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Quantum channel detection
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We present a method to detect properties of quantum channels, assuming that some a priori information about
the form of the channel is available. The method is based on a correspondence with entanglement detection
methods for multipartite density matrices based on witness operators. We first illustrate the method in the case of
entanglement-breaking channels and nonseparable random unitary channels and show how it can be implemented
experimentally by means of local measurements. We then study the detection of nonseparable maps and show
that for pairs of systems of dimension higher than two the detection operators are not the same as in the random
unitary case, highlighting a richer separability structure of quantum channels with respect to quantum states.
Finally we consider the set of PPT maps, developing a technique to reveal NPT maps.
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I. INTRODUCTION

The possibility of determining properties of quantum
communication channels or quantum devices is of great
importance in order to be able to design and operate the
channel at the best of its performances. In many realistic
implementations some a priori information on the form of
a quantum channel, or a quantum noise process, is available
and it is of great interest to determine experimentally whether
the channel has a certain property. The aim of this work is to
propose efficient methods to detect this possibility by avoiding
full quantum process tomography, which allows a complete
reconstruction of the channel, but it requires a large number of
measurement settings. At the same time, from the point of view
of implementations, our procedure is experimentally feasible
with present-day technology based on local measurements.

This work is organized as follows. In Sec. II we explain our
main idea, treating as an introductory example entanglement-
breaking channels. In Secs. III and IV we study the cases of
separable random unitaries and separable maps, respectively.
We develop a method to detect NPT channels in Sec. V and
we summarize the main results in Sec. VI.

II. MAIN IDEA AND ENTANGLEMENT-BREAKING
CHANNELS

In this section we show the main idea of the proposed
quantum channel detection method and its link to entanglement
detection methods for multipartite quantum systems. To this
aim we remind the reader that quantum channels, and in
general quantum noise processes, are described by completely
positive (CP) and trace preserving (TP) maps M , which can
be expressed in the Kraus form [1] as

M [ρ] =
∑

k

AkρA
†
k, (1)

where ρ is the density operator of the quantum system on
which the channel acts and the Kraus operators {Ak} fulfill the
TP constraint

∑
k A

†
kAk = 1.

The detection method proposed is based on the use
of the Choi-Jamiolkowski isomorphism [2], which gives a
one-to-one correspondence between CP-TP maps acting on
D(H) (the set of density operators on H, with arbitrary

finite dimension d) and bipartite density operators CM on
H ⊗ H with TrA[CM ] = 1B /d. This isomorphism can be
described as

M ⇐⇒ CM = (M ⊗ I )[|α〉〈α|], (2)

where I is the identity map, and |α〉 is the maximally
entangled state with respect to the bipartite space H ⊗ H,
i.e., |α〉 = 1√

d

∑d
k=1 |k〉|k〉. This is schematically depicted in

Fig. 1.
In this work, by the above isomorphism, we link some

specific properties of quantum channels to properties of the
corresponding Choi states CM . We consider properties that
are based on a convex structure of the quantum channels.

Consider as a first simple case the class of entanglement-
breaking (EB) channels [3]. A possible definition for an EB
channel is based on the separability of its Choi state: A
quantum channel is EB if and only if its Choi state is separable.
This makes it possible to formulate a method to detect whether
a quantum channel is not EB by exploiting entanglement
detection methods designed for bipartite systems [4]. To this
end, we remind the reader about the concept of entanglement
detection via witness operators [5]: A state ρ is entangled
if and only if there exists a Hermitian operator W such that
Tr[Wρ] < 0 and Tr[Wρsep] � 0 for all separable states.

As a simple example of quantum channel detection,
consider the case of qubits and the single-qubit depolarizing
channel, defined as

�{p}[ρ] =
3∑

i=0

piσiρσi, (3)

where σ0 is the identity operator, {σi} (i = 1,2,3) are the three
Pauli operators σx,σy,σz, respectively (for brevity of notation
in the following, the Pauli operators are denoted by X, Y , and
Z), and p0 = 1 − p (with p ∈ [0,1]), while pi = p/3 for i =
1,2,3. Such a channel is EB for p � 1/2. The corresponding
set of Choi bipartite density operators is given by the Werner
states,

ρp =
(

1 − 4

3
p

)
|α〉〈α| + p

3
1 . (4)

It is then possible to detect whether a depolarizing channel is
not EB by exploiting an entanglement witness operator for the
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FIG. 1. Scheme showing the Choi-Jamiolkowski isomorphism.
On the left is the map M ; on the right is the corresponding Choi
state CM .

above set of states [4,6], which has the form

WEB = 1
4 (1 ⊗ 1 −X ⊗ X + Y ⊗ Y − Z ⊗ Z). (5)

The method can then be implemented by preparing a two-qubit
state in the maximally entangled state |α〉, then operating with
the quantum channel to be detected on one of the two qubits
and measuring the operator WEB acting on both qubits at the
end. If the resulting average value is negative, we can then
conclude that the channel under consideration is not EB.

