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In this paper, we show that the quantum Zeno effect can occur for generalized quantum measurements
or operations. As a consequence of frequently performing nonselective measurements (or trace-preserving
completely positive maps), the evolution of a certain measurement-invariant state is governed by an
effective Hamiltonian defined by the measurement (or map) and the free-evolution Hamiltonian. For selective
measurements, the state may change randomly with time according to measurement outcomes, but some physical
quantities (operators) still evolve according to the effective Hamiltonian.

DOI: 10.1103/PhysRevA.88.042321 PACS number(s): 03.67.Pp, 03.65.Xp, 03.65.Yz

I. INTRODUCTION

The phenomenon that the time evolution of a quantum
system can be slowed down by frequent measurements, and
eventually “frozen” in the large-frequency limit, is known as
the quantum Zeno effect (QZE) [1,2]. As an interesting phe-
nomenon in quantum physics, the QZE has been theoretically
studied for decades and demonstrated in many experiments
(see Ref. [3] for a review, and recent articles [4–6]). If
instead of frequently projecting a system into its initial state,
measurements project it into a multidimensional subspace that
includes the initial state, the QZE allows the dynamics within
the subspace, which is known as the quantum Zeno subspace
effect [7]. In a recent work [6], some of us proposed a version
of the QZE, which is called the operator QZE. In the operator
QZE, the evolution of some physical quantities (operators) are
frozen by frequent (noncommuting) measurements, while the
quantum state may change randomly with time according to
measurement outcomes.

In general, a quantum measurement corresponds to a set
of measurement operators {Mq} satisfying the completeness
equation

∑
q M

†
qMq = 1 [8]. The postmeasurement state for

the measurement outcome q is given by ρq = p−1
q MqρM

†
q ,

where pq = Tr(MqρM
†
q ) is the probability of the outcome q,

and ρ is the state of the system before the measurement. If
the measurement is nonselective, which means outcomes are
not recorded, the measurement transforms the state as a trace-
preserving completely positive (CP) map Pρ = ∑

q MqρM
†
q ,

where Kraus operators are measurement operators. Any trace-
preserving CP map can be formalized in the operator-sum
representation [8].

In this paper, we show that the QZE can occur for
generalized quantum measurements or operations. By means
of frequently performing nonselective measurements (or trace-
preserving CP maps), if the initial state is invariant under the
measurement P , the evolution is governed by an effective
Hamiltonian defined by the measurement and the free-
evolution Hamiltonian. As a result of frequently performed
selective measurements, the state may change randomly with
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time according to measurement outcomes, but some operators
still evolve according to the effective dynamics. In the effective
dynamics, each measurement invariant subspace (MIS), which
is an irreducible common invariant subspace of measurement
operators {Mq}, behaves like a single quantum state. Actually,
each set of isomorphic MISs contains a noiseless subsystem
of the map P [9], and the effective Hamiltonian drives the
evolution of noiseless subsystems. If there is not any nontrivial
invariant subspace of {Mq} or MISs are not isomorphic with
each other, the system is always totally frozen in the initial
state. The quantum Zeno subspace effect corresponds to the
case that MISs are one-dimensional.

The most remarkable practical application of the QZE
consists in suppressing decoherence and dissipation, which
is crucial for practical quantum-information processing. The
QZE can protect unknown quantum states in the Zeno subspace
[10]. Recently, it is shown that the decoherence can be
suppressed by the Zeno subspace effect while allowing for
full quantum control [11]. Some of us proposed a protocol of
protecting unknown quantum states from decoherence based
on the operator QZE [6], which has the advantage over
previous protocols that only two-qubit measurements rather
than multiqubit measurements are required. In this paper, we
find that by frequently performing a quantum measurement
or operation with isomorphic MISs, quantum information
encoded in the noiseless subsystem associated with these
isomorphic MISs can be protected while full quantum control
is allowed. Compared with generating noiseless subsystems
with a sequence of pulses as in the theory of dynamical
decoupling [12] and other QZE-based protocols [6,10,11], the
QZE of general operations significantly enlarges the set of
operations that can be used to protect quantum information.

