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Equivalence between sharing quantum and classical secrets and error correction

Anne Marin* and Damian Markham†
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We present a general scheme for sharing quantum secrets, and an extension to sharing classical secrets,
which contain all known quantum-secret-sharing schemes. In this framework, we show the equivalence of
existence of both schemes, that is, the existence of a scheme sharing a quantum secret implies that the extended
classical-secret-sharing scheme works, and vice versa. As a consequence of this, we find schemes sharing classical
secrets for arbitrary access structures. We then clarify the relationship to quantum error correction and observe
several restrictions thereby imposed, which for example indicates that for pure-state threshold schemes the share
size q must scale with the number of players n as q � √

n. These results also provide a way of searching for
quantum-error-correcting codes.
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Secret sharing [1] is an important primitive in information
networks, for example, in online auctions, electronic voting,
and secure multiparty function evaluation. The problem setting
is that a dealer d wishes to distribute a secret (we will consider
both classical and quantum secrets) to a set of n players, such
that only certain sets of players can access the secret (we
call these the authorized sets of players). The sets that do
not have access to any information about the secret are called
the unauthorized sets. The assignment of authorized sets is the
access structure. Any such scheme can be loosely described as
a ramp scheme, written in terms of three parameters (k,k′,n),
where any set of players B such that |B| � k can access
the secret, whereas any set such that |B| � k′ can not get
any information at all. Clearly, in general this description
does not cover the full access structure in-between k and
k′. When k′ = k − 1, it does, however, and this is called
a perfect threshold scheme, denoted (k,n), perfect because
a subset is either authorized or unauthorized, and threshold
because no subset of cardinality less than k − 1 is authorized.
In this work, when we refer to threshold schemes we assume
perfect schemes also, although this is not an assumption always
made in the literature (e.g., [2]). Often, it suffices to consider
threshold schemes (k,n) since all access structure can be built
from them ( [2,3]), although the efficiency of such schemes is
not always optimal ( [4]).

We consider two quantum extensions of the secret-sharing
problem, first put forward in [5,6], which have found applica-
tion, for example, in secure multiparty quantum computation
[7]. The first is the sharing of a quantum secret [5,6], that is,
the dealer wishes to distribute a quantum state such that only
authorized sets of players can access it, and unauthorized sets
can not. We refer to this protocol family as QQ (following
the notation of [8]). It was shown in [6] that all thresholds
not contradicting no cloning can be achieved. Here, we will
see that while this is true, error correction implies severe
restrictions on how this can be done in particular in the
dimension of the systems used. The second quantum version
we consider is the sharing of a classical secret using quantum
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channels, introduced in [5]. This family of protocols is referred
to as CQ [8]. It is known that there exist informationally
theoretically secure schemes to share a classical secret [1],
however, these schemes require a secure channel between
the dealer and each player. One way of resolving this issue
would be to use n quantum key distribution (QKD) channels
from the dealer, one to each player, and then use the Shamir
scheme. Another way, presented in [5], combines the idea
of QKD with secret sharing directly. By choosing a suitable
entangled state shared between the dealer and the players,
the dealer is able to share a private (secure) key with the
players such that only authorized players can access the key.
We refer to protocols taking this second approach as RCQ
(transmission of a random classical key with a multiparty
quantum state or channel). The existing RCQ schemes to date
are threshold schemes with parameters (n,n) [5], (3,5) [8],
and (2,3) [9,10]. Although these RCQ schemes may be less
practical because of the entanglement than the simple QKD
schemes, we study them here for two main reasons. First, we
believe these schemes are of intrinsic interest, with potential
as building blocks of more elaborate protocols, and moreover
second, through the relationship we present they can be useful
to search for new QQ and error-correcting schemes. We finally
remark that we are not considering explicitly the CC protocols
of [8], corresponding to the simple sharing of a classical secret
with a quantum state, although many connections to QQ can
be carried through the equivalence to RCQ.

