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With the advent of physical implementations of quantum walks, a general theoretical and efficient numerical
framework is required for the study of their interactions with defects and disorder. In this paper, we derive
analytic expressions for the eigenstates of a one-dimensional continuous-time quantum walk interacting with
a single defect, before investigating the effects of multiple diagonal defects and disorder, with emphasis on its
transmission and reflection properties. Complex resonance behavior is demonstrated, showing alternating bands
of zero and perfect transmission for various defect parameters. Furthermore, we provide an efficient numerical
method to characterize quantum walks in the presence of diagonal disorder, paving the way for selective control
of quantum walks via the optimization of position-dependent defects. The numerical method can be readily
extended to higher dimensions and multiple interacting walkers.
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I. INTRODUCTION

Since the seminal paper by Aharonov et al. [1] establishing
a quantum analogy of the classical walk, quantum walks
have constituted an important tool in quantum information
theory; for example, by motivating the creation of quantum
algorithms that are faster and more efficient than their classical
analogues [2–8] and by providing methods of universal
quantum computation [9–11]—a highly sought-after goal of
modern physics. This is a consequence of the markedly
different behavior exhibited by quantum walks: by taking into
account superposition, interference, and quantum correlations,
the quantum walkers propagate quadratically faster than their
classical counterpart and result in a probability distribution
drastically different from the classically expected behavior [2].
As with classical random walks, there are two related but
fundamentally different formulations of the quantum walk: the
discrete-time quantum walk (DTQW) and the continuous-time
quantum walk (CTQW). While these are related through
well-defined limits in the classical case, their relation in the
quantum realm is highly nontrivial, as shown by Strauch [12].
In this paper, we will focus on the continuous-time quantum
walk, with emphasis on its scattering behavior in the presence
of disorder and defects.

Quantum walks have proven incredibly versatile in terms of
theoretical applications, with uses ranging from implementing
quantum algorithms to modeling complex quantum systems.
In order to benefit from these newfound ideas, physical
implementations are essential; some recent approaches include
the use of waveguides and photonics [13–16] and ion lattices
[17–19]. With physical implementations of quantum walks
comes the issue of disorder and decoherence affecting the
sought after quantum behavior. In a precursor to modern
quantum walking systems, the limiting case of a single
diagonal defect in a one-dimensional molecular crystal was
explored quantitatively by Koster and Slater [20] using tight-
binding methods and difference equations, and later extended
to take into account nearest-neighbor interactions (resulting
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in very effective exciton traps) [21]. Some earlier works by
Dean [22] and Thouless [23] also looked at multiple defects
in relation to the density and distribution of eigenstates. Such
a tight-binding lattice model has found applications in a wide
variety of fields. For example, Avgin and Huber [24] applied
the one-dimensional, single impurity model to study defects
in polyfluorenes.

More recently, the theoretical effects of random disorder
in quantum walks have been considered by Yin et al. [25],
Schreiber et al. [26], and Mülken and Blumen [27] (the latter
also considering the effects of nonunitary “traps”). Disorder
and decoherence, however, may provide additional tools in
constructing quantum walks for particular applications—for
instance, Keating et al. [28] considered the application of
disorder-induced Anderson localization in quantum commu-
nication. In this work, the point-defect model of diagonal
disorder, which is similar to that of Koster and Slater [20],
will be used to derive expressions for the CTQW eigenstates
for transmission through a single defect. This will then
be extended to provide transmission amplitudes through mul-
tiple defects and, in particular, highlight resonant and bandlike
structures. Furthermore, a general numerical method will be
developed that efficiently calculates transmission information
for an arbitrary distribution of diagonal defects, allowing
a detailed study of defect-induced selective transmission of
continuous-time quantum walkers.

This paper is structured as follows. In Sec. II, we introduce
the mathematical formalism behind continuous-time quantum
walks and, in particular, the diagonal point-defect model.
Analytic expressions for the single-defect eigenstates are
presented in Sec. III. Expressions for CTQW transmission
through multiple, equally spaced defects are then derived in
Sec. IV and used to verify the results of a general numerical
method for arbitrary defect distributions, which is detailed in
Sec. V. Finally, our conclusions are provided in Sec. VI.