II. ZENO EFFECT OF NONSELECTIVE MEASUREMENTS

We consider a system whose free evolution is governed by
the Hamiltonian H . The superoperator corresponding to the
free time evolution is U(t) = eLt , where the generator L• =
−i[H,•] is the Liouvillian of the system. As a typical model
of the QZE, we suppose the measurement is performed N

times during the entire time of evolution τ at equal intervals
and each measurement is performed instantly, meaning that
the measurement can be implemented in a negligible amount
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of time. If the measurement is a nonselective measurement P ,
the time evolution of the state reads [11]

ρ(τ ) = [PU(τ/N )]Nρ(0). (1)

Here, the initial state is a measurement-invariant operator
(MIO), i.e., Pρ(0) = ρ(0).

For projective measurements [1–3] or weak projective
measurements [11,13], a MIO state is a state in the Zeno
subspace, and the dynamics is governed by an effective
Hamiltonian HπZ

= πZHπZ in the limit N → ∞. Here, πZ is
the projector of the Zeno subspace.

As the main result of this paper, we prove that, for any
nonselective measurement P , the state evolves driven by an
effective Hamiltonian H̃ in the limit N → ∞, i.e.,

ρ(τ ) = eL̃τ ρ(0), (2)

where L̃• = −i[H̃ ,•]. Here, we assume that the Hilbert
space of the system is finite-dimensional, and ‖H‖1 = J and
‖H̃‖1 = J̃ are both finite, where ‖ • ‖1 denotes the trace norm
of an operator. Importantly, this result also applies to any
trace-preserving CP maps.

A. Measurement invariant subspaces

Before discussing MIOs, consider the following orthogonal
decomposition of the Hilbert space:

H =
[ ⊕

j

(H(j )
S ⊗ H(j )

R )

]
⊕ HC. (3)

Here, H(j )
S and H(j )

R are spanned by {|�(j )
s 〉} and {|ψ (j )

r 〉},
respectively, and HC is spanned by {|φC

l 〉}.
The subspaces {H(j )

S ⊗ H(j )
R } are invariant subspaces of

{Mq}, and each of them is composed of a set of isomorphic
MISsH(j )

S ⊗ H(j )
R = ⊕

s H
(j )
s . Here, each MISH(j )

s is spanned
by {|�(j )

s 〉 ⊗ |ψ (j )
r 〉 such that r = 1,2, . . . ,d

(j )
R }, where d

(j )
R is

the dimension of the subsystem H(j )
R . Each set of isomorphic

MISs is maximized, i.e., H(j )
s and H(j ′)

s ′ are isomorphic
if and only if j = j ′. Here, two MISs are isomorphic,
meaning {π (j )

s Mqπ
(j )
s } and {π (j ′)

s ′ Mqπ
(j ′)
s ′ } are the same up to

a unitary transformation, where π
(j )
s is the projector of the

subspace H(j )
s .

The complement subspaceHC neither is nor has a nontrivial
invariant subspace of {Mq}, but it is an invariant subspace of
{M†

q}. If the algebra generated by {Mq} is a † algebra, HC is
always empty [14]. In general, the algebra generated by {Mq}
may not be a † algebra; thus, HC could be nonempty (see the
example in Sec. VI A).

If there is not any nontrivial invariant subspace of {Mq},
the Hilbert space H is irreducible and the decomposition reads
H = (H(1)

S ⊗ H(1)
R ) ⊕ HC , where H(1)

S is one-dimensional and
HC is empty.

With this decomposition of the Hilbert space, measurement
operators read Mq = ∑

j π (j )Mqπ
(j ) + Mqπ

C , where π (j )

(πC) is the projector of the subspace H(j )
S ⊗ H(j )

R (HC). Up
to a unitary transformation, π (j )Mqπ

(j ) = 1(j )
S ⊗ M

(j )
q , where

1(j )
S (1(j )

R ) is the identity operator of the subsystem H(j )
S

(H(j )
R ), and {M (j )

q } are operators of the subsystem H(j )
R . Due

to the completeness equation of {Mq}, the operators {M (j )
q }

also obey the completeness equation
∑

q M
(j )†
q M

(j )
q = 1(j )

R .

Because each H(j )
s is a MIS, H(j )

R is irreducible; i.e., H(j )
R

does not have any nontrivial invariant subspace of {M (j )
q }.

