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We study information transmission over a fully correlated amplitude damping channel acting on two qubits.
We derive the single-shot classical channel capacity and show that entanglement is needed to achieve the channel
best performance. We discuss the degradability properties of the channel and evaluate the quantum capacity for
any value of the noise parameter. We finally compute the entanglement-assisted classical channel capacity.
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I. INTRODUCTION

Physical processes can be viewed, in terms of information
theory, as channels mapping the input (initial) state onto
the final (output) state, the transmission being in space (as
in communication channels) or in time (as in the run of
a computer). The performance of a noisy classical channel
can be characterized by a single number, i.e., its capacity,
defined as the maximum rate at which information can be
reliably transmitted down the channel [1]. On the other
hand, noisy quantum communication channels [2,3] can use
quantum systems as carriers of both classical or quantum
information, by encoding classical bits by means of quantum
states or by transferring (unknown) quantum states between,
say, subunits of a quantum computer. Therefore, different
capacities must be defined. The classical capacity C [4–6] and
the quantum capacity Q [7–9] of a noisy quantum channel
are defined as the maximum number of, respectively, bits
and qubits that can be reliably transmitted per channel use.
The entanglement-assisted classical capacity CE gives the
capacity of transmitting classical information, provided the
sender and the receiver share unlimited prior entanglement
[10–12]. This quantity upper bounds the other capacities: We
have Q � C � CE [13].

Noise effects can be conveniently described in the quantum
operation formalism [2,3]: Any input state ρ is mapped onto
the output state ρ ′ = E(ρ) by a linear, completely positive,
trace-preserving (CPT) map E . The simplest models for quan-
tum channels are memoryless; that is, the quantum operation
describing n channel uses is En = E⊗n. On the other hand,
real systems exhibit memory—or correlation—effects among
consecutive uses. Such effects become unavoidable when in-
creasing the transmission rate in quantum channels, as it can be
explored experimentally in optical fibers [14] or in solid-state
implementations of quantum hardware suffering from low-
frequency noise [15]. Quantum memory channels [16], i.e.,
En �= E⊗n, attracted increasing attention in the last years. Inter-
esting new features emerge in several models, including depo-
larizing channels [17,18], Pauli channels [19–21], dephasing

*adarrigo@dmfci.unict.it

channels [22–26], Gaussian channels [27], lossy bosonic
channels [28,29], spin chains [30], collision models [31],
complex network dynamics [32], and a micromaser model
[33]. In particular, phenomenological models with Markovian
correlated noise (see, e.g., [17,19,20,22–24,34–36]) show that
the transmission of classical information can be enhanced by
employing maximally entangled rather than separable states
as information carriers [17,19,20]. Furthermore, memory can
enhance the quantum capacity of a channel, as shown for a
Markov-chain dephasing channel, whose quantum capacity
can be analytically computed [23,24]. The main difficulty in
the calculation of quantum channel capacities resides in the
fact that, due to the superadditivity property of the related
entropic quantities [8,37], maximization is requested over all
possible n-use input states in the limit n → ∞. For this reason,
so far only a few memory-channel models have been fully
solved in terms of their capacities [23,24,29].

In this paper, we extend the class of solved quantum
channels to systems with damping, by considering a two-qubit
amplitude damping channel Em with memory, in which the
relaxation processes from a qubit excited state towards the
ground state only occur simultaneously for the two qubits.
The channel is parametrized by η, which is the conditional
probability that the system, once it is found with the two
qubits both in their excited state, does not decay. This channel
is the fully correlated limit of the amplitude damping channel
with memory introduced in Ref. [38] and recently investigated
in Ref. [39]. For channel Em we compute the single-shot
capacity C1, that is, the classical capacity optimized over single
uses of the two-qubit channel, the quantum capacity Q, and
the entanglement-assisted classical capacity CE . In particular,
we show that the ensemble optimizing the capacity C1 must
contain entangled two-qubit input states.

The paper is organized as follows. In Sec. II we first intro-
duce the channel model and describe the channel covariance
properties. In Sec. III, we discuss how to find the quantum
ensemble which maximizes the Holevo quantity, showing the
explicit form of such optimal ensemble. We derive the form of
the product state capacity C1 of Em and prove that entangled
states are necessary to achieve the capacity. We finally give
an analytical expression for C1. In Sec. IV we show that
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the channel is degradable when η is inside a given range;
we find the system density operator which maximizes the
coherent information, and we determine the quantum capacity
of Em for all possible values of η. In Sec. V we derive
the entanglement-assisted channel capacity and we finally
summarize the main results in Sec. VI.

II. THE MODEL

We first briefly review the memoryless amplitude damping
channel (ad) [2,3], which acts on a generic single-qubit state
ρ as

ρ → ρ ′ = E1(ρ) =
∑

i∈{0,1}
Ei ρ E

†
i , (1)

where the Kraus operators Ei are given by

E0 =
(

1 0

0
√

η

)
, E1 =

(
0

√
1 − η

0 0

)
. (2)

Here we are using the orthonormal basis {|0〉,|1〉} (σz =
|0〉〈0| − |1〉〈1|). This channel describes relaxation processes,
such as spontaneous emission of an atom, in which the system
decays from the excited state |1〉 to the ground state |0〉. The
channel acts as follows on a generic single-qubit state:

ρ =
(

1 − p γ

γ ∗ p

)
→ ρ ′

= E(ρ) =
(

1 − η p
√

η γ√
η γ ∗ η p

)
. (3)

Note that the noise parameter η (0 � η � 1) plays the role of
channel transmissivity. Indeed, for η = 1 we have a noiseless
channel, whereas for η = 0 the channel cannot carry any
information since for any possible input we always obtain
the same output state |0〉.

For two channel uses, a memory amplitude damping
channel was introduced in Ref. [38]:

ρ → ρ ′ = E(ρ) = (1 − μ)E⊗2
1 (ρ) + μEm(ρ). (4)

Here ρ is a generic two-qubit input state, and μ (0 � μ� 1) is
the memory parameter: The memoryless channel is recovered
when μ = 0, while for μ = 1 we obtain the “full memory”
amplitude damping channel Em. In Em the relaxation phe-
nomena are fully correlated. In other words, when a qubit
undergoes a relaxation process, the other qubit does the same;
see Fig. 1. In this way only the state |11〉 ≡ |1〉 ⊗ |1〉 can decay,
while the other states |ij〉 ≡ |i〉 ⊗ |j 〉, i,j ∈ {0,1}, ij �= 11,

| 01

| 00

| 11

| 10

| 00

| 11

| 01 | 10

(a) (b)

FIG. 1. (Color online) Simple sketch of the relaxation mech-
anisms in the channels E⊗2

1 (a) and Em (b). In the memoryless
setting E⊗2

1 relaxation is allowed from any level. In the full memory,
relaxation phenomena in the two qubits are fully correlated, and
relaxation is allowed only from |11〉.

are noiseless. In the Kraus formalism we have that

ρ → ρ ′ = Em(ρ) =
∑

i

Bi ρ B
†
i , (5)

with the Kraus operators

B0 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0
√

η

⎞
⎟⎟⎟⎠ ,

(6)

B1 =

⎛
⎜⎜⎜⎝

0 0 0
√

1 − η

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ .

In this paper we focus on the fully correlated channel Em, for
which we will compute analytically the single-shot classical
capacity C1, the quantum capacity Q, and the entanglement-
assisted classical capacity CE .

A. Channel properties

In this section, we discuss the covariance properties of
channel Em, from which the properties of general channel can
be derived, with respect to some unitary transformations. We
first consider the following ones:

R1 = σz ⊗ 11, R2 = 11 ⊗ σz, R3 = σz ⊗ σz. (7)

The Kraus operator B0 commutes with each Ri , since B0 and
Ri have a diagonal form: B0Ri = RiB0. The operator B1

commutes with R3 and anticommutes with R1 and R2:

R1B1 = −B1R1, R2B1 = −B1R2,
(8)

R3B1 = B1R3.

The channel is covariant with respect to the unitaries Ri ,
namely,

Em(Ri ρ Ri) = Ri Em(ρ)Ri . (9)

Actually, we can see that

Em(R1 ρ R1) = B0R1ρR1B
†
0 + B1R1ρR1B

†
1

= R1B0ρB
†
0R1 + (−R1B1)ρ(−B

†
1R1)

= R1(B0ρB
†
0 + B1ρB

†
1)R1

= R1 Em(ρ)R1, (10)

where we used B
†
0 = B0 and R1B

†
1 = (B1R1)† =

(−R1B1)† = −B
†
1R1. Covariance under R2 can be proved

in the same way. Since R3 commutes with both B0 and B1,
covariance of the channel under R3 follows trivially.