II. CTQW DIAGONAL DEFECT MODEL

Continuous-time quantum walks were first introduced by
Farhi and Gutmann [29] in 1998 as an extension of the
classical theory of Markov processes. While research into
continuous-time quantum walks has not been as extensive
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as the discrete-time case, some applications that have arisen
include efficient spatial search algorithms that achieve a
speedup of

√
N over classical counterparts [4], exploring

topological structure [30], and modeling coherent transport
on complex networks [27] (such as mass and energy trans-
port in complex molecular structures). Furthermore, recent
experimental evidence for energy transfer through quantum
coherence in photosynthetic and other biochemical systems
[31–34] suggests that continuous-time quantum walks can be
extended to model biological systems—potentially providing
new insights into the natural world.

The continuous-time quantum walk can be regarded as
a quantization of the corresponding classical continuous-
time random walk, with the system now evolving as per
the Schrödinger equation rather than the Markovian master
equation. As a result, classical probabilities are replaced
by quantum probability amplitudes. To illustrate, consider a
continuous-time random walk on the discrete graph G(V,E),
composed of unordered vertices j ∈ V and edges ei = (j,k) ∈
E connecting two vertices j and k. The transition rate matrix
H is defined as

Hjk =
⎧⎨⎩−γjk for j �= k if node j is connected to node k

0 for j �= k if node j is not connected to node k

Sj for j = k,

(1)

where γjk is the probability per unit time for making a
transition from node j to node k and for H to be conservative,

Sj =
N∑

k = 1,k �= j

γjk. (2)

Classically, the state of the random walker is fully described by
the probability distribution vector P(t), with its time evolution
governed by the master equation

dP(t)

dt
= HP(t),

which has the formal solution P(t) = exp(−Ht)P(0).
Extending the above description to the quantum realm

involves replacing the real-valued probability distribution
vector P(t) with a complex-valued wave function |ψ(t)〉 and
adding the complex notation i to the evolution exponent, i.e.,

|ψ(t)〉 = exp(−iH t)|ψ(0)〉. (3)

The quantum transition matrix H , often referred to as the
system Hamiltonian, is required to be Hermitian and thus the
above time evolution is unitary—guaranteeing that the norm of
|ψ(t)〉 is conserved under CTQWs. The complex-valued state
vector |ψ(t)〉 = ∑

j aj (t)|j 〉, where aj (t) = 〈j |ψ(t)〉 ∈ C,
represents the probability amplitude of the walker being found
at node |j 〉 at time t , with |aj (t)|2 = |〈j |ψ(t)〉|2 the resulting
probability.

For CTQWs on an infinite line, if each node is assumed
to be connected only to its neighboring nodes by a constant
transition rate γ = 1, then the action of the corresponding
Hamiltonian H0 on the state vector |ψ(t)〉 leads to the inner
product relationship

〈j |H0|ψ〉 = 2〈j |ψ〉 − 〈j + 1|ψ〉 − 〈j − 1|ψ〉. (4)

Symmetries that are present in continuous-space quantum
systems, for instance invariance under spatial translation
for free particles, can also be formulated for discrete-space
systems. This symmetry allows us to define the momen-
tum eigenstate |k〉: a complete orthonormal basis of the
Hamiltonian, satisfying the eigenvalue equation H0|k〉 =
2(1 − cos k)|k〉 for −π � k < π . Analogous in function to
the momentum eigenstates encountered in continuous-space
quantum mechanics, these are an important tool in studying
scattering properties in discrete space and, as such, have been
described in detail by Childs et al. [3], Farhi et al. [10],
Mülken and Blumen [27], Childs and Gosset [11], Mülken
et al. [35], and Childs et al. [36] (albeit with slight variations in
definition). For example, consider a continuous-time quantum
walk on an infinite line, scattering off a defect placed at node
|d〉. To account for these defects, the Hamiltonian matrix is
modified in the following way:

H = H0 + �, � =
∑
m

�m|m〉〈m|, (5)

where we have introduced a real diagonal matrix �, with
m ∈ Z,m ∈ {d} representing the set of vertices associated
with a defect of strength �m. The probability of the walker
being found at node |j 〉 at time t can thus be given by
|〈j |e−iH t |ψ(0)〉|2.

