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Method for preparing two-atom entangled states in circuit QED and probing it via quantum
nondemolition measurements

D. Z. Rossatto* and C. J. Villas-Boas
Departamento de Fı́sica, Universidade Federal de São Carlos, CEP 13565-905, São Carlos, SP, Brazil

(Received 7 August 2013; published 17 October 2013)

We propose a probabilistic scheme to prepare a maximally entangled state between a pair of two-level atoms
coupled to a leaking cavity mode in circuit QED, without requiring precise time control of the system evolution
and initial atomic state. We show that the steady state of this dissipative system is a mixture of two parts, where
the atoms are either in their ground state or in a maximally entangled one. Then, by applying a weak probe field
to the cavity mode, we are able to discriminate those states without disturbing the atomic system, i.e., to perform
a quantum nondemolition measurement via the cavity transmission. In this scheme, one has maximum cavity
transmission only when the atomic system is in an entangled state, so that a single click in the detector is enough
to be sure that the atoms are in a maximally entangled state. Our scheme relies on an interference effect as it
happens in an electromagnetically induced transparency phenomenon so that it works even in the limit of a cavity
decay rate much stronger than the atom-field coupling.
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The preparation and manipulation of entangled states
have attracted much interest in recent years, as they have
no classical counterpart and are key ingredients in quan-
tum nonlocality tests [1] and play an important role in
quantum computation and communication tasks [2], such as
quantum cryptography [3], computers [4], and teleportation
[5]. Atomic entangled states can be prepared either by
coherent control of unitary dynamics [6], as a consequence
of measurements [7], or as a result of a dissipative process [8].
Recently, the preparation of quantum systems in an entangled
state by dissipative schemes has been actively studied; the
noise that is always present in these experiments can itself be
used as a resource for entanglement generation, thus avoiding
the usual destructive effect on quantum system coherence due
to system-environment interaction.

On the other hand, entanglement quantifiers, such as con-
currence [9] and negativity [10], are not physical observables,
i.e., there are no directly measurable observables, until now, to
describe the entanglement of a given arbitrary quantum state.
In general, it is necessary to perform quantum state tomog-
raphy to calculate these entanglement quantifiers, inevitably
perturbing the state of the system, although some interesting
methods have recently been proposed to construct direct
observables related to entanglement in particular systems
[11–14]. Whereas the authors in Refs. [11–13] can determine
the entanglement when few copies of the quantum system are
available, in Ref. [14] the authors do this by introducing a probe
atom that performs a quantum nondemolition measurement.

Here we propose a probabilistic scheme to prepare a
maximally entangled state between a pair of two-level atoms
coupled to a leaking cavity mode in circuit QED, without
requiring either precise time control of the system evolution
or strong atom-field coupling. The steady state (ρss) of this
dissipative process is a mixed state with two parts: one
describing the possibility of having both atoms in the ground
state |G〉 and the other describing the atoms in a maximally
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entangled state |D〉. In both cases, the cavity mode is in the
vacuum. In the context of a single experimental run, ρss shows
us that the atomic system can be either in an uncorrelated
state or in a maximally entangled one. Thus, if we are able
to distinguish the two states without perturbing the atomic
system, we will be able to prepare it in a maximally entangled
state. In fact, we can do this by applying a weak probe field to
the atom-cavity system. As we show below, when the atomic
system is in the uncorrelated state, the cavity transmission
goes to zero, as opposed to the maximum transmission which
happens only when the atomic system is in the maximally
entangled state. Thus, a single click on the detector works
as a witness of the entanglement generation of the atomic
system. On the other hand, we also show that if we have an
unknown atomic mixed state ρ (between the states |G〉 and
|D〉), then the average transmission of the atom-cavity system
is exactly equal to the concurrence of the state ρ, thus providing
a direct measure of the degree of entanglement of the atomic
system.

Model. Consider a pair of identical two-level atoms (|g〉j =
ground state, |e〉j = excited state) coupled resonantly to a
cavity mode with coupling strength λ, modeled by the Tavis-
Cummings Hamiltonian (h̄ = 1) [15],

H = ωa†a + ω

2
Sz + λ(aS+ + a†S−), (1)

where the cavity mode and the atomic transition are at
frequency ω, with ω � λ. The operators Sz ≡ ∑2

j=1σ
j
z and

S± = ∑2
j=1σ

j
± are the collective spin operators with σ

j
± =

(σ j
x ± iσ

j
y )/2, σ

j
x,y,z being the Pauli operators for each atom;

a (a†) is the annihilation (creation) operator of the cavity field.
Assuming a leaking cavity at temperature zero, the dynamics
of this system is governed by the master equation [16]

ρ̇ = −i[H,ρ] + κ(2aρa† − a†aρ − ρa†a), (2)

with κ being the decay rate of the cavity mode. The proposed
experimental setup is shown in Fig. 1(a).
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FIG. 1. (Color online) (a) Pictorial experimental setup. A pair of
two-level atoms coupled to a leaking cavity mode. Once the system
reaches the steady state, the weak probe field is switched on and
the cavity transmission is monitored. (b) Energy-level diagram of the
whole system with the decay rates and the probe field.