In [8,9], a link was presented between QQ and RCQ
protocols where it was shown that in some instances the
same framework could be used for both using graph states.
The usefulness of this connection is manyfold. On a practical
level, sharing the same framework is advantageous since any
implementation for one can be adapted to perform the other. On
the theoretical level, the advantages are very rich. On the one
hand, it allows new RCQ schemes to be found via translation
from QQ, as in [8,9]. In the other direction, techniques for
constructing RCQ schemes (which can often on the face of it
appear much simpler) can be used to construct QQ schemes.
Furthermore, there is a deep relationship between QQ and
quantum error correction. For example, it was shown in [12]
that for the qubit system, there is a (restricted) equivalence
between QQ protocols based on graph states and CSS stabilizer
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codes [6,13]. This opens up the door to the possibility of using
powerful tools from error-correction theory to investigate
secret sharing, and techniques from secret sharing to find
error-correcting codes. Graph-state methods have recently
yielded many results in this direction [11,14,15]. The main
topic of this work is to give a general relationship between
between error correction and QQ and RCQ secret sharing,
which will complete previous results. We will develop this
connection to show equivalence of schemes, which will lead
to new RCQ schemes, tighter security of RCQ schemes, and
bounds on what QQ schemes are possible, as well as providing
a different approach to searching for error-correcting codes.

In this work, we present the most general QQ secret-sharing
scheme for sharing a quantum secret and its extension to a
RCQ scheme, which formally encompass all quantum existing
secret-sharing schemes. We show that the existence of such a
QQ implies the extension to the RCQ case has the same access
structure, and similarly, if there exists a RCQ scheme of this
type, the quantum version is also a valid QQ secret-sharing
scheme (propositions 1 and 2). This allows us to use the QQ
schemes from [6] for the extended RCQ scheme, allowing all-
access structures (not violating the no-cloning theorem). The
equivalence further allows for security amongst authorized sets
for the RCQ scheme. We then clarify the equivalence between
the secret-sharing protocols and quantum error correction,
showing that all ramp schemes are error-correcting schemes
and vice versa. Several restrictions are thus imposed from
the theory of error correction, notably, that for pure state QQ
threshold schemes, the size of the share must scale with the
size of the network (something which is also true in the fully
classical setting).

We start in the next section by describing the protocols.
Then, in Sec. II we give precise definitions of the requirements
of authorized and unauthorized sets in terms of the information
that can obtain. In Sec. III, we show how the QQ and RCQ
schemes are related to each other, summarized in Table I.
Then, in Sec. IV we elaborate on the relationship with error
correction and finish with discussions in Sec. V.

I. QQ AND RCQ SECRET-SHARING PROTOCOLS

The most general QQ quantum-secret-sharing protocol
can be understood as a map from a quantum secret state
of dimension q, |ζ 〉 = ∑q−1

i=0 αi |i〉 to a multipartite state
|ζL〉1···n = ∑q−1

i=0 αi |iL〉1···n, shared between the players 1 · · · n,
encoded onto some logical basis {|iL〉1···n}, which is designed
such that authorized sets of players can access the secret and
unauthorized sets of players can not. Without loss of generality,
we take {|iL〉} to be an orthonormal basis. An encoding onto a
nonorthogonal basis can be understood as some preprocessing
taking the state input |ζ 〉 to a state |ζ ′〉 corresponding to the

TABLE I. Relationships between RCQ and QQ protocols
(Proposition 1).

RCQ QQ

(n,k,k′) → (n,k,n − k)
(n,k,k′ � n − k) ← (n,k,n − k)

nonorthogonal encoding, and then following the map above.
A mixed-state encoding can always be purified into a map as
above, followed by tracing out of some systems (in which case
the number of active players would be less than n, we discuss
such examples and their relation to our results in Sec. IV). In
this way, this encoding formally represents the most general
scheme.

For any such scheme, we extend to RCQ sharing classical
secrets by introducing what we call a channel state between
system d held by the dealer and the players’ systems 1 · · · n,
which can be thought of as the dealer preparing a maximally
entangled state and sending half through the encoding above,

|CS〉d,1···n := 1√
q

q−1∑
i=0

|i〉d |iL〉1···n. (1)

This is a maximally entangled state between d and the players,
and can be understood as a channel from the dealer to the
players. In the QQ case, this channel is used to teleport the
secret from the dealer’s qubit to the players (that is, it acts
simply as an encoding process for the most general scheme).
In the RCQ case, this channel is used to establish a secure
random key between the dealer and the players (as per the
Ekert quantum key distribution protocol [16]). In both cases,
it is the choice of the logical basis {|iL〉1···n} that gives rise to
the access structure. The RCQ extension we present using this
idea covers all known RCQ schemes [5,8,9] (up to possible
reordering of public communication steps, e.g., [17]).