Now, let the quantum walker be initialized in momentum
eigenstate |k〉 incident from the left; this results in a time-
independent scattered state of the form

|ψs〉 = Û |k〉 =
{|k〉 + r(k)| − k〉, j � d

t(k)|k〉, j > d
(6)

(the Bethe ansatz), where t(k)|k〉 and r(k)| − k〉 are the trans-
mitted and reflected components, respectively. It was shown
by Childs et al. [3] in the context of algorithmic speedup that,
given |ψs(k)〉 remains an eigenstate of H = H0 + �, a pair of
linearly independent equations are produced which uniquely
determine t(k) and r(k). This was further extended by Farhi
et al. [10] in order to calculate the transmission probability
due to finite trees and semi-infinite lines attached at singular
nodes. Finally, it was demonstrated by Li et al. [37] that, in the
presence of double diagonal defects, a CTQW system exhibits
resonance behavior determined inherently by the nature of the
discrete space. In successive sections, we will determine ana-
lytic expressions for the complete set of eigenstates for a single
defect and relate this to group velocity. Moreover, we will show
through analytical derivations that this previously established
resonant behavior exists in the case of multiple sets of defects,
and describe an efficient numerical method for exploring
systems with arbitrary distributions of diagonal defects.

III. SINGLE-DEFECT EIGENSTATES

Using the diagonal defect model defined above for a
CTQW containing a single-point defect on an infinite line,
the Hamiltonian can therefore be written as

H =
∑

j

(2|j 〉〈j | − |j − 1〉〈j | − |j + 1〉〈j |) + α|d〉〈d|.
(7)
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FIG. 1. (Color online) The numeric (orange solid line) and analytic (black dashed line) single-point-defect eigenstates are plotted for the
set of (a) odd continuous eigenstates and (b) even continuous eigenstates. (c) The value of the even states at the defect location |0〉 for defect
strength α = 1/

√
200,1,2.

For simplicity, and without loss of generality, choose d = 0.
Now let |φ〉 denote the eigenstates of the Hamiltonian,
with associated eigenvalues λ ∈ R; i.e., H |φ〉 = λ|φ〉. Ex-
panding 〈j |H |φ〉 explicitly using Eq. (7) and the position
state decomposition of the eigenstates, |φ〉 = ∑

j ′ |j ′〉〈j ′|φ〉 =∑
j ′ cj ′ |j ′〉, we arrive at the following recurrence relation:

〈j |H |φ〉 = 2cj − cj−1 − cj+1 + αc0δj0

= λcj ⇒ (2 − λ)cj − cj−1 − cj+1 = αc0δj0. (8)

We now have an inhomogeneous, linear recurrence equation
with constant coefficients—this equation fully determines the
eigenstates and eigenvalues of the system. By substituting
in the ansatz cj = rj [20], we readily see that the general
homogeneous solution is

cj = Ar
j
− + Br

j
+

= 2−jA(2 − λ − √
λ − 4

√
λ)j

+ 2−jB(2 − λ + √
λ − 4

√
λ)j , (9)

where A and B are as yet undetermined functions of α and
λ. Using this result as a basis to calculate inhomogeneous
solutions to Eq. (8), we must consider regimes where both
oscillatory and bound solutions exist.