We now prove that our method provides also a lower bound
on a particular feature of EB channels recently defined in
Ref. [7] as follows. Let M be a generic map acting on a
d-dimensional system and Dσ the completely depolarizing
channel defined as Dσ [ρ] = σ , where σ is an arbitrary state.
The quantity μc(M ) is defined as the minimum value of the
mixing probability parameter μ ∈ [0,1] that transforms the
convex combination (1 − μ)M + μDσ into an EB channel,
i.e., in formulas

μc(M ) = min
σ

{μ|(1 − μ)M + μDσ ∈ EB}. (6)

By the Choi-Jamiolkowski isomorphism, we can rephrase the
definition (6) in term of Choi states as

μc(M ) = min
σ

{
μ|(1 − μ)CM + μσ ⊗ 1

d
∈ Sep

}
(7)

and link this quantity to the well-known generalized robustness
of entanglement. Given a state ρ, the generalized robustness of
entanglement is defined [8,9] as the minimal s > 0 such that
the state ρ+sσ

1+s
is separable, where σ is an arbitrary state (not

necessarily separable), namely,

R(ρ) = min
σ

{
s|ρ + sσ

1 + s
∈ Sep

}
. (8)

This quantity can be interpreted as the minimum amount
of noise necessary to wash out completely the entanglement
initially present in the state ρ. Thus, by defining pc(ρ) = 1 −

1
1+R(ρ) and interpreting ρ as the Choi state CM corresponding
to the map M , we can bound μc(M ) as

μc(M ) � pc(CM ), (9)

since the minimizing set involved in the definition (7) of
μc(M ) is smaller than the minimizing set considered for
R(CM ), as can be seen in Eq. (8). By the above inequality
we can derive a bound for the generalized robustness from
the experimental data of an entanglement detection procedure
[10] as

R(ρ) � |c|/wmax, (10)

where c is measured experimentally via the expectation value
of the witness, i.e., Tr[Wρ] = c < 0, while wmax is the
maximal eigenvalue of the operator W . As a result, we can

FIG. 2. Scheme of the Choi-Jamiolkowski isomorphism in the
case of four-partite states. The state |α〉 on the right is the maximally
entangled state with respect to the bipartition AB-CD.

find that

μc(M ) � 1 − 1

1 + |c|/wmax
, (11)

which links the expectation value of the witness measured
experimentally to the theoretical quantity μc(M ). In the case
of the depolarizing channel (3) with p < 1/2, by using the
witness WEB given by Eq. (5), the above bound takes the form

μc(�{p}) � 1 − 2p

2 − 2p
. (12)

In this case, however, the bound is not tight since the theoretical
μc(�{p}) can be computed to be 2−4p

3−4p
by following the method

developed in [7].

III. SEPARABLE RANDOM UNITARIES

We now consider the case of random unitary (RU) channels,
defined as

U [ρ] =
∑

k

pkUkρU
†
k , (13)

where Uk are unitary operators and pk > 0 with
∑

k pk = 1.
Notice that this kind of map includes several interesting models
of quantum noisy channels, such as the already mentioned
depolarizing channel or the phase-damping channel and the
bit-flip channel [11]. RUs were also studied extensively and
characterized in Ref. [12].

We now consider the case where the RU channel acts on a
bipartite system ρAB as follows

V [ρAB] =
∑

k

pk(Vk,A ⊗ Wk,B)ρAB(V †
k,A ⊗ W

†
k,B), (14)

where both Vk,A and Wk,B are unitary operators for all k’s,
acting on systems A and B respectively. Quantum channels of
the above form are named separable random unitaries (SRUs)
and they form a convex subset in the set of all CP-TP maps
acting on bipartite systems. Interesting examples of channels
of this form are given by Pauli memory channels [13].

