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In this paper, we show how continuous-variable dense coding can be implemented using entangled light
generated from a membrane-in-the-middle geometry. The mechanical resonator is assumed to be a high reflectivity
membrane hung inside a high quality factor cavity. We show that the mechanical resonator is able to generate
an amount of entanglement between the optical modes at the output of the cavity, which is strong enough to
approach the capacity of quantum dense coding at small photon numbers. The suboptimal rate reachable by our
optomechanical protocol is high enough to outperform the classical capacity of the noiseless quantum channel.
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I. INTRODUCTION

The entanglement of quantum states plays an important role
in quantum information [1]. Sharing an entangled quantum
state, such as an Einstein-Podolsky-Rosen (EPR) state [2],
makes it possible to perform quantum communication pro-
cesses like quantum dense coding [3], quantum teleportation
[4], quantum cryptography [5], and quantum computational
tasks [6]. The experimental realizations of these protocols have
been achieved in several physical systems, such as photons,
trapped ions, atoms in optical lattices, nuclear magnetic
resonance, etc. [7,8].

A wide range of theoretical and experimental schemes
have been also proposed to generate, observe, and/or exploit
entanglement using macroscopic objects [9–25]. Very recently,
it has been shown how mechanical resonators can be used as
a novel tool for generating strong continuous-variable (CV)
entanglement [26], which may involve optical modes at dif-
ferent wavelengths [22,27,28]. Such strong CV entanglement
can therefore be exploited to implement quantum information
tasks, like dense coding as studied in this paper.

Quantum dense coding, originally proposed for qubits [3],
provides a method by which two bits of information can
be transmitted by sending only one qubit, provided that an
entangled resource was previously shared by the parties. This
idea was then extended to the CV setting where the rate at
which information is transmitted can potentially be doubled
by the use of EPR states as the source of the entanglement
[2,29–32].

In this paper, we show how we can successfully implement
the protocol of CV dense coding by exploiting the optical
entanglement at the output of an optomechanical cavity with a
membrane-in-the-middle geometry [33,34]. This system con-
sists of a high finesse cavity with two fixed-end mirrors and a
perfectly reflecting movable middle mirror, such as a dielectric
membrane. We show the ability of the mechanical resonator
to generate strong entanglement between two output optical
beams, in a way which is robust with respect to the various
optomechanical parameters, like the cavity damping rates, the
laser input powers and bandwidths, and the temperature of
the membrane. Then, using this optical entanglement, we
prove that we can perform dense coding with a rate which
closely approximates the dense coding capacity at small

photon numbers. We also show that this rate is good enough
to outperform the (one-way) classical capacity of the noiseless
quantum channel.

The paper is structured as follows. In Sec. II, we first
give a thorough theoretical description of the system under
consideration and the quantum Langevin equations (QLEs)
are derived and linearized around the semiclassical steady
state. In Sec. III, we study the steady state of the system and
quantify the entanglement between the output optical modes by
using the logarithmic negativity. Note that most of the contents
of these two sections are a review of previous literature (for
instance, see Ref. [35] and references therein) which is given
to the reader for the sake of completeness. Then, in Sec. IV,
there are the main results of our paper. Here we show that
the optomechanical source is able to approach the capacity of
dense coding at low energies, and to outperform the classical
capacity of the noiseless quantum channel at higher energies.
Finally, our conclusions are given in Sec. V.

II. DESCRIPTION AND DYNAMICS OF
THE OPTOMECHANICAL SYSTEM

We start with a sketch of the system as shown in Fig. 1.
A perfectly reflecting membrane with mass m is placed in the
middle of a cavity formed by two fixed mirrors separated from
each other by a distance 2L. Two strong coupling fields with
amplitudes εr and εl and frequencies ω0r and ω0l , respectively,
are sent into the cavity through the partially transmitting right
and left mirrors. The right and left subcavities are assumed
to be linearly coupled to the displacement of the membrane
with coupling constants G0r and G0l , respectively. Hence the
system’s time-dependent Hamiltonian takes the form [36]

H = h̄ωra
†a + h̄ωlb

†b + h̄�m

2
(p2 + q2)

+ h̄(G0ra
†a − G0lb

†b)q + ih̄εr (a†e−iω0r t − aeiω0r t )