A. Continuous eigenstates

To determine the continuous eigenstates, consider oscillat-
ing solutions of Eq. (9). It is clear that a necessary requirement
for oscillating solutions is |r±| � 1; this is satisfied only for
0 � λ � 4. For convenience, the parametrization λ = 2(1 −
cos k), 0 � k � π , can be used, resulting in a homogeneous
solution of the form

cj = Ae−ikj + Beikj . (10)

The method of undetermined coefficients can now be used to
calculate the inhomogeneous solutions to the system in this λ

regime. We find that two solutions exist, with odd and even
symmetry around the defect, respectively:

〈j |φodd(k)〉 = 1√
π

sin kj, 0 � k � π,

〈j |φeven(k)〉 = 1√
π

tα(k)

(
1

2
α csc k sin k|j | + cos kj

)
,

0 � k � π, (11)

where tα(k) = 1/[1 + 1
2 iα csc k] is simply the transmission

coefficient of the CTQW incident on a single defect. Also recall
that, by construction, both eigenstates satisfy the eigenvalue
equation

H |φ(k)〉 = λ(k)|k〉, λ(k) = 2(1 − cos k)|k〉 (12)

(as is expected, the eigenvalues are of the same form as Koster
and Slater [20] and Merrifield [21] in the case where the lattice
parameter α → 1). Comparing these results to those obtained
by numerical analysis (Fig. 1) verifies that these eigenstates do,
in fact, represent the complete set of continuous eigenstates.
Furthermore, it can be seen that setting α = 0 does, indeed,
recover the free-space eigenstates |k〉, k ∈ [−π,π ].

B. Bound states

For bound-state |φB〉 solutions to Eq. (8) to be physical,
it is required that 〈j |φB〉 → 0 as j → ±∞. Restricting
our attention to λ < 0, λ > 4, the method of undetermined
coefficients is applied in the case of odd symmetry and even
symmetry (j → |j |). As in the continuous case, both odd and
even bound states exist, with respective conditions A + B = 0
and A = B(

√
λ − 4

√
λ − α)/(

√
λ − 4

√
λ + α).

By taking into account the boundary condition, the odd
bound state turns out to be nonphysical [r−(j ) − r+(j )
diverges as j → ±∞] and must be discarded. The even bound
state, of the form

〈j |φB〉 = Ar−(|j |) + Br+(|j |)

= Br−(|j |)
√

λ − 4
√

λ − α√
λ − 4

√
λ + α

+ Br+(|j |), (13)

contains only one divergent term [r−(|j |)] and thus represents
a physical bound state when the coefficient of r−(|j |) is zero
for all values of α; thus, λ = 2 + α

√
1 + 4/α2. Substituting

this back into Eq. (13) and normalizing, the bound state of the
system is therefore given by

〈j |φB〉 = 2−|j |√|α|
(α2 + 4)1/4

(
α − α

√
1 + 4

α2

)|j |
, (14)

satisfying the eigenvalue equation

H |φB〉 = λα|φB〉, λα = 2 + α

√
1 + 4

α2
. (15)
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FIG. 2. (Color online) Left: The numeric and analytic single-point defect bound states are plotted and compared for the cases (i) α < 0
with the analytic result in long-dashed black lines and the numerical data points in red open circles, and (ii) α > 0 with the analytic result
in short-dashed black lines and the numerical data points in green dots. Right: The complete eigenvalue spectrum of the Hamiltonian with a
single-point defect.

Some properties of the single-defect bound state that can
be ascertained from the analytic expression include (1) in
the limit |α| → ∞, 〈j − d|φB〉 → δjd and λα → ∞ (i.e.,
the contribution of the bound state to the time evolution of
a CTQW outweighs that of the continuous eigenstates for
large α) and (2) in the limit α → 0, 〈j − d|φB〉 → 0 and
limα→0− λα = 0, limα→0+ λα = 4 (i.e., the contribution of the
bound state to the time evolution of a CTQW is approximately
the trivial solution for small α and can be neglected). It should
also be noted that for α > 0, the bound-state amplitude shows
damped oscillating behavior; this is not the case for α < 0
(Fig. 2). However, in both cases, the probability distributions
|〈vj |φB〉|2 are equal.