For the RCQ extension, it will be useful to define gen-
eralized Pauli operators, which are for prime dimension q,
X|i〉 = |i + 1〉, Z|i〉 = ωi |i〉, where ω = ei2π/q , and q is the
dimension of the secret. For the moment, we will consider
the prime-dimensional case and later we will see how the
results also work for nonprime dimension. We further denote
|i(t)〉 as the eigenstates of XtZ for t ∈ {0, · · · ,q − 1} and as
the eigenstate of X for t = q. The channel state can then be
expanded as

|CS〉d,1···n = 1√
q

q−1∑
i=0

|i(t)〉d |i(t)L〉1···n,

where the bases {|i(t)L〉} are also orthonormal and comple-
mentary, that is, |〈i(t)L|j (t ′)L〉|2 = 1/q when t 	= t ′.

We will first describe the protocols, then make precise what
we mean exactly by authorized and unauthorized sets for both
QQ and RCQ, and security for the RCQ protocol in Sec. II.

QQ protocol. Let |ζ 〉d ′ = ∑q−1
i=0 αi |i〉d ′ ∈ Cq be the secret

state in possession of the dealer.
(1) The dealer prepares a channel state (1), then does an

extended Bell measurement over d and d ′ and appropriate
corrections, leaving the state of the n qudits as

|ζL〉1···n =
q−1∑
i=0

αi |iL〉1···n. (2)

(2) The dealer sends qudit � of the resultant state to player
�.

(3) Players in authorized set B follow a prescribed decod-
ing operation �B .

042332-2



EQUIVALENCE BETWEEN SHARING QUANTUM AND . . . PHYSICAL REVIEW A 88, 042332 (2013)

FIG. 1. (Color online) Schematic of the QQ scheme. A dealer
encodes a secret state |ζ 〉d ′ onto n parties (2). After tracing out of
other systems to get ρ

ζL

B (together with the encoding denoted by map
	B ), authorized players B perform map �B to recover the secret.

The protocol is then defined by encoding basis {|iL〉1···n},
and decoding operations �B for each authorized set B.
More concretely, �B maps the reduced density matrix ρ

ζ

B =
T rV/B(|ζL〉〈ζL|) on the systems of B, onto the secret state |ζ 〉b′

on some system b′. �B may be a global operation over systems
B (plus possible ancilla systems) and b′ may in B, or some
ancilla (see Fig. 1).

RCQ protocol. The RCQ protocol does not directly dis-
tribute a secret classical message from the dealer to the players,
rather it is a protocol to establish a secure key between the
dealer and the players, such that only authorized sets of players
can access the key. In this sense, it may be considered more
accurately as secret key sharing. This key can then be used
by the dealer to share a secret message such that it can only
be read by authorized sets of players. The RCQ protocol is
an extension of those presented in [5,8,9], to the more general
case not necessarily using graph states. We now outline the
protocol.

(1) The dealer prepares a channel state (1) and sends qudit
� to player �.

(2) The dealer randomly chooses a t ∈ {0, . . . ,q} and mea-
sures qudit d among the bases: {XtZ}q−1

t=0 for t ∈ {0, . . . ,q − 1}
or X if t = q. We denote the result r(t). The state of the players
is then projected to

|r(t)L〉1···n. (3)

(3) An authorized set B randomly measures in one of the
prescribed measurements {Mt ′

B}qt ′=0, with result denoted s(t ′).
(4) Repeat steps 1, 2,, and 3 m → ∞ times. The list of

measurement results r(t) and s(t ′) are the raw keys of the
dealer and players B, respectively.

(5) SECURITY TEST: Follow standard QKD security steps
(see, e.g., [19]). Through public discussion between d and
B first sift the key followed by standard error correction and
privacy amplification to generate a secure key.

