(SD-MCHF)
(28)

TABLE V. J -dependent factors of the orbital [Forb(L,S,J )], spin-dipole [F sd(L,S,J )], and contact [F c(L,S,J )] contributions to the
hyperfine constant AJ [see Eqs. (24)–(26)]. LS eigenvector compositions are given in %.

LS term J Forb F sd F c Composition (%)

2p43p 4Do 1/2 +35/35 −245/105 −70/105 99.6(4D), 0.3(4P ), 0.1(2P )
3/2 +14/35 −98/105 +14/105 96.9(4D), 2.2(2D), 0.8(4P )
5/2 +11/35 −37/105 +26/105 92.5(4D), 6.5(2D), 0.9(4P )
7/2 +10/35 +30/105 +30/105 100.0(4D)

2p43p 4P o 1/2 −10/15 +50/45 +50/45 99.6(4P ), 0.2(4D), 0.2(2S)
3/2 +4/15 −68/45 +22/45 98.8(4P ), 0.7(4D), 0.5(4S)
5/2 +6/15 +18/45 +18/45 98.9(4P ), 1.0(4D), 0.1(2D)

2p43p 2Do 3/2 +3/5 −7/5 −2/5 96.9(2D), 2.7(4D), 0.3(2P )
5/2 +2/5 +2/5 +2/5 91.4(2D), 8.1(4D), 0.5(4P )

042501-7



CARETTE, NEMOUCHI, LI, AND GODEFROID PHYSICAL REVIEW A 88, 042501 (2013)

for the three different hyperfine contributions, using Atot(SD-
MCHF) as the reference value. The analysis of these relative
contributions sheds some light on the J -level dependence of
relativistic effects for a given LS term. The 31% found for
the relativistic effect on A5/2 of 2p4(3P )3p 4P o

5/2 is due to
the cumulative effects of +14.5% and +16.7% relativistic
contributions to the orbital and spin-dipole contributions, while
the very small impact of relativity (−2.4%) found on A1/2 of
2p4(3P )3p 4Do

1/2 is explained by the strong cancellation of the
(still large in absolute value) −15.4% and +12.9% relativistic
contributions to the orbital and spin-dipole contributions.

VI. CONCLUSION

Relativistic effects on the hyperfine structures of heavy
elements are well known. Woodgate showed that a calculation
of the breakdown of the LS coupling and of second-order
corrections, off-diagonal in J , is necessary for an interpretation
of the spectrum of samarium [62]. It has been shown inde-
pendently by Sandars and Beck [63] that hyperfine-structure
calculations can often be made more conveniently by using
effective operators between nonrelativistic LS basis states.
This approach has been used for instance by Childs [64] for
studying relativistic effects in the hyperfine structure of the tin
isotopes. A critical analysis of the methods used to interpret
the hyperfine structure in complex free atoms and ions can
be found in [65]. The investigation of relativity on hyperfine
parameters in light systems is less common. In the present
work, robust correlation models are built in the nonrelativistic
approach, to investigate hyperfine-structure parameters in flu-
orine. The reliability of these models is assessed by comparing
single- and double-, mono- and multi-reference MCHF and CI
calculations that all agree with each other within, at most,
3.5%. For some levels—2p4(3P )3p 2Do

5/2 is a nice example—
all nonrelativistic correlation models perfectly agree with each
other but differ quite substantially (� 17%) from observation.
It is well known that relativistic corrections on the electronic
atomic structures grow with the nuclear charge [21,22] but are
expected to be smaller than the electron correlation effects for
neutral and light atomic systems. In neutral fluorine, yet a very
light element (Z = 9), we show that relativistic corrections to
the nonrelativistic hyperfine parameters can be large for some
low-lying levels, reaching around 30% for the A values of
2p4(3P )3p 4P o

3/2 and 4P o
5/2. While nonrelativistic approaches

are often successful in computing hyperfine constants with
good accuracy, even in heavier systems [38], we see here that it
is necessary to systematically estimate relativistic corrections.

In this context, BPCI and RCI-P methods stand as valuable
tools since they are computationally cheap compared to fully
relativistic calculations.

Core-orbital contraction and charge-density rearrangement
due to relativity can be very important [57] and are a priori
poorly described in the MCHF-BP approximation [42]. For
fluorine, however, the hyperfine structure parameters estimated
with the MCHF-BP method are nicely coherent with the
results obtained from the fully relativistic MCDHF method,
suggesting that the orbital contraction effects are minor in
comparison to the LS term relativistic mixing. When both
methods produce similar results, the first approach (MCHF-
BP) offers some advantages compared with the second one
(MCDHF). The analysis of the relative orbital, spin-dipole,
and contact contributions, which is difficult in the MCDHF
framework [66,67] and becomes impossible when using the
simple form of the magnetic dipole operator (27), sheds indeed
some light in the origin of the large J dependency of relativistic
effects, as we explicitly illustrate in the present work.

Refining our preliminary nonrelativistic results by intro-
ducing relativity through the Breit-Pauli Hamiltonian, we
find large unexpected variations in the hyperfine structure
constants that evidently bring the theoretical estimations closer
to the experimental values of Tate and Aturaliye [3]. While
it has been clearly demonstrated that the theory-observation
disagreement was due to a wrong interpretation of the Doppler-
free saturated absorption spectroscopy signals in nitrogen [3], a
good agreement is found with the fluorine experimental values
obtained with the same technique if the relativistic corrections
are included. This observation excludes any misinterpretation
of the crossover signals in fluorine. We identify in the present
work the origin of the relativistic effects on the hyperfine
constants for specific levels and expect them to be even larger
for levels that are not yet considered experimentally. We
strongly encourage the performance of experimental studies of
the hyperfine structures in fluorine to confirm our theoretical
estimation of the crucial role of relativity, in particular for the
4P o

3/2,5/2 levels.
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