C. Eigenstate completeness and time evolution

Using the orthogonality relations of the sine and cosine
functions, it can be shown that the eigenstates calculated
above remain orthonormal with respect to each other; that
is, for all values of 0 � k � π and α ∈ R, 〈φodd(k)|φB〉 =
0,〈φeven(k)|φB〉 = 0, and 〈φodd(k)|φeven(k)〉 = 0. Coupling
these results with the completeness of Hermitian eigenstates,
the identity operator for the single defect containing discrete
space can be written as

Î =
∫ π

0
dk (|φodd(k)〉〈φodd(k)| + |φeven(k)〉〈φeven(k)|)

+ |φB〉〈φB |, (16)

and thus the time-evolution operator Û (t) ≡ e−iH t = e−iH t Î

has the form

Û (t) =
∫ π

0
dke−2it(1−cos k)[|φodd(k)〉〈φodd(k)|

+ |φeven(k)〉〈φeven(k)|] + e−iλαt ′ |φB〉〈φB |. (17)

This integral form of the time-evolution operator now enables
us to construct an expression for the time evolution of an
arbitrary state |ψ〉 from time t to t ′,

〈j ′|e−iH t ′ |ψ(t)〉 =
∑

j

∫ π

0
dkGα,d (j ′,t ′; j ; k)〈j |ψ(t)〉,

(18)

where

Gα,d (j ′,t ′; j ; k) = 1

π
e−2it ′(1−cos k)

[
sin k(j ′ − d) sin k(j − d)

+ 1

4
|tα(k)|2ε(j ′ − d)ε(j − d)

]
+ e−iλαt δ(k − 1)φB(j − d)φB(j ′ − d),

(19)

with tα(k) = 1/[1 + (iα/2) csc k], ε(j ) = α csc k sin k|j | +
2 cos kj , λα = 2 + α

√
1 + 4/α2, φB(j ) = 2−|j |√|α|

(α2+4)1/4 (α −
α
√

1 + 4/α2)|j |, |d〉 the location of the defect, and α the
defect amplitude.

Using this integral approach, 〈j ′|e−iH t ′ |ψ〉 is plotted in the
case of α = 1/

√
2, d = 5, |ψ〉 = |v1〉, and t ′ = 20 in Fig. 3. It

can be seen that the integral and the matrix exponential method
are in excellent agreement.

The Green’s function offers other advantages compared to
the previously considered one. For instance, it is now well
defined in the case of the initial state being at the vertex
containing the defect, and the form of the expression is the
same over all space (i.e., there are no piecewise components
and no need to separate the position space into a “transmitted
region,” “reflected region,” etc.). Numerous advantages also
exist compared to the matrix exponential method: the time
evolution can now be explored on a vertex by vertex basis
(reducing computation time as we no longer need to consider
the entire discrete subspace), numerical integration is less
computationally expensive and easier to implement, and
asymptotic approximations of the integral can be used to
characterize behavior for large or small t and α, among others.

IV. MULTIPLE DEFECTS

Using the same mathematical scaffolding discussed in
Sec. II and extending the work of Li et al. [37] to multiple
defects, the transmission coefficient for N point defects,
located at vertices d0, . . . ,di, . . . ,dN−1, can be calculated by
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FIG. 3. (Color online) (a) The time evolution of the initial state |1〉 for time t ′ = 20, with a defect placed at d = 5 with strength α = 1/
√

2,
using the matrix exponential definition (blue line) and the integral approach (18) (red data points). (b) A plot of the absolute error between both
methods.

starting with the scattered state ansatz,

|ψs(k)〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

|k〉 + r1(k)| − k〉, j < d0

...
ti(k)|k〉 + ri+1| − k〉, di−1 < j < di

...
tN (k)|k〉, dN−1 � j.