Finally, we consider the SWAP operation,

Sw ≡ |00〉〈00| + |01〉〈10| + |10〉〈01| + |11〉〈11|. (11)

The action of this gate is to transform the state |01〉 into |10〉,
and vice versa, while it leaves unchanged the states |00〉 and
|11〉. From the structure of the operators (6), it is immediate
to verify that Sw commutes with B0 and B1. Therefore, the
channel Em is covariant with respect to Sw, namely,

Em(Sw ρ Sw) = Sw Em(ρ)Sw. (12)
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III. CLASSICAL CAPACITY

The classical capacity C of a quantum channel concerns
the ability of the channel to convey classical information. It
measures the maximum amount of classical information that
can be reliably transmitted down the channel per channel use.
In computing the classical capacity, the full optimization over
all entangled uses is generally required. In this section, we
address the problem of finding the capacity C1 [2] of the fully
correlated channel Em. To do this we have to to maximize the
so-called Holevo quantity χ [2,3,40] with respect to one use
of the channel Em. Given a quantum source {pα,ρα}, which
is described by the density operator ρ = ∑

α pαρα , we are
dealing with the optimization problem [4–6]

C1(Em) = max
{pα,ρα}

χ (Em,{pα,ρα}), (13)

where the quantity to be optimized is the Holevo quantity,
which is defined as

χ (Em,{pα,ρα}) ≡ S(Em(ρ)) −
∑

α

pαS(Em(ρα)), (14)

where S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy. The
first term in (14) is the channel output entropy of the quantum
source described by ρ, whereas the second term is the channel
average output entropy. Since for any ensemble of mixed states
one can find an ensemble of pure states described by same
density operator, and whose Holevo quantity (14) is at least as
large [5], in the following we only consider ensembles of pure
states {pk,|ψk〉}:

C1(Em) = max
{pk,|ψk〉}

χ (Em,{pk,|ψk〉}), (15)

χ (Em,{pk,|ψk〉}) = S(Em(ρ)) −
∑

k

pkS(Em(|ψk〉〈ψk|)),

(16)

where now ρ = ∑
k pk|ψk〉〈ψk|.

A. Searching for ensembles that maximize χ

In this section, we use the channel covariance properties
discussed in Sec. II to find the form of the ensembles {pk,|ψk〉}
solving the maximization problems (15) and (16). We proceed
along three steps: steps I and II exploit the covariance
properties of channel Em, while step III uses the specific
structure of the eigenvalues of the output states. Finally in
step IV, we give the form of the optimal ensemble and the
expression of the corresponding Holevo quantity.

1. Step I: Exploiting channel covariance with respect
to the operations Ri

Given a generic ensemble {pk,|ψk〉}, we build a new
ensemble by replacing each state |ψk〉 in {pk,|ψk〉} with the
set

{|ψk〉,R1|ψk〉,R2|ψk〉,R3|ψk〉},
each state occurring with probability p̃k = pk/4 [41]. We
refer to this new ensemble as {p̃k,|ψ̃k〉}, and call ρ̃ =

∑
k p̃k|ψ̃k〉〈ψ̃k| the associated density operator:

ρ̃ =
∑

k

pk

4

(
|ψk〉〈ψk| +

3∑
i=1

Ri |ψk〉〈ψk|Ri

)

= 1

4

(
ρ +

3∑
i=1

RiρRi

)
. (17)

It can be verified that ρ̃ has the same diagonal elements of ρ,
with all vanishing off-diagonal entries.

We now show that

χ (Em,{p̃k,|ψ̃k〉}) � χ (Em,{pk,|ψk〉}). (18)

To this end we first notice that

S(Em(|ψ̃k〉〈ψ̃k|)) = S(Em(Ri |ψk〉〈ψk|Ri))

= S(Ri Em(|ψk〉〈ψk|)Ri)

= S(Em(|ψk〉〈ψk|)), (19)

where we used Eq. (9) and the fact that a unitary operation does
not change the von Neumann entropy. Therefore, by replacing
the old ensemble with the new one, the second term in the
Holevo quantity (16) does not change:∑

k

p̃kS(Em(|ψ̃k〉〈ψ̃k|)) = 4
∑

k

pk

4
S(Em(|ψk〉〈ψk|))

=
∑

k

pkS(Em(|ψk〉〈ψk|)). (20)

For the output entropy related to ρ̃ we find

S(Em(ρ̃)) = S

(
Em

(
1

4
ρ + 1

4

3∑
i=1

RiρRi

))

= S

(
1

4
Em(ρ) + 1

4

3∑
i=1

Em(RiρRi)

)

� 1

4
S (Em(ρ)) + 1

4

3∑
i=1

S (Em(RiρRi))

= S(Em(ρ)), (21)

where we have used the linearity of Em, the concavity of von
Neumann entropy [2], and Eq. (19).

Relations (20) and (21) prove the inequality (18), and we
can summarize the conclusions as follows: For any ensemble
of pure states we can find another ensemble, whose density
matrix has the same diagonal, with zero off-diagonal entries,
and whose Holevo quantity is at least as large. In the following,
we work with ensembles {p̃k,|ψ̃k〉}; we omit the tilde hereafter.

To fix the notation, we introduce the expression of the
generic input state in {pk,|ψk〉},

|ψk〉 = ak|00〉 + bk|01〉 + ck|10〉 + dk|11〉, (22)

where ak, bk, ck, dk ∈ C and |ak|2 + |bk|2 + |ck|2 + |dk|2 = 1.
The corresponding density matrix is given by

ρ =
∑

k

pk|ψk〉〈ψk| =

⎛
⎜⎜⎜⎝

α 0 0 0

0 β 0 0

0 0 γ 0

0 0 0 δ

⎞
⎟⎟⎟⎠ , (23)
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where

α =
∑

k

pk|ak|2, β =
∑

k

pk|bk|2, γ =
∑

k

pk|ck|2,
(24)

δ =
∑

k

pk|dk|2 = 1 − α − β − γ.

2. Step II: Exploiting channel covariance
with respect to the SWAP operation

Starting from any ensemble {pk,|ψk〉} defined in Eqs. (22)
and (23), we can generate another ensemble by replacing each
state |ψk〉 with the couple of states {|ψk〉,Sw|ψk〉}, each one
occurring with probability pk/2. The state Sw|ψk〉 is obtained
from |ψk〉 by exchanging the coefficients bk and ck in Eq. (22).
We call this new ensemble {p̃k,|ψ̃k〉} and ρ̃ the corresponding
density operator:

ρ̃ = 1

2

∑
k

pk |ψk〉〈ψk| + 1

2

∑
k

pk Sw|ψk〉〈ψk|Sw

= 1

2
ρ + 1

2
SwρSw = 1

2
ρ + 1

2
ρ(β ↔ γ ). (25)

Again, the ensemble {p̃k,|ψ̃k〉} has a Holevo quantity χ at
least as large as that of the parent ensemble {pk,|ψk〉}.

To prove this we first observe that the second term of χ

Eq. (16) does not change,∑
k

p̃kS(Em(|ψ̃k〉〈ψ̃k|)) = 1

2

∑
k

pkS(Em(|ψk〉〈ψk|))

+ 1

2

∑
k

pkS(Em(Sw|ψk〉〈ψk|Sw))

=
∑

k

pkS(Em(|ψk〉〈ψk|)), (26)

where we have used (12). Then for the first term we find

S(Em(ρ̃)) = S
(
Em

(
1
2ρ + 1

2SwρSw
))

= S
( 1

2Em(ρ) + 1
2Em(SwρSw)

)
� 1

2S(Em(ρ)) + 1
2S(Em(SwρSw))

= 1
2S(Em(ρ)) + 1

2S(SwEm(ρ)Sw)

= S(Em(ρ)), (27)

where we have used arguments similar to those exploited
in deriving (21), together with the covariance property (12).
Relations (26) and (27) prove the upper bound provided by
χ (Em,{p̃k,|ψ̃k〉}).

3. Step III: Exploiting the structure of the output state eigenvalues

When the channel Em acts on the generic state (22), it yields
an output given by

ρ ′
k =

⎛
⎜⎜⎜⎝

|ak|2 + (1 − η)|dk|2 akb
∗
k akc

∗
k

√
ηakd

∗
k

a∗
k bk |bk|2 bkc

∗
k

√
ηbkd

∗
k

a∗
k ck b∗

kck |ck|2 √
ηckd

∗
k√

ηa∗
k dk

√
ηb∗

kdk
√

ηc∗
kdk η|dk|2

⎞
⎟⎟⎟⎠ .