+ ih̄εl(b
†e−iω0l t − beiω0l t ), (1)

where a (b) is the annihilation operator for right (left) sub-
cavity photon with resonance frequency ωr (ωl), while q and
p ([q,p] = i) are the dimensionless position and momentum
operators of the membrane with frequency �m. In Eq. (1), the
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FIG. 1. (Color online) Protocol of continuous-variable dense
coding equipped with an optomechanical (OM) device as the source
of the entanglement. The preparation of the entanglement consists of
a perfectly reflecting movable middle mirror dividing the cavity into
two separated subcavities right and left with intracavity modes a and
b, respectively. The subcavities are excited by two lasers through fixed
mirrors. The left l and right r optical outputs of the subcavities are
entangled and used to implement continuous-variable dense coding.

optomechanical coupling constants are expressed by (i = r,l)

G0i = ωi/L
√

h̄/m�m

and

εi =
√

2Piκi/h̄ω0i ,

where Pi is the power of the probe lasers impinged inside
the cavity through the right and left mirrors, and κi are the
damping rates of the subcavities’ photons via the end mirrors.

In the rotating frame at the frequencies ω0r and ω0l of the
driven lasers, we can derive the QLEs for the mirror and the
subcavities variables [37]

q̇ = �mp,

ṗ = −�mq − γmp − G0ra
†a + G0lb

†b + ξ,

ȧ = −(κr + i�0r )a − iG0rqa + εr +
√

2κrain, (2)

ḃ = −(κl + i�0l)b + iG0lqb + εl +
√

2κlbin,

where �0i = ωi − ω0i are the detunings, γm is the mechanical
damping rate, ain(t) and bin(t) are subcavities’ input noises, and
ξ (t) is the Brownian noise acting on the mechanical resonator,
with correlation function [35,38]

〈ξ (t)ξ (t ′)〉 = γm

�m

∫
dω

2π
e−iω(t−t ′)ω

[
coth

(
h̄ω

2kBT

)
+ 1

]
,

(3)

with kB being the Boltzmann constant, and T the temperature
of the reservoir.

In a very high mechanical quality factor regime, i.e., for
Q = �m/γm → ∞, the mechanical noise is characterized by
white thermal noise [39]:

〈ξ (t)ξ (t ′) + ξ (t ′)ξ (t)〉/2 � γm(2n̄ + 1)δ(t − t ′),

with mean excitation number n̄ = [exp(h̄�m/kBT ) − 1]−1.
The subcavities’ input noises, ain(t) and bin(t), also obey
white-noise correlation functions [37]

〈ain(t)a†
in(t ′)〉 = δ(t − t ′), 〈a†

in(t)ain(t ′)〉 = 0,
(4)

〈bin(t)b†in(t ′)〉 = δ(t − t ′), 〈b†in(t)bin(t ′)〉 = 0,

where we have set N (ωi) = [exp(h̄ωi/kBT ) − 1]−1 ≈ 0,
since h̄ωi/kBT 	 1 at optical frequencies.

III. STATIONARY ENTANGLEMENT OF
THE OUTPUT OPTICAL MODES

In this section we study the stationary entanglement
between the two optical modes at the output of the cavity. For
this purpose, we derive the stationary correlation matrix of
the system under consideration. First, we linearize the QLEs
given in Eq. (2) around the semiclassical fixed points, i.e.,
q = qs + δq, p = ps + δp, a = α + δa, and b = β + δb. The
fixed points are obtained by setting the time derivatives to zero,
resulting in

ps = 0,

qs = G0l|β|2 − G0r |α|2
�m

,

(5)

α = eiπεr√
κr + �r

,

β = εl√
κl + �l

.

where �r = �0r + G0rqs and �l = �0l − G0lqs describe the
effective detunings of the right and left subcavities’ fields,
respectively.