A decomposition similar to that in Eq. (3) is generally
used to study noiseless subsystems [9,12], and it is based on
the representation theory [14] of the † algebra generated by
{Mq,M

†
q}, the interaction algebra. In this work, instead of

considering the interaction algebra, we look at the algebra
generated by {Mq} for the purpose of analyzing MIOs. In fact,
for unital maps, the complement subspace is always empty,
and previous results of noiseless subsystems based on the
interaction algebra [9,12] can be applied here. We would like to
remark that whereas each S subsystem is a noiseless subsystem
of the mapP [9], not all noiseless subsystems are S subsystems
that correspond to isomorphic MISs.

B. The limit of the map SN

To ensure the existence of MIOs, we define a map SN =
(1/N )

∑N
m=1 Pm, which is a trace-preserving CP map. For any

operator A with a finite trace norm, SNA converges to a MIO
in the limit N → ∞. If A is nonzero, S∞A = limN→∞ SNA

is always a nonzero MIO.
One can prove the limit of the map SN by noticing

‖SN+1A−SNA‖1=(N+1)−1‖PN+1A−SNA‖1� 2(N + 1)−1

‖A‖1 and ‖PSNA − SNA‖1 = N−1‖PN+1A − A‖1 �
2N−1‖A‖1. Here, PN+1 and SN are both trace-preserving CP
maps, which do not increase the trace norm of a Hermitian
operator. Notice that, whereas the operator A may not be a
Hermitian operator, it can be written as a linear superposition
of two Hermitian operators A + A† and −iA + iA†.

C. Measurement-invariant operators

A MIO A is a fixed point of the map P . If P is unital, i.e.,
P1 = 1, A commutes with {Mq,M

†
q} [15]. We now show that

for a general trace-preserving CP map P , A can always be
written as

A =
⊕

j

(
A

(j )
S ⊗ �

(j )
R

)
, (4)

where A
(j )
S is an operator of the subsystem H(j )

S , and �
(j )
R =

(1/d
(j )
R )S (j )

∞ 1(j )
R is a MIO of the subsystem H(j )

R . Here, S (j )
∞ =

limN→∞(1/N)
∑N

m=1 P (j )m and P (j )• = ∑
q M

(j )
q • M

(j )†
q are

maps of the subsystem H(j )
R . If P (j ) is unital, �

(j )
R =

(1/d
(j )
R )1(j )

R .
To prove Eq. (4), first, we consider Hermitian MIOs. In

Appendix A, we prove that a Hermitian MIO A satisfies
πCA = π (j )Aπ (j ′) = 0 for j 	= j ′, i.e., A = ∑

j π (j )Aπ (j ).
Because each π (j )Aπ (j ) is an operator in the invariant
subspace H(j )

S ⊗ H(j )
R , each π (j )Aπ (j ) is a Hermitian MIO. In

Appendix A, we also prove that �
(j )
R is the unique Hermitian

MIO of the measurement P (j ) up to a scalar factor. Therefore,
π (j )Aπ (j ) is proportional to �

(j )
R , i.e., π (j )Aπ (j ) = A

(j )
S ⊗
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�
(j )
R , and the Hermitian MIO A can also be written in the

form of Eq. (4).
If A is a MIO but not Hermitian, A + A† and −iA + iA†

are two Hermitian MIOs that can be written in the form of
Eq. (4). Therefore, any MIO can be written in the form of
Eq. (4).

Now, we are in a condition to explain how to decompose
the Hilbert space as in Eq. (3). Consider the MIO � =
S∞1 = ⊕

j (I (j )
S ⊗ �

(j )
R ), where I

(j )
S � dR1S is an invertible

Hermitian operator of the subsystem H(j )
S . Because �

(j )
R is also

invertible (see Appendix A), the complement subspace HC is
spanned by eigenstates of � with zero eigenvalues. Then,
one can decompose the Hilbert space as Eq. (3) by applying
the representation theory [14] of the † algebra generated
by {πSRMqπ

SR,πSRM
†
qπ

SR} to the subspace spanned by
eigenstates of � with nonzero eigenvalues. Here, πSR =
1 − πC is the projector of the subspace spanned by non-
zero-valued eigenstates. Actually, one can prove that the
subspace spanned by zero-valued eigenstates of � neither
is nor has a nontrivial invariant subspace of {Mq}, and each
irreducible invariant subspace of {πSRMqπ

SR,πSRM
†
qπ

SR} is
an irreducible invariant subspace of {Mq}.