(28)

The above density operator has at least two zero eigenvalues,
due to the fact that the channel Em has a noiseless subspace
span{|01〉,|10〉} which does not mix with the other subspace
span{|00〉,|11〉}. The remaining two eigenvalues are given by

lk± = 1
2

(
1 ±

√
1 − z2

k

)
,

z2
k = 1 − {|ak|4 + 2|ak|2(|bk|2 + |ck|2 + |dk|2)

+ [|bk|2 + |ck|2 − |dk|2(1 − 2η)]2}. (29)

Since lk± do not depend on the phase of ak, bk, ck, dk , we can
assume without loss of generality that these coefficients are
real. From (29) the average output entropy is found∑

k

pkS(Em(|ψk〉〈ψk|)) =
∑

k

pkH2(lk), (30)

where H2(x) = −x log2(x) − (1 − x) log2(1 − x) is the Shan-
non binary entropy.

Starting from the mixed state (23) the map produces

ρ ′ = Em(ρ) =

⎛
⎜⎜⎜⎝

α + (1 − η)δ 0 0 0

0 β 0 0

0 0 γ 0

0 0 0 ηδ

⎞
⎟⎟⎟⎠ , (31)

and therefore the output entropy is given by

S(Em(ρ)) = −[α + (1 − η)δ] log2[α + (1 − η)δ]

−β log2(β) − γ log2(γ ) − ηδ log2(ηδ). (32)

We now modify the ensemble {p̃k,|ψ̃k〉} introduced in
Sec. III A2, by replacing the coefficients bk and ck in each
state |ψ̃k〉 with bk and ck , where bk = ± ck =

√
(b2

k + c2
k)/2.

We call this new ensemble {pk,|ψk〉} and the corresponding
density operator ρ̄, which is the same as ρ̃. Indeed,

ρ =
∑

k

pk|ψk〉〈ψk|

=

⎛
⎜⎜⎜⎜⎝

∑
k p̃ka

2
k 0 0 0

0
∑

k p̃kb
2
k 0 0

0 0
∑

k p̃kc
2
k 0

0 0 0
∑

k p̃kd
2
k

⎞
⎟⎟⎟⎟⎠

=
∑

k

pk

2

⎛
⎜⎜⎜⎝

2a2
k 0 0 0

0 b2
k + c2

k 0 0

0 0 b2
k + c2

k 0

0 0 0 2d2
k

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

α 0 0 0

0 1
2 (β + γ ) 0 0

0 0 1
2 (β + γ ) 0

0 0 0 δ

⎞
⎟⎟⎟⎠

= 1

2
ρ + 1

2
ρ(β ↔ γ ) = ρ̃, (33)

where we have used relations (24). The third equality comes
from the fact that for any state |ψ̃k〉 there is another one with the
same occurrence probability p̃k = pk/2, which has the same
ak,dk , but with bk exchanged with ck . It follows that the first
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term of the Holevo quantity is unchanged. This is true also for
the second term. For {pk,|ψk〉} it reads

∑
k

pkS(Em(|ψk〉〈ψk|)) =
∑

k

p̃kH2(l′k) (34)

and the new eigenvalues l′k are identical to the lk± in Eq. (29),
since for real coefficients, they both depend on on the com-
bination b2

k + c2
k , which is unaffected by the transformation

bk → bk,ck → ck .
Therefore the ensemble {pk,|ψk〉} produces the same

Holevo quantity of {p̃k,|ψ̃k〉} of Sec. III A2 [as Eqs. (33) and
(34) show], but has the advantage of a simpler structure of the
states in the ensemble.

4. Step IV: Optimal ensemble and the corresponding
Holevo quantity

The chain of relations obtained up to here proves that the
ensemble {p̄k,|ψ̄k〉} makes it possible to achieve an upper
bound for the Holevo quantity of a generic ensemble {pα,ρα}.
Indeed, {p̄k,|ψ̄k〉} belongs to the original ensemble {pα,ρα},
the maximization of the Holevo quantity for the former
ensemble also yields the maximum over the whole set of
{pα,ρα}.

Summing up and simplifying the notation, we then have to
explore ensembles {pk,|ψk〉} (k ∈ {1,2, . . . ,N}), where states
have the form

|ψk〉 = ak|00〉 + bk|01〉 ± bk|10〉 + dk|11〉, (35)

with real ak,bk,dk (a2
k + 2b2

k + d2
k = 1). The density matrix of

such ensemble has the form

ρ =

⎛
⎜⎜⎜⎝

α 0 0 0

0 β 0 0

0 0 β 0

0 0 0 δ

⎞
⎟⎟⎟⎠ , (36)

where

α =
∑

k

pka
2
k , β =

∑
k

pkb
2
k,

(37)
δ =

∑
k

pkd
2
k = 1 − α − 2β.

The output entropy is given by

S(Em(ρ)) = −[α + (1 − η)δ] log2[α + (1 − η)δ]

− 2β log2(β) − ηδ log2(ηδ). (38)

The average output entropy reads

∑
k

pkH2
[

1
2

(
1 +

√
1 − z2

k

)]
, (39)

where

z2
k = 4d2

k (1 − η)
(
2b2

k + ηd2
k

)
. (40)

Finally, the Holevo quantity (16) is given by

χ (Em,{pk,|ψk〉})
= −[α + (1 − η)δ] log2[α + (1 − η)δ]

− 2β log2(β) − ηδ log2(ηδ)

−
∑

k

pkH2

{
1

2

[
1 +

√
1 − 4d2

k (1 − η)
(
2b2

k + ηd2
k

)]}
.

(41)

In the following sections we compute the maximum of χ over
two-qubit states, i.e., for single-use input states belonging to
the class (35) and (36), thus deriving the classical capacity C1

for the channel Em.

B. A lower bound for C1

In order to find a lower bound for C1, it is sufficient to
compute the Holevo quantity (41) for an arbitrary ensemble.
We choose ensembles of the special form

{pk,|ψk〉} = {pϕk,|ϕk〉} ∪ {pφk,|φk〉}, (42)

where
∑

k(pϕk + pφk) = 1, and such that |ϕk〉 ∈
span{|01〉,|10〉}, whereas |φk〉 ∈ span{|00〉,|11〉}.

From (28) it is clear that the transmission of the states |ϕk〉
is noiseless [S(Em(|ϕk〉〈ϕk|)) = 0], so that∑

k

pkS(Em(|ψk〉〈ψk|)) =
∑

k

pφkS(Em(|φk〉〈φk|)). (43)

It is worth noting that, since the subspace spanned by |01〉
and |10〉 is noiseless for the channel Em, we can choose for
the subensemble {pϕk,|ϕk〉} any pair of mutually orthogonal
states:{

pϕ+ = β, |ϕ+〉 = cos θ |01〉 + sin θ |10〉,
pϕ− = pϕ+, |ϕ−〉 = sin θ |01〉 − cos θ |10〉. (44)

With this notation, the subensemble of separable states
{(β,|01〉),(β,|10〉)} and the subensemble of maximally entan-
gled states {β, 1√

2
(|01〉 ± |10〉} are recovered when θ = 0 and

θ = π/4, respectively. All values of θ give the same contribu-
tion −2β log2(β) to the Holevo quantity (41). Therefore, as far
as we consider ensembles (42), there is no advantage in using
entangled input states of span{|01〉, |10〉}.

With regard to the subensemble {pφk,|φk〉}, it is inter-
esting to examine two instances. First we choose a set of
product states {(α,|00〉),(δ,|11〉)}, calling A the corresponding
ensemble. In this case we obtain∑

k

pφkS(Em(|φk〉〈φk|))

= αS(Em(|00〉〈00|)) + δ S(Em(|11〉〈11|))
= δ H2(η), (45)

since from (28) it turns out that Em(|00〉〈00|) = |00〉〈00|
and Em(|11〉〈11|) = (1 − η)|00〉〈00| + η|11〉〈11|. The Holevo
quantity (41) relative to the ensemble A is

χ (Em,A) = −[α + (1 − η)δ] log2[α + (1 − η)δ]

− 2β log2(β) − ηδ log2(ηδ) − δH2(η), (46)
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so that a lower bound to C1 is provided by

χ
(lb)
1 = max

α,β,δ
χ (Em,A), (47)

with α,β,δ real and α + 2β + δ = 1.
Second, for the subensemble {pφk,|φk〉} we choose a set of

entangled states,

pφ± = α + δ

2
, |φ±〉 =

√
α

α + δ
|00〉 ±

√
δ

α + δ
|11〉, (48)

calling B the corresponding ensemble, for which we have∑
k

pφkS(Em(|φk〉〈φk|))

= (α + δ)H2

{
1

2

[
1 +

√
1 − 4η(1 − η)