The Choi state corresponding to quantum channels acting
on bipartite systems is a four-partite state (composed of
systems A, B, C, and D), as shown in Fig. 2. Notice that the
state |α〉 = 1√

dAB

∑dAB
k,j=1 |k,j 〉AB|k,j 〉CD (where dAB = dAdB

is now the dimension of the Hilbert space of the bipartite
system AB) can also be written as |α〉 = |α〉AC|α〉BD; namely,
it is a biseparable state for the partition AC-BD of the global
four-partite system. The Choi states corresponding to SRU
channels therefore form a convex set, which is a subset of
all biseparable states for the partition AC-BD. Since the
generating set of SRUs is given by local unitaries UA ⊗ UB ,
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the generating biseparable pure states in the corresponding set
of Choi states have the form

|UA ⊗ UB〉 = (UA ⊗ 1C) |α〉AC ⊗ (UB ⊗ 1D) |α〉BD . (15)

We name the set of four-partite Choi states corresponding to
SRUs as SSRU. It is now possible to design detection procedures
for SRU maps by employing suitable witness operators that
detect the corresponding Choi state with respect to biseparable
states (in AC-BD) belonging to SSRU.

We now focus on the case of a unitary transformation U

acting on two d-dimensional systems. The corresponding Choi
state is pure and has the form

|U 〉 = (U ⊗ 1) |α〉 . (16)

Therefore, a suitable detection operator for U as a non-SRU
gate can be constructed as

WSRU,U = α2
SRU 1 −CU, (17)

where CU = |U 〉〈U |, and the coefficient αSRU is the overlap
between the closest biseparable state in the set SSRU and the
entangled state |U 〉, namely,

α2
SRU = max

MSRU

〈U |CMSRU |U 〉 . (18)

Notice that, since the maximum of a linear function over a
convex set is always achieved on the extremal points, the
maximum above can be always calculated by maximizing over
the pure biseparable states (15) [14], i.e.,

αSRU = max
UA,UB

| 〈UA ⊗ UB| U 〉|

= 1

d2
max
UA,UB

| Tr[(U †
A ⊗ U

†
B)U ]|. (19)

As an example of the above procedure, consider the
(Controlled-NOT) CNOT gate acting on a two-qubit system,
defined by

CNOT =
(

1 0

0 X

)
, (20)

with 1 representing the 2 × 2 identity matrix and X the usual
Pauli operator. The coefficient αSRU for U = CNOT can be
computed as follows. The state (16) specialized for the CNOT

gate is clearly not separable with respect to the split AC-
BD and it can be expressed in the Schmidt decomposition
regarding that split as

|CNOT〉 = 1√
2

(|00〉AC|α〉BD + |11〉AC|ψ+〉BD) , (21)

where |ψ+〉 = 1√
2
(|01〉 + |10〉). The above expression natu-

rally proves that the maximum overlap with any biseparable
state with respect to AC-BD cannot exceed the value of 1/

√
2.

Since the convex set SSRU of allowed states in our optimization
problem is smaller than the set of all biseparable states,
this would give us only an upper bound for the maximum
overlap αSRU. However, two local unitary operations UA and
UB that saturate this bound can be explicitly found, namely
UA = S and UB = e−i π

4 X, where S is the phase gate given by

FIG. 3. Experimental scheme implementing the detection of the
CNOT gate.

S = diag(1,i). This finally proves that the optimal coefficient
αSRU equals 1/

√
2 even if we restrict to the set of bisepa-

rable states SSRU. Moreover, the detection operator WCNOT =
1
2 1 −CCNOT can be decomposed into a linear combination of
local operators as

WCNOT = 1

64
(31 1 1 1 1 − 1 X 1 X − XXX 1 −X 1 XX

−ZZ 1 Z + ZY 1 Y + YYXZ + YZXY

−Z 1 Z 1 −ZXZX + YXY 1 +Y 1 YX

− 1 ZZZ + 1 YZY + XYYZ + XZYY ), (22)

where for simplicity of notation the tensor product
symbol has been omitted. As we can see from the
above form, the CNOT can be detected by using
nine different local measurements settings, namely
{XXXX,ZZZZ,ZYZY,YXYX,YYXZ,YZXY,ZXZX,XY

YZ,XZYY }. Actually, in the first line of the above expression
the expectation values of operators 1 X 1 X,XXX 1 ,X 1 XX

can be obtained by measuring the operator XXXX and
suitably processing the experimental data. Similar groupings
can be done for the other terms in (22), such that the only
measurement settings needed are the nine listed above.
Following [4,15], it can be also easily proved that the above
form is optimal in the sense that it involves the smallest
number of measurement settings. From an experimental point
of view, the optimal detection procedure can be implemented
as follows: Prepare a four-partite qubit system in the state
|α〉 = |α〉AC|α〉BD, apply the quantum channel to qubits A
and B, and finally perform the set of nine local measurements
reported above in order to measure the operator (22). If the
resulting average value is negative, then the quantum channel
is detected as a non-SRU map. The experimental scheme is
shown in Fig. 3.