D. The effective Hamiltonian

The effective Hamiltonian reads

H̃ =
⊕

j

(
H̃

(j )
S ⊗ 1(j )

R

)
, (5)

where H̃
(j )
S = TrR[π (j )Hπ (j )(1(j )

S ⊗ �
(j )
R )] is a Hermitian op-

erator of the subsystem H(j )
S . As shown in Appendix B, the

effective Hamiltonian satisfies S∞Hρ = H̃ρ and S∞ρH =
ρH̃ for any MIO state ρ. Operators that can be written in the
form of Eq. (5) are called dual MIOs.

Driven by the effective Hamiltonian, the state
initialized in a MIO state ρ(0) = ⊕

j (ρ(j )
S (0) ⊗ �

(j )
R )

evolves as ρ(t) = ⊕
j (ρ(j )

S (t) ⊗ �
(j )
R ), where ρ

(j )
S (t) =

e−iH̃
(j )
S tρ

(j )
S (0)eiH̃

(j )
S t . Here, ρ(t) is always a MIO.

If the Hilbert space is irreducible, there is only one MIO
�, up to a scalar factor. In this case, the state is frozen in �

as a result of the QZE. Similarly, if S subsystems are all one-
dimensional, i.e., MISs are not isomorphic with each other, the
system is always frozen in the initial state.

For projective measurements, one can find that the effective
Hamiltonian coincides with the one predicted by the Zeno sub-
space theory (see the example in Sec. VI B). For unital maps,
the effective Hamiltonian H̃

(j )
S = (1/d

(j )
R )TrR(π (j )Hπ (j )),

which is the same as the one generated by a sequence of
pulses as in the theory of dynamical decoupling [12] (see the
example in Sec. VI C).

E. The effective dynamics

In order to show the emergence of effective dynamics,
we suppose that even in a very short time τ/N2, a large
amount (N1) of measurements are performed, i.e., N =
N1N2, where N1 and N2 are both large numbers. First,
we consider the time evolution of the first time interval

of τ/N2, ρ(τ/N2) = [PU(τ/N )]N1ρ(0). After expanding the
free-evolution superoperator U(τ/N ), we have

ρ(τ/N2) 
 [PN1 + (τ/N2)TN1 ]ρ(0), (6)

where TN1 = (1/N1)
∑N1

m=1 PmLP (N1−m). Because the initial
state ρ(0) is a MIO,

ρ(τ/N2) 
 [1 + (τ/N2)SN1L]ρ(0). (7)

If N1 is large enough, SN1Lρ(0) 
 S∞Lρ(0) = L̃ρ(0) (see
Sec. II D), and

ρ(τ/N2) 
 [1 + (τ/N2)L̃]ρ(0) 
 eL̃τ/N2ρ(0), (8)

where the right-hand side is a MIO. For subsequent time
intervals, the same reasoning applies. Therefore, ρ(τ ) 

eL̃τ ρ(0).

A rigorous analysis in Appendix C shows that ρ(τ ) =
eL̃τ ρ(0) + 	, where

‖	‖1 � (δH + δH̃ + δ). (9)

Here, we have δH = N2[e2Jτ/N2 − (1 + 2Jτ/N2)],
similarly δH̃ = N2[e2J̃ τ/N2 − (1 + 2J̃ τ/N2)], and δ =
(τ/N2)

∑N2
n=1 ‖(SN1L − L̃)ρn‖1, where ρn = eL̃(n−1)τ/N2ρ(0)

is a MIO. Without loss of generality, we set N1,N2 = √
N .

Then, in the limit N → ∞, all of δH , δH̃ , and δ vanish.

III. ZENO EFFECT OF SELECTIVE MEASUREMENTS

If measurement outcomes are recorded, the final state
ρ(τ ; {q}) depends on all measurement outcomes {q} during the
entire evolution. The final state may not be a MIO. And even
if the driven Hamiltonian H is absent, the state may change
according to outcomes during the evolution. In the limit N →
∞, the evolution of the state with selective measurements
reads ρ(τ ; {q}) = ⊕

j [ρ(j )
S (τ ) ⊗ ρ

(j )
R ({q})], where ρ

(j )
S (τ ) is

the state of the S subsystem that evolves driven by the effective
Hamiltonian, and ρ

(j )
R ({q}) is the state of the subsystem H(j )

R

whose evolution depends on the measurement outcomes (see
Appendix D). We would like to remark that, due to the
probabilistic nature of Trρ(j )

R ({q}), the probability of finding
the state in the subspace H(j )

S ⊗ H(j )
R , Tr[ρ(j )

S (τ ) ⊗ ρ
(j )
R ({q})],

depends on measurement outcomes.