(
δ

α + δ

)2]}
, (49)

as the output states generated by Em from the input states (48)
have the same entropy; see Eq. (29). The Holevo quantity (41)
relative to the ensemble B is

χ (Em,B) = −[α + (1 − η)δ] log2[α + (1 − η)δ]

− 2β log2(β) − ηδ log2(ηδ) − (α + δ) ×

H2

{
1

2

[
1 +

√
1 − 4η(1 − η)

(
δ

α + δ

)2]}
, (50)

yielding the lower bound for C1 given by

χ
(lb)
2 = max

α,β,δ
χ (Em,B), (51)

We plot the bounds (47) and (51) in Fig. 2. Ensemble
B (thick curve in the figure) always produces a better
performance than ensemble A (thin curve). This result is a first
hint that entangled input states may be useful to improve the

0 0.2 0.4 0.6 0.8 1
η

1.5

1.6

1.7

1.8

1.9

2

χ(
lb
)

FIG. 2. (Color online) Maximum (obtained via numerical opti-
mization) Holevo quantity relative to the ensemblesA (thin red curve)
and B (thick blue curve) as a function of the channel transmissivity η.
In the first case, we obtain the lower bound χ

(lb)
1 (47) to the capacity

C1, in the second the lower bound χ
(lb)
2 (51). We also plot the trivial

lower bound log2 3 (dashed line).

channel capability to convey classical information. Moreover,
the classical capacity ofEm is at least equal to log2(3), reflecting
the fact that in the worst case (η = 0) there are three states
allowing for noiseless transmission: |00〉,|01〉,|10〉. The lower
bound log2(3) is found by using them to encode three classical
symbols, each one occurring with the same probability 1/3.

C. The C1 capacity of Em

Now we are ready to find the optimal ensemble, whose
maximum Holevo quantity gives the C1 classical capacity of
Em. To this end, we consider a generic ensemble {pk,|ψk〉}
belonging to the class (35) and (36), and we replace each state
|ψk〉 and its occurrence probability pk in this ensemble with

pk,|ψk〉 →
⎧⎨
⎩

pφk = pk(a2
k +d2

k )
2 , |φk±〉 = ak√

a2
k+d2

k

|00〉 ± dk√
a2

k +d2
k

|11〉,

pϕk = pkb
2
k, |ϕk±〉 = 1√

2
(|01〉 ± eπik/N |10〉),

(52)

where the index k ranges in {1,N}. We call {p̃k,|ψ̃k〉} the new ensemble. It is straightforward to prove that the density matrix
of the new ensemble is equal to that of the old ensemble (35) and (36), and therefore the output entropy is unchanged:
S(Em(

∑
k p̃k|ψ̃k〉〈ψ̃k|)) = S(Em(

∑
k pk|ψk〉〈ψk|)).

With regards to the second term of the Holevo quantity, we notice that the states |ϕk±〉 in (52) do not contribute to the average
output entropy: S(Em(|ϕk±〉〈ϕk±|)) = 0. Therefore, the average entropy for the new ensemble is∑

k

p̃kS(Em(|ψ̃k〉〈ψ̃k|)) =
∑

k

pφk[S(Em(|φk+〉〈φk+|)) + S(Em(|φk−〉〈φk−|))]

= 2
∑

k

pφkS(Em(|φk+〉〈φk+|)) =
∑

k

pk

(
a2

k + d2
k

)
H2

{
1

2

[
1 +

√
1 − 4η(1 − η)

(
d2

k

a2
k + d2

k

)2]}
, (53)

where we have used the fact that the states Em(|φk±〉〈φk±|) have the same entropy [see Eq. (29)]. In order to assert that the new
ensemble {p̃k,|ψ̃k〉} produces a greater Holevo quantity (16) than the one produced by {pk,|ψk〉} we have to prove that

∑
k

pkH2

{
1

2

[
1 +

√
1 − 4(1 − η)d2

k

(
2b2

k + ηd2
k

)]}
�
∑

k

pk

(
a2

k + d2
k

)
H2

{
1

2

[
1 +

√√√√1 − 4η(1 − η)
d4

k(
a2

k + d2
k

)2

]}
, (54)

the left-hand side of (54) being the last term in (41). A sufficient condition for the validity of inequality (54) is that the inequality

H2

{
1

2

[
1 +

√
1 − 4(1 − η)d2

k

(
2b2

k + ηd2
k

)]}
�
(
a2

k + d2
k

)
H2

{
1

2

[
1 +

√√√√1 − 4η(1 − η)
d4

k(
a2

k + d2
k

)2

]}
(55)
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holds true for any admissible value of ak, bk, dk , and η. We checked it numerically and it turns out that this inequality holds;
moreover, it is tight except for η = 1, or b = 0, or d = 0.

By summarizing the above results, we can state that for any ensemble {pk,|ψk〉}, we can find a new one {p̃k,|ψ̃k〉} of the form
(52), whose Holevo quantity is at least as great. For this new ensemble the output entropy is given by (38), whereas the average
output entropy is given by (53).

We can now find an upper bound to the Holevo quantity of ensemble (52) by considering its average output entropy (53), and
by taking advantage of the convexity of the function H2[ 1

2 (1 + √
1 − x2)] [42] with respect to x:

∑
k

pk

(
a2

k + d2
k

)
H2

{
1

2

[
1 +

√
1 − 4η(1 − η)

(
d2

k

a2
k + d2

k

)2]}

� (α + δ)H2

⎧⎪⎨
⎪⎩

1

2

⎡
⎢⎣1 +

√√√√1 − 4η(1 − η)

(∑
k

pk

a2
k + d2

k

α + δ

d2
k

a2
k + d2

k

)2
⎤
⎥⎦
⎫⎪⎬
⎪⎭

= (α + δ)H2

{
1

2

[
1 +

√
1 − 4η(1 − η)

(
δ

α + δ

)2]}
. (56)

The Holevo quantity of the ensemble (52) is thus upper bounded by

χ∗ = max
α,β,δ

(
−[α + (1 − η)δ] log2[α + (1 − η)δ] − 2β log2(β) − ηδ log2(ηδ)

− (α + δ)H2

{
1

2

[
1 +

√
1 − 4η(1 − η)

(
δ

α + δ

)2]})
, (57)

This is precisely the Holevo quantity achievable by ensemble
B, Sec. III B Eqs. (50) and (51); therefore, we conclude that
(57) gives the C1 classical capacity of Em. In Fig. 3 we plot the
values of the coefficients α,β,δ, which give the maximum of
the Holevo quantity for ensemble B, whereas the plot of C1 as
a function of η is just given by the thick curve of Fig. 2.

It is worth noting that for η = 0, the maximization problem
(57) does not admit a unique solution for the coefficients
α and δ; indeed, in this case, the channel deterministically
transforms |11〉 into |00〉, so that any state

√
α/(α + δ)|00〉 +√

δ/(α + δ)|11〉 is mapped into |00〉. To obtain the maximum
of the Holevo quantity (which in this case equals log2 3), we
can arbitrarily choose α and δ, provided that α + δ = 1/3.
For a noiseless channel (η = 1), Fig. 3 shows that the optimal

0 0.2 0.4 0.6 0.8 1
η

0.1

0.15

0.2

0.25

0.3

0.35
α
β
δ

FIG. 3. (Color online) Coefficients α (thin red curve), β (dashed
curve), and δ (thick blue curve) maximizing the Holevo quantity, plot-
ted as functions of η. Such coefficients are obtained by numerically
solving the optimization problem (57).

coefficients are α = β = δ = 1
4 ; it means that ensemble B

reduces to four orthogonal states, one pair inside the subspace
span{|01〉,|10〉}, the other inside the subspace span{|00〉,|11〉},
each state occurring with equal probability 1

4 .

D. Is entanglement necessary to achieve C1?

It is worth noting that the ensemble B, making it possible to
reach C1, contains entangled states in the subspace {|00〉,|11〉}.
This raises the following question: Is entanglement a necessary
ingredient to achieve the channel capacity C1? In Appendix A
we show that the answer is positive. In particular, we show
that for any 0 < η < 1, only the use of entangled states makes
it possible to achieve C1 and the optimal ensemble is of the
form ⎧⎪⎨

⎪⎩
p± = α+δ

2 , |φ±〉 =
√

α
α+δ

|00〉 ±
√

δ
α+δ

|11〉,
p0 = β, |ϕ0〉 = |01〉,
p1 = β, |ϕ1〉 = |10〉.