Notice that the number of measurements needed in this
procedure is much smaller than the one required for complete
quantum process tomography, since the former scales as d2

AB
[6] while the latter as d4

AB [11].
The number of measurement settings in the detection

scheme can be further decreased if we allow a nonoptimal
detection operator, in the sense that the coefficient αSRU

in WCNOT is smaller than the maximum value. In this case,
since the state CCNOT is a stabilizer state with generators
{XXX 1 , 1 X 1 X,Z 1 Z 1 ,ZZ 1 Z}, an alternative detection
operator can be derived, following the approach of Ref. [16].

042335-3



C. MACCHIAVELLO AND M. ROSSI PHYSICAL REVIEW A 88, 042335 (2013)

The resulting suboptimal detection operator turns out to be

W̃CNOT = 3 1 −2

[
(1 +XXX 1)

2

(1 + 1 X 1 X)

2

+ (1 +Z 1 Z 1)

2

(1 +ZZ 1 Z)

2

]
, (23)

which requires only the two local measurement settings
{XXXX,ZZZZ}. The robustness of the method in the
detection of the CNOT gate was analyzed in [17].

IV. SEPARABLE MAPS

We now focus on the detection of nonseparable maps. By
definition, a separable map Msep is given by

Msep[ρAB] =
∑

k

(Ak ⊗ Bk)ρAB(A†
k ⊗ B

†
k ); (24)

namely, it can be written in terms of separable Kraus operators
[18]. Here we do not require the TP condition. Notice that
the set of separable maps is a larger set than the set of SRUs
studied above. A general map M acting on two qudits is not
separable if and only if the corresponding Choi state CM is
entangled with respect to the splitting AC-BD [19].

Analogously to the case of SRU maps, for a unitary
transformation U we can define a witness operator of the same
form (17), where now the coefficient α2

SRU is replaced with α2
S

defined as

α2
S = max

Msep

〈U |CMsep |U 〉. (25)

Since the set of SRUs is a subset of all separable maps, in
general, αS � αSRU. The maximum in Eq. (25) is attained on
pure states, which are the extremal points in the set of CMsep .
Since a map M is described by a single Kraus operator if and
only if its Choi state CM is pure [20], we can then compute
the maximum on separable maps Msep with a single Kraus
operator. The calculation for αS can then be simplified as

αS = max
A,B

|〈A ⊗ B|U 〉|

= 1

d2
max
A,B

| Tr[(A† ⊗ B†)U ]|. (26)

Notice that now we do not require A ⊗ B to be TP; otherwise,
both A and B would be automatically unitary. Interestingly, we
now show that for a general unitary U on two-qubit systems
the two coefficients αSRU and αS coincide, while for higher
dimension this no longer holds.

We compute the coefficients by starting from the Schmidt
decomposition of an operator O acting on two qudits, which
can be written as

O =
r∑

i=1

σiAi ⊗ Bi, (27)

where {Ai}i=1,...,d2 and {Bi}i=1,...,d2 are two orthogonal bases
(Tr[A†

i Aj ] = Tr[B†
i Bj ] = dδij ) for the operator space, and r is

the Schmidt rank fulfilling 1 � r � d2. Notice that the unique
Schmidt coefficients σi are always positive and ordered, i.e.,
σ1 � · · · � σr . As a result, if we write the unitary U in the
Schmidt decomposition (27), it follows that the maximum (26)

is achieved by the choice of A ⊗ B = A1 ⊗ B1, where A1

and B1 are the operators corresponding to the largest Schmidt
coefficient σ1. We then have

αS = 1

d2
| Tr[(A†

1 ⊗ B
†
1)U ]| = σ1. (28)

It is then interesting to establish whether the optimal separable
operator A1 ⊗ B1 has to be unitary as well. As mentioned
above, we show that this is true for qubit systems but does no
longer hold when the dimension increases. We first show that
for two qubits it is always possible to find a separable unitary
UA ⊗ UB such that the overlap with U achieves the maximum
σ1, namely,