The spectrum of the system, i.e., its allowed states, is given
by the dressed states of H ,

|G,0〉 = |G〉 ⊗ |0〉c, (3a)

|±〉 = 1√
2

(|B〉 ⊗ |0〉c ± |G〉 ⊗ |1〉c), (3b)

|D,n〉 = |D〉 ⊗ |n〉c, (3c)

with energies −ω, ±λ
√

2, and nω, respectively, where |G〉 =
|g〉1 ⊗ |g〉2, |B〉 = (|g〉1 ⊗ |e〉2 + |e〉1 ⊗ |g〉2)/

√
2, |D〉 =

(|g〉1 ⊗ |e〉2 − |e〉1 ⊗ |g〉2)/
√

2, and |n〉c is the cavity mode
state in the Fock basis, with n = 0,1. Here we are considering
only the lowest eigenstates of our system, since we are
interested in its steady state, which is a mixture of those
eigenstates. In addition, our scheme requires a weak probe
field, which also keeps the cavity field with up to one photon,
as we will explain below.

The damping of the cavity mode can promote transitions
between the eigenstates of the system, whose rates can be
obtained by Fermi’s golden rule [17]. As we are considering
only the cavity decay, the transition rate from a higher energy
state |i〉 to a lower one |f 〉 is given by �i→f = κ|〈f |a|i〉|2 [17].
When we take into account the eigenstates of our system,
it is easy to see that we have two independent subspaces:
{|G,0〉,|−〉,|+〉} and {|D,n〉}, in which there are no transitions
between states that belong to distinct subspaces. Thus, the
nonzero transition rates are �±→G,0 = κ/2 and �D,n+1→D,n =
κ . In Fig. 1(b), the energy-level diagram of the whole system

is depicted with the decay rates and the probe field (frequency
ωp) that will be introduced later.

Owing to the existence of two independent subspaces, for
any general initial state, the steady state of the system is a
mixture of the lowest-energy eigenstates of each subspace,
i.e.,

ρss = (1 − P )|G,0〉〈G,0| + P |D,0〉〈D,0|, (4)

with P = Tr[ρ(0)|D〉〈D|] being the projection of the initial
state on the dark state |D〉. This result can be obtained directly
from Eq. (2) for t → ∞ (ρ̇ = 0).

It is important to emphasize that we are not considering
independent atomic damping, as it destroys the entanglement
in the steady state so that ρ(t → ∞) → |G,0〉〈G,0| for any
initial state. In other words, the entangled state has a finite
lifetime proportional to the atomic one. As a real two-level
system always has a spontaneous decay γ , our results are
valid in a time window defined by γ t � 1 and λ2t/κ � 1, so
that we must have λ2/κ � γ [18]. However, if the atoms are
subject to a collective reservoir, as usually occurs in circuit
QED [19], then the steady state is still given by Eq. (4), i.e.,
such reservoir does not destroy the dark state |D〉, showing
that circuit QED is a very good scenario to implement our
scheme. We will discuss this point in more detail below.

In the context of a single experimental run, we can see from
the ρss that the system can be either in the atomic ground
state |G〉 or in the entangled state |D〉 with probabilities
1 − P and P , respectively. There is thus a probability of
having the atoms in a maximally entangled state. However,
a direct measurement of the atoms would destroy such an
entangled state. To circumvent this problem, we must be able
to measure our atomic system nondestructively. We can do that
by probing our system with a weak probe field, which allows
us to distinguish the atomic states (|G〉 or |D〉) through the
cavity transmission without disturbing the atomic system.

To measure the system nondestructively, we must first
wait until the system reaches its steady state (ρss) and then
apply a weak probe field to the cavity, whose Hamiltonian is
described by

Hp = ε(aeiωpt + a†e−iωpt ), (5)

with ε 
 λ. Here, ε and ωp are the strength and the frequency
of the probe field, respectively.