(58)

One can ask how much entanglement is needed in order
to achieve this bound. We can answer this question for the
above ensemble. It is clear that we really need entanglement
only inside the subspace spanned by {|00〉, |11〉}. In Fig. 4
we plot the entropy of entanglement Eφ , defined as the von
Neumann entropy of one of the two reduced states, obtained
after tracing over one of the two qubits: Eφ = S(ρ1) = S(ρ2),
with ρ1(2) = Tr2(1)(|φ±〉〈φ±|). Eφ quantifies the entanglement
content of the states |φ±〉 in the ensemble B; see (48). The
average entanglement required is given by Eφ = (α + δ)Eφ ,
since we really need entanglement only when we use a state
inside the subspace spanned by {|00〉,|11〉}, which happens
with probability α + δ.
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FIG. 4. (Color online) Entanglement Eφ (thin red curve) of the
pure states |φ±〉 in the ensemble B and average entanglement Eφ =
(α + δ)Eφ (thick blue curve) as a function of the transmissivity η. The
values of α,β,δ are those ones solving the maximization problem (57).

E. An explicit formula for C1

The form of the ensemble (52), which allows us to maximize
the Holevo quantity of channel Em, tells us that we can view
our memory channel as composed of two distinct and parallel
channels acting on two orthogonal subspaces of the four-
dimensional Hilbert space of the two-qubit system: a noiseless
channel inside the subspace spanned by {|10〉,|01〉} and a
memoryless amplitude damping channel inside the subspace
spanned by {|00〉,|11〉}. We denote these two channels as Eϕ

and Eφ , respectively. In other words, we have proved that,
for the fully correlated amplitude damping channel Em, the
channel capacity C1 is obtained without involving any coherent
superposition of states from these two different subspaces. This
makes it possible to analytically carry out the optimization
(57). Indeed, we can write

C1(Em) = max
{pk,ρk}

χ (Em,{pk,ρk})
= max

{pφk,ρφk}∪{pϕk,ρϕk}
χ (Em,{pk,ρk}), (59)

where ρφk is a generic state inside the subspace {|00〉,|11〉},
whereas ρϕk is a generic state inside the subspace {|01〉,|10〉}.
Now we call p = ∑

k pφk , and consequently we have that∑
k pϕk = 1 − p. We can then write

ρ =
∑

k

pkρk

=
∑

k

pφk ρφk +
∑

k

pϕk ρϕk

= p
∑

k

pφk∑
k′ pφk′

ρφk + (1 − p)
∑

k

pϕk∑
k′ pϕk′

ρϕk′

= p
∑

k

p̃φk ρφk + (1 − p)
∑

k

p̃ϕk ρϕk

= p ρφ + (1 − p) ρϕ, (60)

where we have set

p̃φk ≡ pφk∑
k′ pφk′

, ρφ ≡
∑

k

p̃φk ρφk,

(61)
p̃ϕk ≡ pϕk∑

k′ pϕk′
, ρϕ ≡

∑
k

p̃ϕk ρϕk.

Note that Tr[ρφ] = Tr[ρϕ] = 1. The first term of the Holevo
quantity (59) is given by

S

(
Em

(∑
k

pkρk

))

= S(p Em(ρφ) + (1 − p) Em(ρϕ))

= H2(p) + p S(Em(ρφ)) + (1 − p) S(Em(ρϕ))

= H2(p) + p S

(
Em

(∑
k

p̃φk ρφk

))

+ (1 − p) S

(
Em

(∑
k

p̃ϕk ρϕk

))
, (62)

where the second equality is due to the fact that the two output
states in the above equation are supported on orthogonal sub-
spaces and can therefore be independently and simultaneously
diagonalized. Now we turn to the second term of the Holevo
quantity, namely,∑

k

pkS (Em(ρk))

=
∑

k

pφkS(Eφ(ρφk)) +
∑

k

pϕkS(Eϕ(ρϕk))

= p
∑

k

p̃φkS(Eφ(ρφk)) + (1 − p)
∑

k

p̃ϕkS(Eϕ(ρϕk)),

(63)

where we have used the quantities defined in (61). From (62)
and (63) we obtain

χ (Em,{pk,ρk}) = H2(p) + p χφ({p̃φk,ρφk})
+ (1 − p) χϕ({p̃ϕk,ρϕk}), (64)

where we have defined

χφ({p̃φk,ρφk}) ≡ χ (Eφ,{p̃φk,ρφk}),
(65)

χϕ({p̃ϕk,ρϕk}) ≡ χ (Eϕ,{p̃ϕk,ρϕk}).
The maximization problem (59) is therefore equivalent to

C1(Em) = max
{pk,ρk}

χ (Em,{pk,ρk})
= max

{pφk,ρφk},{pϕk,ρϕk}
[H2(p) + p χφ({p̃φk,ρφk})

+ (1 − p) χϕ({p̃ϕk,ρϕk})]
= max

p∈[0,1]

[
H2(p) + p max

{p̃φk,ρφk}
χφ({p̃φk,ρφk})

+ (1 − p) max
{p̃ϕk,ρϕk}

χϕ({p̃ϕk,ρϕk})
]

= max
p∈[0,1]

[
H2(p) + p Cφ1 + (1 − p) Cϕ1

]
, (66)

where Cφ1 and Cϕ1 are, respectively, the classical product state
capacity,

Cφ1 = max
{p̃φk,ρφk}

χ ({p̃φk,ρφk}), (67)

Cϕ1 = max
{p̃ϕk,ρϕk}

χ (Em,{p̃ϕk,ρϕk}). (68)

The maximization (66) over p can then be simply achieved
by studying the first derivative of G(p) ≡ H2(p) + p Cφ1 +
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(1 − p) Cϕ1 with respect to p:

∂G(p)

∂p
= log2

1 − p

p
+ Cφ1 − Cϕ1 . (69)

A maximum is found for

popt = 1

1 + 2Cϕ1 −Cφ1
= 1

1 + 21−Cad,1
, (70)

since Cϕ1 = 1 and Cφ1 is the product state capacity Cad,1 of
the memoryless amplitude damping channel (1) [42], which is
given by

Cad,1 = max
p1∈[0,1]

(
H2(ηp1) − H2

{
1
2

[
1 +

√
1 − 4η(1 − η)p2

1

]})
.

(71)

It is worth noting that the optimal value of p1 in (71) also
gives the population of the single-qubit state |1〉, in the density
operator describing the ensemble which maximizes the single-
use (and single-qubit) Holevo quantity for the memoryless
amplitude damping channel [42].

We can conclude that the C1 capacity of the memory
channel Em is

C1(Em) = 1 + H2(popt) − popt (1 − Cad,1). (72)

Equation (72) provides an explicit solution to (57), once Cad,1

is known. In Fig. 5 we show the optimal value popt as a function
of the channel transmissivity η. Note that the value of popt

tells us the weight of the subspace spanned by {|00〉,|11〉} in
achieving the C1 capacity of the channel Em. Let us consider
two limiting cases. As expected, for η = 0 we have that Cφ1 =
0 and therefore by (70) we find popt = 1/3, while for η = 1
we have that Cφ1 = 1 and popt = 1/2.

From the maximization procedure we depicted, it is clear
that the probability δ/(α + δ), which gives the population of
the state |11〉 in the density operator describing the optimal
ensemble, normalized by the probability that a state picked
up from this ensemble belongs to the subspace spanned
by {|00〉,|11〉}, is the same of the optimal p1 ensuring the
achievement of Cad,1 in (71) [see Eq. (67)].
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FIG. 5. (Color online) Plot of popt [Eq. (70)] as functions of η.

IV. QUANTUM CAPACITY

The quantum capacity Q concerns the channel ability to
convey quantum information. It can be computed as [7–9]

Q = lim
n→∞

Qn

n
, Qn = max

ρ(n)
Ic

(
E⊗n

m ,ρ(n)
)
, (73)

where ρ(n) is an input state for n channel uses and

Ic

(
E⊗n

m ,ρ(n)
) = S

(
E⊗n

m (ρ(n))
)− Se

(
E⊗n

m ,ρ(n)
)

(74)

is the coherent information [43]. Se(E⊗n
m ,ρ(n)) is the entropy

exchange [44], defined as

Se

(
E⊗n

m ,ρ(n)
) = S

[(
I ⊗ E⊗n

m

)
(|�〉〈�|)], (75)

where |�〉 is any purification of ρ(n). That is, we consider
the system S, described by the density operator ρ(n), as a
part of a larger quantum system RS; ρ = TrR|�〉〈�| and the
reference system R evolves trivially, according to the identity
superoperator I. Note that maximization (73) has to be carried
out with respect to a generic density operator ρ(n) belonging to
the Hilbert space relative to n uses of the channel Em (described
by the superoperator E⊗n

m ).