The protocol is defined by encoding basis {|iL〉1···n}, and
measurements {Mt ′

B}qt ′=0 for each authorized set B. At the end,
if the protocol is not aborted during the security step, the dealer
and the authorized set share a secure key which can be used to
distribute a classical secret securely.

II. AUTHORIZED AND UNAUTHORIZED SETS
AND SECURITY

We now define what it means to say sets of players are
authorized or unauthorized for both RCQ and QQ protocols.
For later proofs comparing the two protocols, it will be useful
to also talk about equivalent information-theoretic conditions.

For this, we define the channel 	B from system d ′ to subset
of players B as the encoding procedure in QQ giving state (2)
followed by tracing out all but the players B (see Fig. 1).

We first look at the QQ case.
QQ authorized sets. We say a set of players B is authorized

if they can perfectly access the quantum secret, that is, if there
exists a decoding procedure �B acting only on those players,
which can perfectly recover the secret input state |ζ 〉.

If the quantum information is accessible through the
channel 	B , then the quantum mutual information between
two halves of a maximally entangled state after one half
has been sent down the channel is maximal [18]. That
is to say, I (τ ; 	B) = 2 log2 q, where I (τ ; 	B) = S(τ ) +
S(	B(τ )) − S((id ⊗ 	B)(|�q〉〈�q |)), τ = 1

q

∑q−1
i=0 |i〉〈i| is a

maximally mixed state, |�q〉 = 1
q

∑q−1
i=0 |ii〉 is a maximally

entangled state, and S is the von Neuman entropy (S(ρ) =
−tr[ρ log2(ρ)]).

QQ unauthorized sets. We say a set of players B is unau-
thorized if it has no access to the quantum secret whatsoever,
that is, the reduced density matrix ρB is independent of the
quantum input |ζ 〉. Information theoretically, this corresponds
to I (τ ; 	B) = 0.

We now look at the RCQ protocol.
RCQ authorized sets. We say a set of players B is authorized

if it can access the secret, that is, if after the dealer has
distributed the channel state (1) and measured it (up to step
2 in the protocol), there exists a (possibly joint) measurement
on their systems which allows them to discover the dealers
measurement result r(t) for each setting t .

To rewrite this in information-theoretic language, it suffices
to consider the channel from the dealer to the players B, where
for each t , the dealer sends a specific chosen state |r(t)L〉1···n
to the players encoding the classical information r(t), chosen
according to a uniform distribution. The ability, or not, of a set
of players to access this classical information is equivalent to
them being able to discover the dealer’s measurement result
in the RCQ protocol. In terms of the action of the channel
	B above, this corresponds to a set of inputs {Ut |i〉}q−1

i=0 ,
where U is a Fourier transform of rank q, t ∈ [q]. That is,
each |r(t)L〉1···n corresponds to an input state Ut |r〉d ′ . Thus, to
verify that this channel works perfectly for each such message,
we are interested in the classical information that can be
transmitted for a random distribution over the alphabet for
a given t , which we denote Et = { 1

q
,U t |i〉}q−1

i=0 . We use Holevo
information defined over a quantum channel 	B by

χ (	B(Et )) = S

(
1

q

∑
i

	B(Ut |i〉〈i|Ut†)

)

− 1

q

∑
i

S(	B(Ut |i〉〈i|Ut†)).

If the classical information is accessible through the quan-
tum channel 	B perfectly, then the Holevo information
χ (Et (	B)) = log2 q, which must be true for all t , for all
authorized sets B.

RCQ unauthorized sets. We say a set of players B is
unauthorized if the dealer’s result r(t) is completely denied
to them, that is, if the reduced state ρB of those systems has no
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dependence on r(t) for all t . In information-theoretic terms,
for the channel 	B and the set of inputs above, this is equal to
saying that χ (	B(Et )) = 0 for all t .