In order to understand how this probe field can provide
information about the atomic state, consider first the resonant
case, ωp = ω. If the system is in the |D,0〉 state, we can
see from Fig. 1(b) that the probe field is able to promote
the transition |D,0〉 ↔ |D,1〉. However, as |D〉 is a dark
state, it is decoupled from the cavity mode so that the
system behaves as an empty cavity case (λ = 0). In this
case, the asymptotic cavity field state is a coherent field
|α〉c = e−|α|2/2(|0〉c + α|1〉c + . . .), with α = −iε/κ; then, for
a very weak probe field (ε 
 κ), the steady state of the
atom-field system is given by

|ψ〉Dss ≈ |D〉 ⊗
[(

1 − 1

2

ε2

κ2

)
|0〉c − i

ε

κ
|1〉c

]
. (6)

On the other hand, if the system is in the |G,0〉 state, the
weak probe field could a priori induce two off-resonant tran-
sitions: |G,0〉 ↔ |±〉, with detuning between the frequencies
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of the probe and atom-field system given by ±λ
√

2. However,
when ωp = ω, the probe field does not introduce any photon
into the cavity in the stationary regime, whatever the value of
the atom-field coupling λ, as explained below. Hence, when
the system is in the |G,0〉 state, the probe field cannot introduce
any excitation into the system, so that the steady state of the
system is

|ψ〉Gss ≈ |G,0〉 . (7)

Therefore, the normalized transmission of the cavity, T =
〈a†a〉/(|ε|/κ)2, can be used to provide us with information
about the atomic steady state (4): we have T = 1 when
the atoms are in the maximally entangled state (|D〉) and
T = 0 when the atoms are in the separable state (|G〉). Thus,
in the stationary regime, after applying a weak probe field
to the system, the transmission works as a nondemolition
measurement of the atomic state, allowing us to know whether
the system is in a maximally entangled state or not. Moreover,
our system does not require a high-efficiency photon detector,
since a single click is enough to discriminate between the two
atomic states available in the steady state (4).

An entangled state can be prepared simply by monitoring
the transmission in the time interval κ/λ2 
 t < 1/γ for
independent atomic damping: any click in the detector within
this time window projects the atomic system in |D〉. If no
click is registered, then we must reset the system and start
the experiment again. For collective atomic damping, whose
Liouvillian is �c(2S−ρS+ − S+S−ρ − ρS+S−), with �c being
the collective decay rate, the state is prepared in a similar way
in the time interval t � κ/λ2. The collective atomic damping
does not change the cavity transmission when the atoms are in
|D〉, but it does so when they are in |G〉 such that, in this case,
T|G〉 = (�cκ/λ2)2/(1 + �cκ/λ2)2. Thus, the collective atomic
decay decreases the contrast between T|D〉 and T|G〉, but it
is possible to reach a very reasonable contrast with recently
observed experimental parameters in the limit of λ � �c [20].
For instance, for �c ∼ κ = 0.01g [20], T|G〉 ∼ 10−8. In this
way, the smaller the ratio �cκ/λ2, the better is the efficiency
of our method.

The total transmission is expected to be maximum when the
atoms are in the dark state |D〉 because, in this state, the atomic
system is decoupled from the cavity mode so that the atom-field
system behaves as an empty cavity case (λ = 0). However,
when the system is in the |G,0〉 state, the transmission is
expected to be zero (or close to zero). The reason for this zero
transmission could be the detuning between the weak probe
field and the atom-field system: the two transitions |G,0〉 ↔
|±〉 are coupled by the probe field, but with detuning ±λ

√
2.

As both states |±〉 have decay rates �±→G,0 = κ/2, one can see
that for λ

√
2 � κ/2, the probe field is very out of resonance

with the atom-field system and an absorption close to zero is
then expected. If this were the case, one could argue that our
system only works in the strong-coupling regime. However,
the scheme is also valid for weak atom-field coupling λ, as
the real reason for the absence of transmission from the cavity
is that our system has two absorption channels, |G,0〉 ↔ |−〉
and |G,0〉 ↔ |+〉, which destructively interfere to produce
zero absorption in the resonant case ωp = ω, analogously to
the phenomenon of electromagnetically induced transparency

FIG. 2. (Color online) (a) Cavity transmission vs detuning be-
tween the probe and the cavity field, setting λ = 0.2κ , ε = 0.05λ,
and �c = 0.1λ. We observe that even for λ

√
2 � κ/2 and �c �= 0, the

cavity transmission is close to zero for �p = 0 when ρss → |G,0〉
(dashed line), the circles are for �c = 0, and the solid line represents
the cavity transmission when ρss → |D,0〉 (empty cavitylike). Time
evolution of the concurrence C (dashed line) and normalized trans-
mission T (solid line) for a single trajectory when (b) ρss → |G,0〉
and (c) ρss → |D,0〉, assuming |φ(0)〉 = |g〉1 ⊗ |e〉2 ⊗ |0〉c.

[21,22]. Figure 2(a) shows the cavity transmission as a function
of the detuning between the probe field and the cavity mode,
�p = ωp − ω, assuming the atom-field coupling λ = 0.2κ ,
the collective atomic decay rate �c = 0.1λ, and the strength of
the probe field ε = 0.05λ. This scheme works for any value of
λ, but the smaller the value of λ, the longer is the time taken
by the system to reach its steady state, since it is proportional
to κ/λ2.