A. Quantum capacity for channel transmissivity 1
2 � η � 1

In order to proceed to the calculation of the quantum
capacity we use the fact that the channel Em is degradable
[45] for 1

2 � η � 1, as shown in Appendix B. Degradability
implies that regularization (73) is no longer necessary; i.e.,
the quantum capacity is given by the “single-letter” formula,
Q = Q1,

Q(Em) = max
ρ

Ic(Em,ρ), η ∈ [
1
2 ,1
]
, (76)

where ρ belongs to the Hilbert space relative to a single use of
channel Em.

The coherent information is given by

Ic(Em,ρ) = S(Em(ρ)) − Se(Em,ρ) = S(ρ ′) − S(ρE′
), (77)

where Se(Em,ρ) = S(ρE′
) is the entropy exchange related to

the channel [43]. Here ρ is a generic input state for the channel
Em, ρ ′ = Em(ρS) and ρE′

are given by (B4) and (B5), E being
a fictitious environment allowing for a unitary representation
of the map Em (see Appendix B).

Our goal is to find the class of input states which makes it
possible to solve problem (76), i.e., to maximize the coherent
information (77). To this end, we first notice that for any
two-qubit density operator ρ, we can build a diagonal density
operator as

ρ̃ = 1

4

(
ρ +

3∑
i=1

Ri ρRi

)
=

⎛
⎜⎜⎜⎝

α 0 0 0

0 β 0 0

0 0 γ 0

0 0 0 δ

⎞
⎟⎟⎟⎠ , (78)
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whose coherent information is at least as large as the one
related to ρ:

Ic(Em,ρ̃) = Ic

(
Em,

1

4

(
ρ +

3∑
i=1

RiρRi

))

� 1

4
Ic(Em,ρ) + 1

4

3∑
i=1

Ic(Em,RiρRi)

= 1

4
Ic(Em,ρ) + 1

4

3∑
i=1

S(Em(RiρRi))

− 1

4

3∑
i=1

Se(Em,RiρRi)

= Ic(Em,ρ). (79)

Here, the inequality derives from the fact that the coherent
information of a degradable channel is a concave function [46]
and we have used the covariance properties of the channel.
Finally, since Ri can only change the sign of coherences of the
input state, the von Neumann entropy of ρE′

does not change
when we replace ρ with RiρRi : Se(Em,RiρRi) = Se(Em,ρ),
as one can see by Eq. (B5).

Now we build a new state from ρ̃:

ρ = 1

2
ρ̃ + 1

2
Swρ̃Sw =

⎛
⎜⎜⎜⎝

α 0 0 0

0 β+γ

2 0 0

0 0 β+γ

2 0

0 0 0 δ

⎞
⎟⎟⎟⎠ . (80)

This new density operator exhibits a coherent information
greater than or equal to ρ̃, since

Ic(Em,ρ)

= Ic

(
Em, 1

2 ρ̃ + 1
2Swρ̃Sw

)
� 1

2Ic(Em,ρ̃) + 1
2Ic(Em,Swρ̃Sw)

= 1
2Ic(Em,ρ̃) + 1

2 [S(Em(Swρ̃Sw)) − Se(Em(Swρ̃Sw))]

= Ic(Em,ρ̃). (81)

In the above equation we have again exploited the concavity of
the coherent information for degradable channels in getting the
inequality; then we have used the covariance property (12). For
the entropy exchange we have Se(Em(Swρ̃Sw)) = Se(Em(ρ̃))
since it does not depend on β and γ [see Eq. (B5)].

We conclude that the quantum capacity (76) can be derived
by maximizing the coherent information with respect to the
diagonal state,

ρ =

⎛
⎜⎜⎜⎝

α 0 0 0

0 β 0 0

0 0 β 0

0 0 0 δ

⎞
⎟⎟⎟⎠ , (82)

since we have demonstrated that for each ρ we can construct a
density operator ρ̄ of the form (82) whose coherent information
is at least as great. Therefore, for η � 1

2 the quantum capacity

0 0.2 0.4 0.6 0.8 1
η

1.5

1.6

1.7

1.8

1.9

2

Q

FIG. 6. (Color online) Plot of the quantum capacity Q of Em as a
function of η. For η � 1/2, Q is given by the numerical solution of
the maximization task (83) (the searching step for α, β, δ is 10−4).
For η < 0.5 the quantum capacity turns out to be constant and equal
to log2 3.

is given by

Q(Em) = max
ρS

Ic(Em,ρS)

= max
ρS

{S(Em(ρS)) − Se(Em,ρS)}
= max

α,β,δ
{−[α + (1 − η)δ] log2[α + (1 − η)δ]

− 2β log2 β − ηδ log2 ηδ

+ [1 − (1 − η)δ] log2[1 − (1 − η)δ]

+ (1 − η)δ log2[(1 − η)δ]}, (83)

with the constraint α + 2β + δ = 1. In Fig. 6 we plot the
quantum capacity Q of the channel Em as a result of the
maximization problem (83), and in Fig. 7 we report the relative
populations of the input state (82). The results are displayed
for η ∈ [0,1], but we stress that (83) give us the quantum
capacity only for η ∈ [ 1

2 ,1]. Notice that the curve reported in
Fig. 6 is higher than the one derived in Ref. [39], where only
a particular class of product input states was considered.

0 0.2 0.4 0.6 0.8 1
η

0

0.1

0.2

0.3

0.4
α
β
δ

FIG. 7. (Color online) Plot of the coefficients α (thin curve), β

(dashed curve), and δ (thick curve) which (numerically) solve the
optimization problem (83), as functions of η.
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B. Quantum capacity for channel transmissivity 0 � η < 1
2

For η < 1/2, we cannot use the subadditivity argument
provided by degradability in order to find the channel quantum
capacity. However, we notice that Em has the property

Em,η2η1 = Em,η2 ◦ Em,η1 , (84)

where we have used Em,x to indicate a channel Em with
transmissivity x. Now we choose η1,η2 such that η1 = 1/2
and η2 ∈ [0,1[, then η2η1 ∈ [0,1/2[. By considering n channel
uses and applying the quantum data processing inequality [8],
we obtain

Ic

(
E⊗n

m,η2η1
,ρ(n)

)
� Ic

(
E⊗n

m, 1
2
,ρ(n)

)
, (85)

since E⊗n
m,η2η1

= E⊗n
m,η2

◦ E⊗n
m,η1

. Hence, for η < 1/2, the quantum
capacity is given by

Q(Em) = lim
n→∞ max

ρ(n)
Ic

(
E⊗n

m ,ρ(n)
)

� lim
n→∞ max

ρ(n)
Ic

(
E⊗n

m, 1
2
,ρS (n))

� max
ρ

Ic

(
Em, 1

2
,ρ
) = log2 3, (86)

where the second inequality holds since for η = 1/2 the
channel is degradable, whereas the last equality is numerically
provided by (83). It is easy to prove that log2(3) is also a
lower bound for the channel quantum capacity, since the three-
dimensional subspace spanned by {|00〉,|01〉,|10〉} is noiseless.
We can therefore conclude that, for η < 1/2, Q(Em) = log2 3.

V. ENTANGLEMENT-ASSISTED CLASSICAL CAPACITY

The entanglement-assisted classical capacity CE gives the
maximum amount of classical information that can be reliably
transmitted down the channel per channel use, provided the
sender and the receiver share infinite prior entanglement
resources. It can be computed as [11,12]

CE = max
ρ

I (Em,ρ), (87)

where the maximization is performed over the input state ρ

for a single use of the channel Em and

I (Em,ρ) = S(ρ) + Ic(Em,ρ) (88)

differs from the coherent information Ic, defined in Eq. (77),
by the addition of the input-state entropy S(ρ). Since S(ρ) =
S(ρR) and the reference system R evolves trivially, then

I (Em,ρ) = S(ρR) + S(Em(ρ)) − S[(I ⊗ Em)(|�〉〈�|)] (89)

is the output quantum mutual information [2] between the
system S and the reference system R. Note that, due to the
subadditivity of I [10], no regularization as in (73) is required
to obtain CE .

0 0.2 0.4 0.6 0.8 1
η

3.2

3.4

3.6

3.8

4

C
E

FIG. 8. (Color online) Plot of the entanglement-assisted capacity
CE of Em as a function of η. CE is obtained from the numerical
solution of the maximization task (90) (the searching step for α, β, δ

is 10−4). For η → 0, the entanglement-assisted capacity tends to the
value 2 log2 3.