RCQ security. For RCQ protocols, there is the additional
condition of security. We say an authorized set B is secure if the
key generated by the protocol between dealer d and players B

is perfectly secure. Note that in order not to impose potentially
impossible restrictions on B’s measurements, in these schemes
a set B is treated as one party, hence security is not guaranteed
against cheaters within the set B. We expect that such cheats
can be overcome for all graph-state schemes, but leave it to
further work. As with all QKD schemes, an authenticated
classical channel between d and B is required. Security will be
shown against general attacks in a way which tolerates noise,
as shown for a qudit extension of the Ekert protocol in [19].
Previously, security was only shown against intercept resend
attacks [5,8,9] (although to some extent cheating players
within B could be tolerated).

III. EQUIVALENCE OF QQ AND RCQ

We now explore the relationship between the existence of
protocols for RCQ and QQ as described above. For the QQ
and RCQ schemes defined as above from a channel state |CS〉,
with logical basis {|iL〉}, the following relationships hold.

Proposition 1:
(1) A QQ authorized set is a RCQ authorized set.
(2) A QQ unauthorized set is a RCQ unauthorized set.
(3) A RCQ authorized set is a QQ authorized set.
Proof. 1 and 2 are clear since the access of the classical

information is a special case of the quantum information. We
directly deduce 3 from the lemma 1 of [20], which says that

χ (	B(E0)) + χ (	B(E1)) � I (τ : 	B). (4)

If a set B can access in the RCQ protocol, after going
through the associated quantum channel 	B , the classical
information is accessible in at least two mutual unbiased bases
{|i〉} and {U |i〉}; this means that χ (	B(E0)) = χ (	B(E1)) =
log2(q), hence, I (τ : 	B) � 2 log2(q). Moreover, from its
definition we have I (τ : 	B) � 2 log2(q). Hence, I (τ : 	B) =
2 log2(q), which means that the information is quantumly
accessible. �

We note that it is not true that a RCQ unauthorized set is
automatically QQ unauthorized, for example, the (n,n) RCQ
threshold schemes [5,8] are only (n,0,n). However, as we will
see, additional mixing can address this, and further for the pure
state QQ the unauthorized sets are exactly determined by the
authorized sets, so that the connection between QQ and RCQ
is exact.

We will now show that a valid access structure for a RCQ
protocol implies a secure key distribution.

Proposition 2. A RCQ authorized set is a RCQ secure set.
Proof. From proposition 1.3 a RCQ authorized set is QQ

authorized, hence there exists a decoding map �B . Then,
we notice that the action of �B takes the channel state to a
maximally entangled state between d and b′. To guarantee
security, we can define the measurements {Mt ′

B}qt ′=0 as first
B does �B , then measures {Xt

b′Zb′ }q−1
t=0 for t ∈ {0, . . . ,q − 1}

or Xb′ if t = q. For security, one can consider the step �B

simply as part of the channel distributing the entangled state.

FIG. 2. (Color online) Schematic of the RCQ scheme for the
secure decoding. The channel state (1) is generated by the dealer
sending half an entangled state down the QQ encoding channel.
The dealer then randomly chooses t and measures in the associated
basis, getting result r(t). After tracing out of other systems to get ρB

authorized players B perform QQ decoding map �B , followed by a
measurement associated with a random value t ′, getting result s(t ′).
The strings r(t) and s(t ′) are the raw strings from which the dealer
and players B can establish a secure random key using standard QKD
techniques [19].

The remaining part of the measurements coincides exactly with
those in the extended six-state protocol in [19], hence, security
follows directly from there. Note that the same connection
holds if only two measurement settings were chosen, so in
both directions two settings are sufficient to show equivalence.
However, more settings can allow for better noise tolerance
[19] (see Fig. 2). Also, these measurements may not be the only
ones allowing for a secure protocol. Indeed, the measurements
in the RCQ schemes of [8,9] are local, and not of the form here,
yet, the statistics can be shown to be equivalent and security is
still guaranteed. �

We summarize these results in Table I.
From these results, we can immediately see that the schemes

presented in [6] allowing for all QQ access structures can be
used to give RCQ protocols allowing for all-access structures.
Furthermore, this can be done using high-dimensional graph
states [21].