IV. OPERATOR QUANTUM ZENO DYNAMICS

If the initial state is a product state of two subsystems,
ρ(0) = ρ

(j )
S (0) ⊗ �

(j )
R , the state is always confined in the

subspace H(j )
S ⊗ H(j )

R ; i.e., ρ(τ ) = ρ
(j )
S (τ ) ⊗ �

(j )
R for the

case of nonselective measurements. For selective measure-
ments, ρ(τ ; {q}) = ρ

(j )
S (τ ) ⊗ ρ

(j )
R ({q}). In this case, for a

dual MIO B = ⊕
j (B(j )

S ⊗ 1(j )
R ), we have that Tr[ρ(τ )B] =

Tr[ρ(τ ; {q})B]. Therefore, for product-state initial states, we
can define the effective evolution of operators B(τ ) = e−L̃τB,
so that for both selective and nonselective measurements
Tr[ρ(τ )B] = Tr[ρ(τ ; {q})B] = Tr[ρ(0)B(τ )]; i.e., some oper-
ators always evolve according to the effective dynamics for
both selective and nonselective measurements.
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V. ZENO QUANTUM MEMORY WITH GENERAL
MEASUREMENTS

An important application of the QZE is protecting quantum
states from decoherence [6,10,11]. In general, the free evo-
lution of a quantum memory is governed by a Hamiltonian
H = H0 + Hnoise, where the control Hamiltonian H0 drives
the evolution of the stored quantum state, and the noise
Hamiltonian Hnoise induces decoherence due to the coupling
with the environment.

If a measurement P has a multidimensional S subsystem,
e.g.,H(1)

S , the quantum state stored in the subsystemH(1)
S can be

protected from decoherence by frequently performing the mea-
surement P when the corresponding effective noise Hamilto-
nian H̃

(1)
S,noise ∝ 1(1)

S . Here, H̃ (1)
S,noise = TrR[π (1)Hnoiseπ

(1)(1(1)
S ⊗

�
(1)
R )]. With a control Hamiltonian satisfying π (1)H0π

(1) =
H̃

(1)
S,0 ⊗ 1(1)

R , the evolution of the stored quantum state is

governed by H̃
(1)
S,0. Therefore, the stored quantum state can

be fully controlled.

VI. EXAMPLES

A. Example 1: Decay channel

We consider a system with three states |g1〉, |g2〉, and |e〉.
Measurement operators are M1 = |g1〉〈g1| + |g2〉〈g2|, M2 =
(1/

√
2)|g1〉〈e|, and M3 = (1/

√
2)|g2〉〈e|. In this example, HC

is nonempty and only includes the state |e〉, and |g1〉 and
|g2〉 form two isomorphic one-dimensional MISs, respectively.
Any state initialized in the subspace spanned by |g1〉 and |g2〉
is a MIO. As a result of the QZE, the evolution of such an
initial state is frozen in the subspace.

B. Example 2: Zeno subspace

For a projective measurement P• = ∑
j π (j ) • π (j ), where

the projectors {π (j )} commute pairwise, each common eigen-
state of {π (j )} forms a one-dimensional MIS, and states in
the same subspace π (j ) are isomorphic. In this example,
H̃ = ∑

j π (j )Hπ (j ). If the state is initialized in the subspace
π (j ), the evolution is driven by the effective Hamiltonian
π (j )Hπ (j ), which coincides with the Zeno subspace theory [7].

C. Example 3: Symmetrizing operation

A symmetrizing operation [12] reads P• =
(1/|G|) ∑

g∈G g • g†, where G is a group and |G| is the
number of group elements. In the theory of dynamical
decoupling, the symmetrizing operation describes the effect
of a sequence of pulses used for generating noiseless
subsystems. Here, the symmetrizing operation is supposed to
be implemented as a general measurement (or trace-preserving
CP map). In this example, MISs could be multidimensional
if the group has multidimensional irreducible representations
(is non-Abelian), and the effective Hamiltonian H̃ = PH .