(20)

The Hamiltonian of the system is now given by

H =
∑

j

(2|j 〉〈j | − |j − 1〉〈j | − |j + 1〉〈j |)

+
N−1∑
i=0

αi |di〉〈di |, (21)

and so the eigenvalue condition,

〈j |H |ψs(k)〉
〈j |ψs(k)〉 = 2(1 − cos k)

(which must hold for all j ∈ Z and −π � k < π ), can then
be applied to all possible regions described by Eq. (20). As
before, this produces a set of 2N linearly independent linear
equations relating t1(k), . . . ,tN (k),r1(k), . . . ,rN (k), which can
then be solved to calculate all the transmission and reflection
amplitudes. Note that there is the added caveat that as N

increases, the complexity of the analytic form of ti(k) and
ri(k) appears to drastically increase—suggesting that for
N significantly large, analytic approximations or numerical
methods may be preferable.

Using this method, the transmission coefficient was calcu-
lated in the case of the 2, 3, 5, and 8-point defects, respectively.
For convenience, allowing di+1 − di = L and αi = α∀i (i.e.,
all barriers have equal separation and amplitude), the trans-
mission amplitude is given by

tN (k) = 1

1 + ωN

⇒ TN (k) = |tN (k)|2 = 1

1 + �N

, (22)

where

ω2 = iα csc k + 1
4α2(e2ikL − 1) csc2 k, (23a)

ω3 = − 1
8 iαe2ikL csc3 k[2 cos 2kL(α2 − 2iα sin k − 3)

+ 4α sin k(i − 2 sin 2kL) − 3i sin 2k(L + 1)

+ 6i sin 2kL − 3i sin 2k(L − 1) + 3 cos 2k(L − 1)

+ 3 cos 2k(L + 1) − 2α2], (23b)

and thus

�2 = 1
4α2 csc4 k(α sin kL + 2 sin k cos kL)2, (24a)

�3 = 1
16α2 csc6 k[(α2 − 2) cos 2kL − 4α sin k sin 2kL

+ cos 2k(L − 1) + cos 2k(L + 1) + cos 2k − α2 − 1]2.

(24b)

The analytic form of T (k) for the 5- and 8-point defect is too
long and complex to be reproduced here. The transmission
coefficients for N = 2,3,5, and 8 are plotted and compared in
Fig. 4 for barrier strength α = 1 and separations of L = 0,1,2,
and 5. It can be seen that as N → ∞, the local minimums
of T (k) approach zero, while the resonant peaks widen.
Furthermore, oscillation amplitudes appear to decrease, and
the transition between regions of perfect and zero transmission
becomes much sharper. Qualitatively, this appears indicative
of the electronic band structure observed in continuous-space
models of crystal lattices. The results are also visualized
in Fig. 5, showing the effect of defect amplitude α on the
transmission coefficient for the case N = 8. It is easily seen
that, by altering α, a method is provided to control the
placement and size of the unity transmission band.

Ultimately, however, this method of calculating the trans-
mission for N defects becomes unwieldy for large N , as
the increasing number of linearly independent equations
required to calculate ri(k),ti(k) scales by O(2N ) and results in
drastically larger computation times. Further, we are usually
only interested in calculating r1(k) and tN (k); this motivates
the creation of an algorithm to more efficiently characterize
CTQW transmission through multiple arbitrary defects.

V. A GENERAL NUMERICAL APPROACH
FOR MULTIPLE DEFECTS

In the case of continuous-space quantum mechanics, the
Fourier method approach utilized by Yiu and Wang [38],
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FIG. 4. (Color online) Transmission coefficient vs momentum for a CTQW momentum eigenstate incident on an N -point defect, where
N = 2 (blue dot-dashed line), N = 3 (red dashed line), N = 5 (black dotted line), and N = 8 (green solid line). The defect-induced barriers
are constructed with unity amplitude (α = 1) and equal separation L.

Falloon and Wang [39], and Manouchehri and Wang [40]
provides an efficient method of numerically calculating the
transmission coefficient T (k) over a wide range of k. In
this section, this method will be adapted for the CTQW on
the infinite line and verified against the multibarrier analytic
solution derived in the previous section.