We note again at this point that the equivalence presented
here does not include all possible schemes for sharing classical
secrets. This is clear since the equivalence presented also
implies access structures violating no cloning can not work
for RCQ schemes. In particular, the use of QKD plus Shamir
schemes does not prohibit access structures with more than
one accessing set. Hence, such schemes can not be connected
in a simple way to QQ schemes. Indeed, this fact (as well as
its possible intrinsic interest discussed at the end of this paper)
is why we concentrate on RCQ schemes, so that we may make
general, yet interesting, statements of equivalence.

At this point, we return to the question of dimensionality. In
fact, with a small modification to considering the RCQ protocol
for only two bases (the t = 0 and q bases), propositions 1 and
2 work for all composite dimensions also. This follows from
the proofs and the fact that the security in [19], and Eq. (4)
(lemma 1 of [20]), works for any dimension by restricting to
these two bases.

IV. CONNECTION TO ERROR CORRECTION

We now clarify the relationship between QQ, RCQ, and
quantum-error-correcting codes (QECC). A QECC encodes a
space of dimension κ onto n systems (or shares), such that
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errors on some subsets of systems can be tolerated. A distance
d means that the code can tolerate the loss of d − 1 shares
(systems), or (d − 1)/2 arbitrary errors at unknown locations.
For shares of dimension q we denote a QECC as [(n,κ,d)]q .
Clearly, one can use such an encoding as a QQ, and in the
language of ramp schemes, if each share is a player, this means
that k = n − d + 1. Which players are unauthorized is a priori
not given for a code and must be checked (see, e.g., [22,23].
Similarly, it is clear that any QQ scheme is a QECC with
d = n − k + 1.

It was noticed in [6] that for the case of error-correcting
protocols encoding onto pure states, the situation becomes
much simpler. It turns out that in this case it can be seen that the
tolerance of a code to the loss of a set of shares BC is exactly
equivalent to the same set BC not getting any information
whatsoever about the encoded information. When used for
QQ this means its ramp scheme parameter is k′ � n − k. But,
by no cloning k′ � n − k. Thus, for all QQ with pure state
encodings, k′ = n − k. For threshold schemes this reduces to
k = (n + 1)/2 as was explicitly stated in [6] (see also [23] for
linear codes and [12] for uses and applications to nonthreshold
schemes for qubits).

Furthermore, it gives a general relationship: a pure state
QECC protocol [(n,κ,d)]q is equivalent to a QQ ramp scheme
where all shares are considered as players with parameters
(k,k′ = n − k,n). That is, all such QECC are QQ ramp
schemes with those parameters, and vice versa.

We can then ask what else is imposed by the relationship
with error correction. One important question is that of share
size. It can easily be seen that the Singleton bound implies
that for (perfect) threshold schemes with pure state encoding
κ � q. Hence, when κ is a power of q (as is the case for
many codes, including all stabilizer codes), the only nontrivial
encoding satisfies κ = q and all pure state (perfect and ideal)
threshold schemes must be maximum distance separable
(MDS) codes (of dimension 1) (see also [13] for a rigourous
information-theoretical-based proof in both directions). This
implies something that has been shown for small n cases
in [8], which is that, for all pure-state perfect threshold QQ
secret-sharing schemes encoding a secret equal to the size of
each share (that is ideal schemes), the dimension of each share
must scale with n:

q �
√

n + 2

2
. (5)

This bound, as explained in [24], follows from the fact that the
code saturates the quantum Singleton bound. Moreover, the
quantum MDS conjecture for such codes, also cited in [24],
states that it would scale as badly as q �

√
n − 1. This result

extends the bounded maximal length given by theorem 6 of
[12] to qudit systems.

We note that the above results need only hold for pure-
state error-correcting codes. The general schemes in this work
have used pure-state encoding. However, as mentioned earlier,
mixed-state encodings can also exist, although they will have
purifications which can be phrased in our framework (hence in
some sense they are also covered). It is interesting to consider
what exactly our results mean for the mixed-state schemes.

The first thing that we can say is that the relationships
between QQ and RCQ will still hold in the mixed case. We

have to be a bit careful by what we mean, but if we define
both protocols in terms of the map �B from the original secret
state |ζ 〉d ′ held by the dealer to the encoded version held by
set of players B (whereby QQ is a direct use of �B and RCQ
is equivalent to the dealer sending half a maximally entangled
state through �B then doing the measurements) and take the
information-theoretic definitions of authorized, unauthorized,
and secure given in Sec. II, the proofs for equivalence in Sec. III
follow through directly.