In the frequency domain, the stationary covariance
matrix (CM) for the quantum fluctuations of the mir-
ror and the output of optical modes’ variables, uout(t) =
[δq(t),δp(t),δXout

l (t),δY out
l (t),δXout

r (t),δY out
r (t)]T , takes the

form [35]

Vout = lim
t→∞

1

2

〈
uout

i (t)uout
j (t) + uout

j (t)uout
i (t)

〉
=

∫
dωϒ(ω)(M̃ext(ω) + Pout)

× Dext(M̃ext(ω)† + Pout)ϒ
†(ω), (6)

where M̃ext(ω) = (iω + A)−1,

A =

⎛
⎜⎜⎜⎜⎜⎝

0 �m 0 0 0 0
−�m −γm Gl 0 Gr 0

0 0 −κl �l 0 0
Gl 0 −�r −κl 0 0
0 0 0 0 −κr �r

Gr 0 0 0 −�r −κr

⎞
⎟⎟⎟⎟⎟⎠ , (7)

with

Pout = diag[0,0,1/2kl,1/2kl,1/2kr ,1/2kr ],

Dext = diag[0,γm(2n̄b + 1),2κl,2κl,2κr ,2κr ],
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and ϒ(ω) is the Fourier transform of

ϒ(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δ(t) 0 0 0 0 0
0 δ(t) 0 0 0 0
0 0 Rl −Il 0 0
0 0 Il Rl 0 0
0 0 0 0 Rr −Ir

0 0 0 0 Ir Rr

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where Gi = 2ωi

L

√
Piκi

m�mω0i (κ2
i +�2

i )
(i = r,l) are the effective op-

tomechanical coupling constants, and Rj = √
2κj Re[gj (t)]

and Ij = √
2κj Im[gj (t)] (j = r,l) are determined by the

causal filter functions [35,40] gj (t), with bandwidths 1/τj and
central frequencies �j .

From the global CM of Eq. (6) we extract the reduced CM
V′ of the output optical modes with quadrature fluctuations
δXout

l , δY out
l , δXout

r , and δY out
r . This matrix can be written in

the block form

V′ =
(

LI C
CT RI

)
, C =

(−C C ′
C ′ C

)
, (8)

where L,R � 1/2, C � 0, and C ′ is numerically small
compared with the other matrix elements. This CM completely
characterizes the stationary Gaussian state of the output cavity
modes. In particular, this CM approximates that of an EPR
state with cross correlations of the kind δXout

l ≈ −δXout
r and

δY out
l ≈ δY out

r .
In order to study the conditions under which the output

optical modes are entangled, we consider the logarithmic
negativity EN [41] given by

EN = max[0,−ln(2ζ )], (9)

where ζ is the least partially transposed symplectic eigenvalue
of V′ [2,42]. This is given by

ζ =
√

�(V′) −
√

�(V′)2 − 4detV′

2
, (10)

with �(V′) = L2 + R2 − 2detC.
In Fig. 2 we have plotted the logarithmic negativity EN

versus the normalized frequency of the output cavity mode
�l/�m for two different values of membrane quality factor
Q = 104 and Q = 15 × 104. We have assumed an experimen-
tal situation [33,43] representing a membrane with vibrational
frequency �m/2π = 10 MHz and mass m = 10 ng. The right
side subcavity has damping rate κr = 0.4�m and the laser
power imping on this subcavity is assumed to be Pr = 10 mW.
The left side subcavity damping rate is κl = 0.1�m with the
laser power Pl = 48 mW. The temperature of the membrane’s
reservoir is T = 1 K and the subcavities’ detunings have
been fixed at �r = −�l = −�m with �r = −�m. Figure 2
shows that the entanglement between output cavity fields is
maximum around �l = �m. Also we see that by increasing
the quality factor of the mechanical resonator one can increase
the entanglement between the subcavities’ output fields, as one
should expect.

A more interesting situation is depicted in Fig. 3 which
shows how entanglement between the output cavity fields

Q = 15 104

Q = 104

0.9998 0.9999 1.0000 1.0001 1.0002
0.0

0.5

1.0

1.5

Ωl/Ωm

E
N

×

FIG. 2. (Color online) Logarithmic negativity EN between the
optical output modes of the two subcavities versus the normal-
ized frequency �l/�m for two different values of the mirror’s
quality factor Q at a fixed temperature T = 1 K with �r =
−�m. The subcavities detuning have been fixed at �r = −�m

and �l = �m while the other parameters are �m/2π = 10 MHz,
κr = 0.4�m, Pr = 10 mW, L = 1 mm, κl = 0.1�m, Pl = 48 mW,
and m = 10 ng.

depends on the subcavities’ damping rates. This figure shows
that the entanglement reaches its maximum around κr ∼
0.35�m and κl ∼ 0.2�m, and out of this region entanglement
quickly decreases. Note that the maximum of entanglement
is approached around small values of damping rates which
is close to the instability threshold. Finally, Fig. 4 shows the
proper values of input powers which maximize entanglement.
This figure reveals that by increasing the input powers one
can definitely improve the entanglement between the output
modes, even though at the same time the instability region
is extended. Note that the generated CV entanglement can
be verified from the measurement record by applying a
generalized version of Duan’s inequality [44].