A. Maximization of the quantum mutual information I(Em,ρ)

By following an argument similar to the one exploited in
deriving Eq. (83) for the quantum capacity, we obtain

CE(Em) = max
ρ

I (Em,ρ)

= max
ρ

{S (Em(ρ)) + Ic(Em,ρ)}
= max

α,β,δ
{−α log2 α − δ log2 δ

− [α + (1 − η)δ] log2[α + (1 − η)δ]

− 4β log2 β − ηδ log2 ηδ

+ [1 − (1 − η)δ] log2[1 − (1 − η)δ]

+ (1 − η)δ log2[(1 − η)δ]}, (90)

where the optimization is over a diagonal input state ρ of the
form (82) (with the constraint α + 2β + δ = 1). We plot the
entanglement-assisted classical capacity CE of the channel Em

as a result of the maximization problem (90) in Fig. 8 and the
relative populations of the optimal ensemble in Fig. 9.

Note that for η = 0 the entanglement-assisted classical
capacity is 2 log2 3, as it turns out from the optimization
problem (90); see Fig. 8. Indeed, in this case we have at our
disposal a noiseless subspace, spanned by {|00〉,|01〉,|10〉},

0 0.2 0.4 0.6 0.8 1
η

0

0.1

0.2

0.3

0.4
α
β
δ

FIG. 9. (Color online) Plot of the coefficients α (thin curve), β

(dashed curve), and δ (thick curve) which (numerically) solve the
optimization problem (90), as functions of η.
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of dimension d = 3. This means that we can use a quantum
superdense coding protocol (see Ref. [12]) in this subspace,
achieving a transmission rate of 2 log2 d bits per channel use.

VI. CONCLUSIONS

In this work we have studied the behavior of a fully
correlated amplitude damping channel for two qubits. We
assumed that relaxation processes in the two qubits are strongly
correlated, namely they only occur simultaneously for the two
qubits. We have considered three types of scenarios: the trans-
mission of classical information and of quantum information
and the use of the channel in an entanglement-assisted fashion.
We have derived the corresponding capacities (limiting to
the single-shot capacity in the classical case), analytically
studying the related maximization problems and individuating
the optimal sources. In the case of classical capacity we also
discussed the role of entanglement in achieving the maximum
of the Holvevo quantity.

We find that the fully correlated amplitude damping channel
is an interesting example of transmission of classical or
quantum information through a quantum channel for which
a subspace is noiseless. Since the capacity C1 is obtained
without involving any coherent superposition of states from
the noiseless and the noisy subspace, it would be interesting
to determine whether such result is specific for this model or
more general.

A natural extension of our work would be to consider the
case of amplitude damping channels with partial memory, i.e.,
μ < 1 in Eq. (4). While the analytical solution of such model
appears difficult, nontrivial bounds on the channel capacities
could be computed.
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APPENDIX A: OPTIMALITY OF THE ENTANGLED
ENSEMBLES FOR CLASSICAL CAPACITY

Let us consider an ensemble Cs = {pk,|ψk〉} of separable
states

|ψk〉 = ak|00〉 + bk|01〉 + ck|10〉 + dk|11〉
= (

gk|0〉 +
√

1 − g2
k |1〉)⊗ (

hk|0〉 +
√

1 − h2
k|1〉),

(A1)

where we can consider gk,hk ∈ R [since, as shown in (29),
phases do not change the eigenvalues of the output state],
gk, hk ∈ [0,1], and such that the average density matrix is
diagonal,

ρ =

⎛
⎜⎜⎜⎝

α 0 0 0

0 β 0 0

0 0 γ 0

0 0 0 δ

⎞
⎟⎟⎟⎠ , (A2)

with

α =
∑

k

pka
2
k , β =

∑
k

pkb
2
k,

(A3)
γ =

∑
k

pkc
2
k, δ =

∑
k

pkd
2
k ,

and

a2
k = g2

k h2
k, b2

k = g2
k

(
1 − h2

k

)
,

(A4)
c2
k = (

1 − g2
k

)
h2

k, d2
k = (

1 − g2
k

)(
1 − h2

k

)
.

We want to demonstrate that for any such ensemble, we can
find another ensemble Ce, whose Holevo quantity is strictly
greater than Cs , thanks to the presence of entangled states in Ce.
We assume η ∈ ]0,1[, since we know that for the limiting cases
η = 0 and η = 1, an ensemble of separable state succeeds in
achieving C1.

We start by considering that any such ensemble must have
α,β,γ,δ �= 0. Indeed, since we are supposing that η > 0, we
know that C1 > log2 3 (see Fig. 2); therefore, the entropy
of (A2) has to be grater than log2 3, which is impossible
to achieve if even one of the parameters α,β,γ,δ vanishes.
Next we subdivide Cs in two distinct subsets, Cs = Cs1 ∪ Cs2 :
We collect all the states state with (gk = 0, hk = 0) or with
(gk = 1, hk = 1) in Cs2 , all the others in Cs1 .

First we turn our attention to Cs1 . We operate a substitution
similar to the one we applied at the beginning of Sec. III C.
We replace each state |ψks1

〉 and its occurrence probability pk

in this ensemble by

pk,
∣∣ψks1

〉

→

⎧⎪⎨
⎪⎩

pφk
= pk (a2

k+d2
k )

2 , |φk±〉 = ak√
a2

k+d2
k

|00〉 ± dk√
a2

k+d2
k

|11〉,
pϕ0 = pkb

2
k, |ϕk0〉 = |01〉,

pϕ1 = pkc
2
k, |ϕk1〉 = |10〉.

(A5)

It is straightforward to see that new ensemble, which we call
Ce1 , has the same density matrix of Cs1 , so it does not change
the system output entropy. With regard to the average output
entropy we note that only states |φk±〉 in Ce1 contribute. The
Holevo quantity for ensemble Ce1 is greater than for Cs1 , since
inequality (55), in which we have to replace 2b2

k → b2
k + c2

k ,
holds and is strict. As we have numerically verified, this is
true except that for gk = 1, hk �= 1 or gk �= 1, hk = 1 (by
construction we have excluded cases in which gk = 1, hk = 1),
that is, for dk = 0.

Now we turn to ensemble Cs2 . Its density matrix is given by

ρs2 =

⎛
⎜⎜⎜⎝

α′ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 δ′

⎞
⎟⎟⎟⎠ , (A6)

where

α′ =
∑
k∈s2

pka
2
k , δ′ =

∑
k∈s2

pkd
2
k . (A7)
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We replace the ensemble Cs2 = {pφk,|φk±〉} with the following
one, which we call Ce2 :

pφk = α′ + δ′

2
,

(A8)

|φk±〉 =
√

α′

α′ + δ′ |00〉 ±
√

δ′

α′ + δ′ |11〉.

The density matrix of Ce2 is equal to (A6) and therefore the
system output entropy does not change. Let us turn to the
average output entropy. For the ensemble Cs2 it turns out that

Sout,Cs2
=
∑
k∈s2

pkS(Em(|ψk〉〈ψk|)) = δ′H2(η), (A9)

whereas for the ensemble Ce2 we have

Sout,Ce2
= (α′ + δ′)S(Em(|φk±〉〈φk±|))

= (α′ + δ′)H2

{
1

2

[
1 +

√
1 − 4η(1 − η)

(
δ′

α′ + δ′

)2]}
.

(A10)

Therefore, in order to show that by replacing Cs2 with Ce2 we
increase the Holevo quantity, we must prove that

δ′H2(η) � (α′ + δ′)H2

×
{

1

2

[
1 +

√
1 − 4η(1 − η)

(
δ′

α′ + δ′

)2]}
.

(A11)

We notice that the equality holds for α′δ′ = 0. By dividing
both members of (A11) by δ′ (assuming δ′ > 0), inequality
(A11) is equivalent to

H2(η) � xH2
{

1
2 [1 +

√
1 − 4η(1 − η)x−2]

}
, ∀ x ∈ [1,∞[.

(A12)

By numerical results it turns out that this inequality is tight
for any x > 1, that is, for any α′ > 0. That, together with
the previous assumption δ′ > 0 and the fact the α′ and δ′ are
populations, can be summarized as α′δ′ �= 0.