Consider an arbitrary initial state |ψ0〉 incident on a set of
defects or barriers, with the transmitted component denoted
|ψt 〉 and produced as per the transmission amplitude t(k).
Using the completeness of the momentum eigenstates, these
can be written as

|ψ0〉 = 1

2π

∫ π

−π

dk|k〉〈k|ψ0〉, |ψt 〉 = 1

2π

∫ π

−π

dk|k〉〈k|ψt 〉.
(25a)

Evolving the state |ψ0〉 through time via the unitary operator
Ût , which acts to separate out the transmitted component,

|ψt 〉 = Ût |ψ0〉 = 1

2π

∫ π

−π

dkÛt |k〉〈k|ψ0〉

= 1

2π

∫ π

−π

dkt(k)|k〉〈k|ψ0〉, (26)

and comparing this with Eq. (25a), it can be seen that we
require

〈k|ψt 〉 = t(k)〈k|ψ0〉 ⇒ T (k) = |t(k)|2 = |〈k|ψt 〉|2
|〈k|ψ0〉|2 . (27)

Using position space completeness (Î = ∑
j |vj 〉〈vj |) coupled

with the inner product 〈k|vj 〉 = e−ikj , this expression can be
evaluated explicitly in terms of probability amplitudes of the
walker at each vertex:

T (k) = |〈k|ψt 〉|2
|〈k|ψ0〉|2 =

∣∣∑
j e−ikj 〈j |ψt 〉

∣∣2∣∣∑
j e−ikj 〈j |ψ0〉

∣∣2 . (28)

The numerical calculation of the inner product 〈j |ψt 〉 =
〈j |e−iH t |ψ0〉 is performed by expanding the matrix exponen-
tial via the Chebyshev expansion scheme, as detailed in Wang
and Scholz [41]. This method is particularly beneficial for two
major reasons: first, since the coefficients of the expansion
are Bessel functions, they vanish after a finite number of
terms, allowing for an exceptionally high level of accuracy
with a comparatively small number of terms. Second, this
is an example of a global propagator, negating the need for
iterative calculations at smaller time steps which can introduce
accumulation error.

Briefly outlining the expansion, we have

Ut ≡ e−iH t/h̄

= e−i(λmax+λmin)t/2

[
J0(η)φ0(−iH̃ ) + 2

∞∑
n=1

Jn(η)φn(−iH̃ )

]
,

(29)
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FIG. 5. (Color online) Transmission coefficient vs momentum for a CTQW momentum eigenstate incident on an evenly spaced 8-point
defect, with barrier amplitudes α = 0.1 (blue dot-dashed line), α = 0.5 (red dashed line), α = 1 (black dotted line), and α = 2 (green solid
line).

where λmax and λmin are maximum and minimum eigenvalues
of the Hamiltonian matrix H , η = (λmax − λmin)t/2, Jn(η) are
the Bessel functions of the first kind, and φn are the Chebyshev
polynomials. To ensure convergence, the Hamiltonian needs
to be normalized as

H̃ = 1

λmax − λmin
[2H − λmax − λmin]. (30)

This method can now be used to investigate the behavior of a
CTQW on an infinite line, incident on an arbitrary distribution
of diagonal defects. However, for comparison purposes, we
will restrict our attention to N equally spaced diagonal defects.
The Hamiltonian under investigation is therefore given by

H =
∑

j

(2|j 〉 − |j − 1〉 − |j + 1〉) 〈j |

+
N−1∑
n=0

αn|d + nL〉〈d + nL|, (31)

where αn ∈ R represents the amplitude of the nth defect, d ∈ Z
is the position of the first defect, and L ∈ N is the integer
spacing between defects. For convenience, the initial state is
chosen such that the walker is localized at a vertex to the left
of the double reflecting barriers, i.e., |ψ(0)〉 = |vj ′ 〉, j ′ < 0.