∃UA,UB such that |〈UA ⊗ UB|U 〉| = αSRU = σ1. (29)

This is a consequence of the Cartan decomposition [21,22] of
a general unitary U acting on two qubits, given by

U = (VA ⊗ VB)Ũ (WA ⊗ WB), (30)

where VA, VB, WA, and WB are single-qubit unitaries and

Ũ = ei(θxX⊗X+θyY⊗Y+θzZ⊗Z). (31)

Notice that, by the definitions cα = cos θα and sα = sin θα ,
Ũ takes the form

Ũ = (cxcycz + isxsysz) 1 ⊗ 1 +(cxsysz + isxcycz)X ⊗ X

+ (sxcysz + icxsycz)Y ⊗ Y + (sxsycz + icxcysz)Z ⊗ Z.

(32)

According to (30), it is then straightforward to see that the
above form of Ũ leads directly to the Schmidt decomposition
of U . Actually, the magnitudes of the coefficients in front of
the bipartite operators correspond to the Schmidt coefficients
themselves and the phases can be reabsorbed into the Pauli
operators without changing the orthogonality relations. There-
fore, given a unitary U on two qubits, it is always possible to
find a local unitary achieving the maximum σ1, since there
always exists a Schmidt decomposition of U involving only
unitary operators as a local basis. For higher dimensional
systems the above argument does not hold. Actually, already
in the two-qutrit case it may happen that the maximum (28)
can, in general, be attained only by local nonunitary operators.
This means that the closest [under the criterion defined in (26)]
separable map to a unitary U may be nonunitary.

We show an explicit example for a system of two qutrits
given by the gate Z3 defined as

Z3 = diag(1,1,1,1,1,1,1,1, − 1), (33)

which is unitary and not separable. We can rewrite Z3 in the
Schmidt form with Schmidt rank r = 2 as

Z3 = σ1A1 ⊗ B1 + σ2A2 ⊗ B2, (34)

where σ1,2 =
√

1
2 (9 ± √

17)/3, while the operators A1,2 and
B1,2 are nonunitary and can be written as

A1,2 =
√

3√
102 ± 22

√
17

× diag(5 ±
√

17,5 ±
√

17,1 ±
√

17), (35)
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B1,2 =
√

3√
646 ± 150

√
17

× diag(11 ± 3
√

17,11 ± 3
√

17,9 ±
√

17). (36)

From the Schmidt decomposition it immediately follows
that the value of the maximum overlap is given by αS =
σ1 =

√
1
2 (9 + √

17)/3 ∼ 0.854. The coefficient αSRU can be
computed, leading to αSRU ∼ 0.786 [23]. Hence, this proves
that the maximum attained over SRUs is always strictly smaller
then the maximum achieved by separable maps, αSRU < αS .
We want to stress that our method is then suitable to detect
the gap between separable and SRU maps, as long as d � 3.
Actually, by the amount of violation of the expectation value of
WSRU,U for detecting U , we can establish whether the detected
map was separable or in addition RU too. For example, the
unitary Z3 can be detected as a non-SRU map by a witness
operator of the form

WSRU,Z3 = α2
SRU 1 −CZ3 , (37)

where CZ3 = |Z3〉〈Z3| and αSRU ∼ 0.786. Moreover, the
expectation value of WSRU,Z3 over the Choi state of the ex-
perimentally accessible map M , i.e., Tr[WSRU,Z3CM ], allows
us to distinguish between non-SRU and nonseparable maps.
Actually, M is detected to be non-SRU if Tr[WSRU,Z3CM ] <

0, and in addition we can say that M is not a separable map if
Tr[WSRU,Z3CM ] < α2

SRU − α2
S .

V. PPT CHANNELS

In this section we consider a larger set of quantum
channels, namely PPT channels. A CP map M acting on two
qudits is positive partial transpose (PPT) if and only if the
composite map MT = TA ◦ M ◦ TA, being TA being the
partial transposition map on the first system A, is CP [24,25].
Since a map M is CP if and only if the corresponding
Choi operator CM is positive, we can restate the above
definition as follows: A CP map M is PPT if and only if
the Choi operator CMT related to the composite map MT is
positive.