FIG. 3. (Color online) Logarithmic negativity EN between the
optical output modes of the two subcavities versus the normalized
damping rates κl/�m and κr/�m at fixed temperature T = 1 K
and �r = −�l = −�m. Other parameters are the same as those
in Fig. 2.
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FIG. 4. (Color online) Logarithmic negativity EN between the
optical output modes of the two subcavities versus the input powers
Pl and Pr for �r = −�l = −�m. Again the other parameters are the
same as those in Fig. 2.

IV. DENSE CODING WITH AN
OPTOMECHANICAL SOURCE

So far we have shown that an optomechanical cavity in the
form of a membrane-in-the-middle geometry can be used to
generate entanglement between two optical fields. Now we
show that these optical modes are sufficiently entangled to be
used for implementing the protocol of dense coding.

The scheme is the one sketched in Fig. 1, where the
entangled optical beams at the output of the cavity are labeled
by l and r , with mode i = l,r having quadrature fluctuations
δXout

i and δY out
i . The left mode l is sent to Alice, while

the right mode r is sent to Bob. Then, Alice encodes a
Gaussian complex signal αs = (Xs + iYs)/

√
2 by applying

the displacement operator D(αs) on mode l (with Vs being the
variance of each real Gaussian variable Xs and Ys). The output
mode, with quadrature fluctuations δXout

l + Xs and δY out
l + Ys ,

is sent to Bob through a noiseless quantum channel. At his
station, Bob combines the incoming signal mode with mode r

in a balanced beam splitter, of which he homodynes the two
output ports, measuring the position fluctuation of “+” and the
momentum fluctuaction of “−”. In other words, Bob detects
the two operators

δX+ = 1√
2

(
δXout

l + Xs + δXout
r

)
,

(11)

δY− = 1√
2

(
δY out

l + Ys − δY out
r

)
.

One can easily check that these operators have the same
variance, i.e.,

〈δX2
+〉 = 〈δY 2

−〉 = 1
2 (L + R − 2C + Vs) := VB. (12)

It is also easy to compute the conditional entropy VA|B which
quantifies the remaining entropies of Xs and Ys given Bob’s
homodyne detections. This is given by

VA|B = 〈
X2

s

〉 − 〈Xs(δX+)〉2

〈δX2+〉

= 〈
Y 2

s

〉 − 〈Ys(δY−)〉2

〈δY 2−〉 = Vs − V 2
s

2VB

. (13)

Now, using Eqs. (12) and (13), we can compute Alice and
Bob’s mutual information [6,45]

I (A : B) = log2
Vs

VA|B

= log2

(
1 + Vs

L + R + 2C

)
. (14)

Here the signal power can be written as Vs = n̄s + 1/2. In
turn, the thermal number n̄s can be written in terms of the
mean number of photons n̄ which are sent to Bob through
the noiseless quantum channel. This mean photon number
represents the energetic constraint of the protocol, and is equal
to n̄ = n̄out

l + n̄s , where n̄out
l = 〈(bout

l )†bout
l 〉 is the average

number of photons in the output cavity mode l. Then, we
can write the signal power as Vs = (n̄ + 1) − L. Finally, by
replacing Vs in Eq. (14) we get the mutual information of
Alice and Bob I (A : B) in terms of the energetic constraint n̄.
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FIG. 5. (Color online) Optomechanical dense coding rate IOM

(a) versus the average photon numbers for two different values of
the laser bandwidth and (b) versus the temperature of the cavity
for three different values of the mirror’s quality factor. Here we
consider �r = −�l = −�m and the other parameters are the same as
in Fig. 2.
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FIG. 6. (Color online) Optomechanical dense coding rate IOM

versus the normalized damping rates κl/�m and κr/�m at a fixed
temperature T = 1 K and �r = −�l = −�m. The other parameters
are the same as in Fig. 2.