We simulated an experiment with numerical calculations
using the quantum jump approach (also called the quantum
trajectories method) [23]. Single trajectories are shown in
Figs. 2(b) and 2(c), simulating a single run of an experiment
for two cases: when ρss → |G,0〉 [Fig. 2(b)] and when ρss →
|D,0〉 [Fig. 2(c)]. In these simulations, we adopted λ = 0.2κ ,
ε = 0.05λ, �c = 0.1λ, and ρ(0) = |φ(0)〉〈φ(0)|, with |φ(0)〉 =
|g〉1 ⊗ |e〉2 ⊗ |0〉c. Here, Wootters’ concurrence (C) [9,24]
was used as a measure of the degree of entanglement. As
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we can see in Fig. 2, when the atoms are in the maximally
entangled (separable) state, the transmission of the probe field
in the monitoring region is maximum (almost zero). This figure
also helps us to see the evolution of a single trajectory of
the system: at t = 0, we have the preparation of the initial
state ρ(0), followed by the stabilization of the system; then we
switch on the probe field, which requires a second stabilization
time; finally, we have the monitoring region where the atomic
state is nondestructively measured.

We have mentioned above that the contrast between T|G〉 and
T|D〉 decreases in the presence of collective atomic damping,
even though such damping does not couple the two subspaces
{|G,0〉,|−〉,|+〉} and {|D,n〉}. The reason for the increasing of
T|G〉 is related to a disturbance in the destructive interference,
which produces zero absorption at the resonant case ωp = ω.
It is possible to show that the collective atomic damping plays
the same role of the dephasing in the usual phenomenon of
electromagnetically induced transparency in atomic ensemble
[21]; that is, such damping (�c) destroys the superposition of
the quantum state, |φ〉 = N (λ

√
2|G〉 − ε|B〉) ⊗ |0〉c, respon-

sible for the interference effect on the absorption channels of
the atom-cavity system, where N is a normalization factor.
Here, λ

√
2 (ε) plays the role of the control field (probe

field) in the usual phenomenon of electromagnetically induced
transparency [21].

As we have seen so far, to be able to generate the maximally
entangled state, it is necessary that the initial atomic state ρ(0)
has a nonzero projection on the dark state |D〉. This can be
arranged in different ways, for example: (i) if we are able to
stimulate the atoms individually, then we can prepare the initial
state |g〉1 ⊗ |e〉2 ⊗ |0〉c; (ii) if we are not able to stimulate the
atoms individually, then an incoherent field can be applied
to both atoms simultaneously, so as to prepare a completely
mixed state ρ(0) = 1a

4 ⊗ |0〉c〈0|, with 1a being the identity
atomic matrix (1a = (|g〉〈g| + |e〉〈e|)1 ⊗ (|g〉〈g| + |e〉〈e|)2).
In the first case, the projection on the dark state is P = 1/2,
while in the second it is P = 1/4, with these being the
probabilities of preparing the atoms in a maximally entangled
state.

Direct measurement of the concurrence. Besides using our
scheme as a source of maximally entangled states, our scheme
can also be used as a direct method to measure the concurrence
of the atoms. As explained above, for any initial state, the
steady state of the atom-field system is given by Eq. (4),
which is a mixture of a completely separable state and a
maximally entangled one. On applying a weak probe field,
when �cκ/λ2 
 1 and γ κ/λ2 
 1, the steady state turns out
to be

ρss → ρ̃ss ≈ (1 − P ) |ψ〉Gss 〈ψ | + P |ψ〉Dss 〈ψ | , (8)

where |ψ〉Gss and |ψ〉Dss belong to distinct subspaces. For this
state, the average transmission is T (ρ̃ss) = P . However, the
concurrence of the atomic state is also C[Trc(ρss)] = P , where
Trc means the trace over the cavity mode variables. Therefore,
we see that the transmission of the atom-field system T (ρ̃ss) is
exactly the degree of entanglement (concurrence) between the
two atoms. In this way, our scheme works as a direct method
to measure the concurrence of the atomic steady state, without
requiring any tomographic reconstruction of the atomic density
matrix.

In conclusion, we have shown a probabilistic scheme to
prepare a maximally entangled state between a pair of two-
level atoms coupled to a leaking cavity mode in circuit QED,
and how to probe this atomic steady state, without perturbing
it, via the cavity transmission. In the case of a single run of
the experiment, we have seen that if the atomic system is in
an entangled state, the cavity transmission will be maximal.
On the other hand, if the system is in an uncorrelated state,
the cavity transmission goes to zero. Therefore, a single click
in the detector is sufficient to determine that the atoms are
in a maximally entangled state. We have also seen that our
scheme works as a direct method to measure the concurrence
of the atomic steady state, without requiring any tomographic
reconstruction of the atomic density matrix.
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