We can now conclude our proof that the ensemble Ce =
Ce1 ∪ Ce2 has a Holevo quantity strictly larger than Cs . We
observe that the two Holevo quantities can be written as

χCs
= S(ρ) − Sout,Cs1

− Sout,Cs2
,

χCe
= S(ρ) − Sout,Ce1

− Sout,Ce2
,

since Sout,Cs
= Sout,Ce

= S(ρ) by construction.
As we must have δ �= 0, at least one state in Cs has

dk �= 0; we call this state |ξ 〉. Suppose first |ξ 〉 belongs to
the subsets Cs1 : We have already proved that Sout,Ce1

< Sout,Cs1

[inequality (55)] and therefore χCe
> χCs

(since in any case
Sout,Ce2

� Sout,Cs2
). We can see that in this case the ensemble

Ce1 must contain at least a pair of entangled states: those states
|φk±〉 (A5) corresponding to |ξ 〉. In fact, |ξ 〉 must have ak �= 0.
Actually, in the case ak = 0 the inequality (55) implies that
the ensemble Cs1 has a Holevo quantity smaller than the one
of ensemble Ce1 ; in this case, Ce1 in turn exhibits a Holevo
quantity of the form (46), and we know that it does not achieve
C1 (see Fig. 2), so we have to discard this case. If instead

state |ξ 〉 belongs to subset Cs2 , we have to consider two further
possibilities. (1) α′ �= 0: Inequality (A11) is tight and therefore
Sout,Ce2

< Sout,Cs2
, which implies that χCe

> χCs
(since in any

case Sout,Ce1
� Sout,Cs1

). We stress that in this case the states
in Ce2 are entangled. (2) α′ = 0: It is simple to verify that
Cs exhibits a Holevo quantity which is equal to the one of
ensemble A [see Eq. (46)], and χCs

is strictly less than C1, as
one can see from Fig. 2, so we can discard this case.

APPENDIX B: DEGRADABILITY OF Em

We consider a unitary representation of the channel Em,

|00〉S ⊗ |00〉E −→ |00〉S ⊗ |00〉E,

|01〉S ⊗ |00〉E −→ |01〉S ⊗ |00〉E,

|10〉S ⊗ |00〉E −→ |10〉S ⊗ |00〉E, (B1)

|11〉S ⊗ |00〉E −→ √
η|11〉S ⊗ |00〉E

+
√

1 − η|00〉S ⊗ |11〉E,

where E represents a fictitious environment. When the system
S is prepared in the generic pure state (22), system SE state
undergoes the transformation

|ψSE〉 = |ψk〉S ⊗ |00〉E −→
|ψSE′ 〉 = ak|00〉S ⊗ |00〉E

+ bk|01〉S ⊗ |00〉E + ck|10〉S ⊗ |00〉E

+ dk(
√

η|11〉S ⊗ |00〉E

+
√

1 − η|00〉S ⊗ |11〉E). (B2)

From (B2) we can calculate the reduced density matrix for the
systems S and E; ρ ′ = TrE|ψSE′ 〉〈ψSE′ | is just the output state
(28), whereas the reduced density matrix for the environment
E is

ρE′ = TrS|ψSE′ 〉〈ψSE′ |

=

⎛
⎜⎜⎜⎝

1 − |dk|2(1 − η) 0 0
√

1 − η akd
∗
k

0 0 0 0

0 0 0 0√
1 − η a∗

k dk 0 0 (1 − η)|dk|2

⎞
⎟⎟⎟⎠ . (B3)

As we show in the following, it is possible to deduce ρE′

starting from ρ ′ by applying to ρ ′ a quantum operation and
subsequently the channel Em in which we have to replace the
parameter η with (1 − η)/η. This implies that the channel Em

is degradable [45] for η ∈ [ 1
2 ,1].

In order to prove this we consider a generic input state
ρ = ∑

k pk |ψk〉〈ψk|; see Eq. (22). the corresponding output
state is give by

ρ ′ =

⎛
⎜⎜⎜⎝

α + (1 − η)δ κ λ
√

η ς

κ∗ β ν
√

η o

λ∗ ν∗ γ
√

η π√
η ς∗ √

η o∗ √
η π∗ ηδ

⎞
⎟⎟⎟⎠ , (B4)
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and

ρE′ =

⎛
⎜⎜⎜⎝

1 − δ(1 − η) 0 0
√

1 − η ς

0 0 0 0

0 0 0 0√
1 − η ς∗ 0 0 (1 − η)δ

⎞
⎟⎟⎟⎠ , (B5)

where

α =
∑

k

|ak|2, β =
∑

k

|bk|2,

γ =
∑

k

|ck|2, δ =
∑

k

|dk|2,
(B6)

κ =
∑

k

pkakb
∗
k , λ =

∑
k

pkakc
∗
k , ς =

∑
k

pkakd
∗
k ,

ν =
∑

k

pkbkc
∗
k , o =

∑
k

pkbkd
∗
k , π =

∑
k

pkckd
∗
k ,

and moreover we set

α′ = α + (1 − η)δ, δ′ = η δ,
(B7)

ς ′ = √
η ς, o′ = √

η o, π ′ = √
η π.

To show that the channel Em is degradable, we propose the
following scheme. We add three ancillary qubits to the system
S described by the state ρ ′ (B4); we call the ancillas A1 and
A23 (we collect together the second and the third ancillary
qubits). Initially, the ancillas are all prepared in the state |0〉.
We first apply two controlled-NOT gates, where the qubits S
act as control qubits and the qubit A1 as the target qubit. We
then perform a SWAPbetween S and A23, controlled by the state
of the ancilla A1. This procedure is reported below:

initial state −→ controlled-NOTs

|00S〉 ⊗ |0A1〉 ⊗ |00A23〉 no changes

|01S〉 ⊗ |0A1〉 ⊗ |00A23〉 |01S〉 ⊗ |1A1〉 ⊗ |00A23〉
|10S〉 ⊗ |0A1〉 ⊗ |00A23〉 |10S〉 ⊗ |1A1〉 ⊗ |00A23〉
|11S〉 ⊗ |0A1〉 ⊗ |00A23〉 no changes

−→ controlled-SWAP

no changes

|00S〉 ⊗ |1A1〉 ⊗ |01A23〉
|00S〉 ⊗ |1A1〉 ⊗ |10A23〉

no changes.

(B8)

Exploiting the linearity of quantum operations we can
transform each element of ρS ′

as

α′ |00〉〈00| −→ α′ |00〉〈00| ⊗ |0A1〉〈0A1 | ⊗ |00A23〉〈00A23 |,
κ |00〉〈01| −→ κ |00〉〈00| ⊗ |0A1〉〈1A1 | ⊗ |00A23〉〈01A23 |,
λ |00〉〈10| −→ λ |00〉〈00| ⊗ |0A1〉〈1A1 | ⊗ |00A23〉〈10A23 |,
ς ′ |00〉〈11| −→ ς ′ |00〉〈11| ⊗ |0A1〉〈0A1 | ⊗ |00A23〉〈00A23 |,
β |01〉〈01| −→ β |00〉〈00| ⊗ |1A1〉〈1A1 | ⊗ |01A23〉〈01A23 |,
ν |01〉〈10| −→ ν |00〉〈00| ⊗ |1A1〉〈1A1 | ⊗ |01A23〉〈10A23 |,
o′ |01〉〈11| −→ o′ |00〉〈11| ⊗ |1A1〉〈0A1 | ⊗ |01A23〉〈00A23 |,
γ |10〉〈10| −→ γ |00〉〈00| ⊗ |1A1〉〈1A1 | ⊗ |10A23〉〈10A23 |,
π ′ |10〉〈11| −→ π ′ |00〉〈11| ⊗ |1A1〉〈0A1 | ⊗ |10A23〉〈00A23 |,
δ′ |11〉〈11| −→ δ′ |11〉〈11| ⊗ |0A1〉〈0A1 | ⊗ |00A23〉〈00A23 |.

After the quantum operations (B8), tracing with respect to the
ancillas we obtain

ρ ′′ = α′ |00S〉〈00S| + ς ′ |00S〉〈11S| + ς ′∗ |11S〉〈00S|
+β |00S〉〈00S| + γ |00S〉〈00S| + δ′ |11S〉〈11S|

=

⎛
⎜⎜⎜⎝

α′ + β + γ 0 0 ς ′

0 0 0 0

0 0 0 0

ς ′∗ 0 0 δ′

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1 − η δ 0 0
√

η ς

0 0 0 0

0 0 0 0√
ης∗ 0 0 η δ

⎞
⎟⎟⎟⎠ , (B9)

where we have used (B7) together with α + β + γ + δ = 1. It
is simple to see that one can obtain the state (B3) by applying
the channelEm to the state (B9), but replacing η with (1 − η)/η.
Indeed, we have

ηδ −→ ηδ · 1 − η

η
= (1 − η)δ,

√
ης −→ √

ης ·
√

1 − η

η
=
√

1 − η μ,

1 − ηδ −→ 1 − ηδ +
(

1 − 1 − η

η

)
· ηδ = 1 − (1 − η)δ.

It must, of course, happen that 0 � 1−η

η
� 1, which means 1

2 �
η � 1. We can therefore conclude that, when the transmissivity
η is in the interval [ 1

2 ,1], the channel Em is degradable.
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