On the other hand, there do of course exist mixed-state
schemes which do not satisfy the error-correction restrictions
for the pure-state schemes above. Indeed, as pointed out in [6],
it is possible to go from (k = n + 1/2,n) to (k,n − l) threshold
schemes by throwing away l systems. Clearly, these mixed
schemes do not satisfy k′ = n − k. Such schemes were used
in [6] to show that all QQ threshold schemes can be achieved
using quantum Reed-Solomon codes. It is these schemes
which when translated to RCQ schemes (through our general
relationship above) show all threshold (not violating no
cloning) schemes are possible for RCQ also. Note also that
this approach of discarding shares clearly holds in the RCQ
extensions presented in this work, hence, a QQ (k,k′,n) mixed-
state scheme implies a RCQ (k,k′,n) mixed-state scheme.

Another set of schemes has been developed recently which
does not satisfy the dimension restriction (5) [23,25–27].
The idea of these schemes is to take pure-state error-
correcting schemes, which are necessarily (k,k′ = n − k,n)
ramp schemes, thus guaranteed quantum access to at least k,
and add classical mixing on top to increase k′ arbitrarily (where
classical information is distributed via classical-secret-sharing
protocols over secure channels). Since the original quantum
codes are no longer threshold schemes, they do not have
to saturate the Singleton bound, and hence do not have to
satisfy (5). However, even in this case it seems there are some
restrictions on share size [26]. Note also that both these sets of
schemes can be purified, and their purifications clearly fall into
our generalized schemes and must satisfy the above still, and
although such purifications are impractical, this fact imposes
restrictions on the mixed protocols also.

V. DISCUSSION

On the one hand, the error-correction codes which were
used to provide arbitrary access structures for QQ [6] can,
through the generalized scheme presented here, be used
for RCQ, hence all access structures (not contracting the
no-cloning theorem) become possible. In addition, we have
seen that the mapping from QQ to RCQ allows for standard
QKD security proofs to be used, implying full security within
the authorized sets (where previously it was only known for
limited attacks).

As was remarked in the introduction, applying simple
QKD plus existing classical-secret-sharing schemes solves the
same problem of an untrusted channel between the dealer and
players as does RCQ. Nevertheless, we believe it interesting
to study the existence of RCQ protocols in their own right;
aside from the usefulness as a theoretical tool through the
connection to QQ and QECC, they may be used as building
blocks for more involved protocols. For example, one may
imagine using the redundancy of information present in RCQ
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in order to realize a more noise-tolerant bipartite QKD (all
the shares belong to one player Bob) so that Bob recovers
the information in the presence of noise (including erasure),
i.e., a kind of quantum error-corrected QKD. One may also
imagine using RCQ as a means to authenticate a quantum
channel using an authenticated classical channel; the only way
that the correlations shared at the end of the RCQ protocol
(that is, correlated measurement results) between the dealer
and authorized set B can be correct (i.e., close to equal) is
if the quantum channel is close to perfect between the dealer
and B (indeed this is the essence behind the link to QQ). This
could be used in combination with QQ as a way to test the
channel and then use it for QQ, for example. In this setting
having both schemes using the same resources as presented
here would make such combinations more practical in terms
of both implementation and how they could be used together.

In the other direction, these results give a method for search-
ing for error-correcting codes starting from RCQ schemes.
Checking the access structure (or error-correcting capability)
for RCQ can be more straightforward than checking the QQ
case. We have seen that checking the access structure for only
two bases suffices, for any dimensional system, to guarantee

access (tolerance to loss) for quantum information too. In
particular for graph-state schemes, many tools have recently
been developed to phrase the conditions for secret sharing in
solely graphical language, which have been used to search for
new schemes [14,21,28,29] which are therefore valid QQ and
QECC schemes, and put bounds on the parameters that can
be achieved. Through the general connection shown in this
work, such techniques can also be used to search for quantum
error-correcting codes, in particular for higher-dimensional
codes which are seen to be necessary for the most efficient
codes and general access structures.
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