This quantity represents the dense coding rate IOM(n̄) which
is achievable by using our optomechanical source.

In Fig. 5(a) we have plotted the optomechanical dense
coding rate IOM in terms of the energetic constraint n̄ for
two different values of laser bandwidth τ . As expected, IOM

is increasing in n̄, and also in the bandwidth τ . Then, as
shown in Fig. 5(b), we see that IOM is relatively robust with
respect to the temperature of the cavity. The dependence of
the optomechanical rate on the cavity dampings is illustrated

FIG. 7. (Color online) Optomechanical dense coding rate IOM

versus the input powers Pl and Pr at a fixed temperature T = 1 K and
�r = −�l = −�m. The other parameters are the same as Fig. 2.
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FIG. 8. (Color online) The optomechanical dense coding rate IOM

is plotted in terms of the photon number n̄, and compared with the
dense coding capacity I

opt
D , the classical capacity IF (Fock states

and photon counting), the rate IS achievable by squeezed states and
homodyne, the rate I het

C achievable by coherent states and heterodyne,
and finally, the rate IC reachable by coherent states and homodyne. We
consider T = 1 K and �l = −�r = �m. The subcavities’ detunings
are �l = −�r = �m, while the other optomechanical parameters
are �m/2π = 10 MHz, κr = 0.4�m, Pr = 10 mW, L = 1 mm,
κl = 0.1�m, Pl = 48 mW, m = 10 ng, and Q = 15 × 104.

in Fig. 6, where we can see that IOM is maximum around
κr � 0.25�m and κl � 0.1�m. Finally, in Fig. 7 we also show
the influence of the input powers.

As shown in Fig. 8, the optomechanical dense coding rate
IOM(n̄) is able to approximate the dense coding capacity [31]
I

opt
D (n̄) = log2(1 + n̄ + n̄2) for low photon numbers n̄ � 2,

remaining suboptimal at higher energies. As we show in
the same figure, for n̄ > 2 the optomechanical dense coding
rate IOM(n̄) outperforms all the rates associated with one-way
quantum communication from Alice to Bob at the same energy.
Indeed, it beats the classical capacity of the noiseless quantum
channel IF (n̄) = (1 + n̄)log2(1 + n̄) − n̄log2n̄, which can be
reached by encoding in Fock states and decoding by photon
counting [46,47]. Then, it clearly outperforms the rate IS(n̄) =
log2(1 + 2n̄) achievable by squeezed states and homodyne
detection [48], the rate I het

C (n̄) = log2(1 + n̄) reachable by
coherent states and heterodyne detection [48,49], and finally
the rate IC(n̄) = log2(

√
1 + 4n̄) which can be reached by

coherent states and homodyne detection [31,32].

V. CONCLUSION

In this paper, we have shown that continuous-variable dense
coding can be implemented using an optomechanical cavity
as the source of the entanglement. We have considered a
high-finesse cavity with a membrane-in-the-middle geometry,
i.e., formed by two fixed end mirrors and a perfectly reflecting
movable mirror in the middle. The dynamics of the system has
been investigated by solving the quantum Langevin equations.
After their linearization, we have analyzed the stationary
entanglement which can be established between the two output
optical modes of the cavity, showing its behavior in terms of
the main optomechanical parameters, such as the mechanical
damping rates or the laser input powers.

042331-5



BARZANJEH, PIRANDOLA, AND WEEDBROOK PHYSICAL REVIEW A 88, 042331 (2013)

Using the optical entanglement generated by the cavity we
have then implemented the protocol of continuous-variable
dense coding. We have computed the optomechanical dense
coding rate, studying its behavior in terms of the various system
parameters, including the input powers, the damping rates, and
the quality factor, mass and temperature of the movable mirror.
We have shown how this rate approximates the dense coding
capacity at low photon numbers (n̄ � 2), and outperforms the
one-way classical capacity of the noiseless quantum channel
at higher energies (n̄ > 2). As a result, we have proven how an

optomechanical cavity is able to generate an amount of optical
entanglement which is strong enough to implement a standard
protocol of quantum information.
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