By the above correspondence we develop a method to
detect whether a map is nonpositive partial transpose (NPT).
We employ techniques already developed for the detection
of entangled NPT states [26]; namely, we consider a witness
operator of the form

WPPT = |λ−〉 〈λ−|TA , (38)

where |λ−〉 is the eigenvector of the Choi state CMT

corresponding to the most negative eigenvalue λ− for an NPT
map M .

The expectation value of the above witness operator should
now be measured for the Choi operator corresponding to
the composite map M ◦ TA, since the partial transposition
following M is already taken into account in the form of the
operator (38). Therefore, a crucial point of this approach is now
related to the implementation of the map TA, which is non-CP.
A possible solution is to add noise to the map TA in order to
make it CP, as shown in Ref. [27]. Following the approach
of [27] we consider the minimal amount of depolarizing noise

FIG. 4. Experimentally feasible scheme to implement the detec-
tion of the NPT map M .

such that the map

T̃A[ρAB] = (1 − p)TA[ρAB] + p
1AB

d2
(39)

is CP. This is given by p = d3/(d3 + 1) [27]. From an exper-
imental point of view, we then consider the implementation
of the map T̃A instead of the nonphysical map TA, as shown
in Fig. 4. This procedure leads to an extra contribution in
the expectation value of the witness operator, related to the
presence of the depolarized term in Eq. (39). The expectation
value of WPPT for the Choi state CM◦T̃A

related to the
composite map M ◦ T̃A is given by

Tr[WPPTCM◦T̃A
]

= (1 − p) 〈λ−| CMT
|λ−〉 + p 〈λ−| MT

×
[

1AB

d2

]
⊗ 1CD

d2
|λ−〉

= (1 − p)λ− + p 〈λ−| MT

[
1AB

d2

]
⊗ 1CD

d2
|λ−〉 . (40)

Notice that the negative term λ− comes from the NPT-ness of
the map MT , while the other term is due to the implementation
of T̃A in the proposed experimental procedure. The expression
above clearly shows that the operator WPPT can be regarded as a
witness with respect to the set of PPT maps, as its expectation
value is always non-negative on this set. Therefore, if the
expectation value of the witness WPPT is negative, the map M
is guaranteed to be NPT.

Let us now assume that the map M is unital [28]. The
expectation value in Eq. (40) then takes the simple form

Tr[WPPTCM◦T̃A
] = (1 − p)λ− + p

d4
. (41)

In this case the addition of the depolarized term that makes the
map TA physically implementable introduces only a constant
shift in the expectation value of the witness. As a result, for
any PPT unital map MPPT,unital we have

Tr[WPPTCMPPT,unital ◦ T̃A] � p

d4
. (42)

Therefore, if we know a priori that the map M to be
detected is a unital map, then we are guaranteed that it is a
NPT map whenever the expectation value of WPPT is smaller
than p/d4.

As an illustrative example we consider again the case of the
CNOT gate. Here we want to detect such a gate as a NPT map
by following the experimental procedure discussed above. It is
straightforward to see that the Choi state CCNOTT corresponding
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to the map CNOTT = TA ◦ CNOT ◦ TA has a single negative
eigenvalue λ− = −1/2. Since the CNOT is unital, from Eq. (41)
it follows that Tr[WPPTCCNOT◦T̃A

] = 0, and the gap with the
bound provided by Eq. (42) (∼0.055 in this case) is then
experimentally accessible.

VI. CONCLUSION

In conclusion, we have presented an experimentally feasible
method to detect several sets of quantum channels. The
proposed procedure works when some a priori knowledge
on the quantum channel is available and is based on a link to
detection methods for entanglement properties of multipartite
quantum states via witness operators. The method has been
first explicitly illustrated in the simple case of EB channels
and then presented to detect separability properties of quantum
channels. In particular, methods to reveal non-SRUs and non-
separable maps have been derived, showing also the possibility
to detect the gap between the sets of SRUs and separable maps.

This result highlights a richer separability structure of Choi
operators that has no counterpart in the separability properties
of ordinary entangled/separable states. The present method
can be also applied to other properties of quantum channels
that rely on a convex structure and reflect on properties of the
corresponding Choi states, such as, for example, completely
copositive maps [29] or bientangling operations introduced in
Ref. [30]. The advantage over standard quantum process to-
mography is that a much smaller number of measurement set-
tings is needed in an experimental implementation. Finally, we
want to point out that the proposed scheme can be implemented
with current technology, for example in a quantum optical
scheme [31].
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