Noting that∣∣∣∣∣∑
j

e−ikj 〈j |j ′〉
∣∣∣∣∣
2

=
∣∣∣∣∣∑

j

e−ikj δjj ′

∣∣∣∣∣
2

= |e−ikj ′ |2

= 1∀k ∈ [−π,π ), (32)

this allows the expression for the transmission coefficient give
by Eq. (28) to reduce to

T (k) =
∣∣∣∣∣∑

j

e−ikj 〈j |ψt 〉
∣∣∣∣∣
2

∀k ∈ [−π,π ). (33)

Using Eq. (29), T (k) = |∑j e−ikj 〈j |e−iH t |j ′〉|2 is calcu-
lated for t = 300, chosen sufficiently large such that the
probability of the walker remaining located between the
defects is small, i.e.,

∑(N−1)L
j=0 |〈d + j |ψ(t)〉|2 ≈ 0. The results

are plotted in Fig. 6 for a variety of different values of L

and compared to the analytic solution derived in Sec. IV.
It is observed that the numeric results closely match the
analytic solutions, with an average absolute difference of
σT = 2.64 × 10−3. As an aside, note the presence of Gibbs
phenomenon at the boundaries of the domain due to the use of
Fourier methods. By restricting the analysis to 0.5 < k < 2.5,
the absolute difference between the numeric and analytic
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FIG. 6. (Color online) (a) Transmission coefficient vs momentum of a CTQW momentum eigenstate incident on two defects of unity
amplitude, separated by distances L = 0 (solid blue line), L = 1 (dashed red line), L = 2 (dotted black line), and L = 5 (dot-dashed green
line), and calculated via numerical Fourier methods. (b) Absolute difference between numeric and analytic results for the case L = 1.
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results reduces to σT = 3.58 × 10−7. This general numerical
approach can now be applied to situations where analytical
analysis becomes impossible, fine tuning the parameters to
increase accuracy.

It should be noted that a major source of error associated
with this method is due to a nonzero probability distribution
located between defects at measurement time. While this can
be avoided by increasing the time step t , it requires that a
larger number of vertices be included in the propagation grid,
as well as an increase in the number of Chebyshev summation
terms required for significant accuracy, potentially increasing
the computational time. The additional computational time
may prove insignificant with the accelerating availability of
computational power. If not, further refinements (such as
absorbing boundary conditions and multiple passes) may be
needed.

VI. CONCLUSIONS

In the past two decades, quantum walks have played a
pivotal role in the field of quantum information theory and
current research is suggesting potential applications across a
whole range of different fields, making them an invaluable tool
in the study of structured, discrete-space systems. Significant
advances are also constantly being made in experimental
realizations of quantum walks, providing a means to fully
utilize the computational power of quantum walkers, while
simultaneously requiring an accurate theoretical and efficient
numerical framework to provide detailed information on the
effects of disorder and scattering on a quantum walk.

In this paper, a one-dimensional continuous-time quantum
walk in the presence of multiple defects was explored
analytically, with the results highlighting resonance behavior
previously observed in the case of double diagonal defects. It
was also demonstrated that by increasing the number of defects
and by altering the defect amplitudes, “bands” of perfect
transmission (surrounded by regions of zero transmission)
can be selectively placed in momentum space, allowing for
a high level of control of quantum walking characteristics.
This provides a link between the tight-binding lattice models
widely used in condensed matter physics and the development
of quantum information applications based on continuous-time
quantum walks. Finally, we extended the Fourier-Chebychev
method utilized in the literature for continuous position
space to the discrete space of CTQWs, which provides a
general numerical approach to situations where analytical
analysis becomes impossible, such as multiple barriers, higher
dimensions, and multiple interacting walkers.

Quantum walks remain an important field of study due to
their crucial role in both quantum information processing and
the modeling of complex quantum systems. As a result of this
research, we hope to provide methods to selectively control and
efficiently characterize the time evolution of quantum walks
by taking advantage of diagonal disorder that can sometimes
be unavoidable in physical systems.
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Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien,
Science 329, 1500 (2010).

[15] L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi,
R. Ramponi, and R. Osellame, Phys. Rev. Lett. 108, 010502
(2012).

[16] J. D. A. Meinecke, K. Poulios, A. Politi, J. C. F. Matthews,
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