D. Example 4: Bacon-Shor code

To illustrate the quantum control and the protection on a
logical qubit encoded in an S subsystem, we consider the
3 × 3 Bacon-Shor code [16,17] (see the inset of Fig. 1) as

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 1
2

34
5

67
8

9

<Z  (t)>L

Red GO
Blue GO

FIG. 1. (Color online) The expected value of the logical operator
ZL of the 3 × 3 Bacon-Shor code. In the inset, each black sphere
represents a physical qubit, and each (blue or red) bond represents
a gauge operator (GO). The overall measurement is constructed
by projectively measuring blue GOs first and then red GOs, and
it is performed N times during the entire time of evolution τ

at equal interval. Here, the black dotted, blue short-dashed, green
long-dashed, and red solid lines correspond N = 0, 500, 1000, and
5000, respectively. In this simulation, a total of eight Hadamard gates
are performed.

an example. For the 3 × 3 Bacon-Shor code, only one logical
qubit is encoded in nine physical qubits and the Hilbert space
can be decomposed asH = HL ⊗ HG, whereHL is the Hilbert
space of the logical qubit, and HG is the Hilbert space of eight
gauge qubits. Logical Pauli operators are ZL = σ z

2 σ z
5 σ z

8 and
XL = σx

4 σx
5 σx

6 , where σ z
i and σx

i are Pauli operators of the
ith physical qubit. In the figure inset, each blue (red) bond
represents a gauge operator σ z

i σ z
j (σx

i σ x
j ).

The idea of using the QZE to protect logical qubits of
the Bacon-Shor code is first mentioned in Ref. [11]. By
frequently measuring gauge operators, decoherence induced
by one-local and two-local noises can be suppressed [6].
Hence, we employ the measurement P = · · ·Pc2Pc1 to protect
the logical qubit, where c1,c2, . . . are gauge operators. The
measurement of the gauge operator c reads Pc(ζ )• = [(1 +
ζ )/2] • +[(1 − ζ )/2]c • c, where 0 � ζ < 1. These two-qubit
measurements can be implemented with two-qubit noisy
interactions [6]. When ζ = 0 the measurement Pc(ζ ) is a
projective measurement, and when ζ > 0 the measurement
Pc(ζ ) corresponds to a weak measurement [18–20]. Weak
measurements can protect quantum states, which has been
proved in protocols based on the Zeno subspace [11], while
evidence has been found numerically for the protocol based
on the operator QZE [6].

For the measurement P , the subsystem HL and the subsys-
tem HG correspond to an S subsystem and an R subsystem,
respectively. Because P is unital, any MIO can be written as
A = AL ⊗ 1G/32, and the effective Hamiltonian reads H̃ =
(TrGH ) ⊗ 1G/32. For logical operators, (TrGZL) ⊗ 1G/32 =
ZL and (TrGXL) ⊗ 1G/32 = XL. For any one-local and two-
local Pauli operators, TrGσα

i = TrG(σα
i σ

β

j ) = 0.
As an example, we consider performing Hadamard gates

via the control Hamiltonian H0 = (ω/
√

2)(ZL + XL), and the
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decoherence is induced by the noise Hamiltonian

Hnoise = ω

⎛⎝∑
i

∑
α=x,y,z

σ α
i +

∑
(i,j )

∑
α,β=x,y,z

σ α
i σ

β

j

⎞⎠ , (10)

where the first (second) term corresponds to one-local (two-
local) noises, and (i,j ) are two neighboring qubits. By
frequently measuring gauge operators, decoherence of the
logical qubit can be suppressed while logical operations
(Hadamard gates) are performed, as shown in Fig. 1.

VII. DISCUSSIONS

We have shown that the QZE can occur for generalized
quantum measurements or operations. While in this paper
measurements are supposed to be performed instantly, this
time scale needs to be considered in future works.

We used the trace norm rather than the operator norm to
describe the Hamiltonian strength. Although for the finite-
dimensional Hilbert space, a finite trace norm implies a finite
operator norm for Hermitian operators, using the operator
norm may be helpful in improving the bound in Eq. (9).

Besides suppressing decoherence, there are many other
potential applications of the QZE [21–30].

ACKNOWLEDGMENTS

Y.L., D.H.M., and L.C.K. acknowledge support from the
National Research Foundation and Ministry of Education,
Singapore. We thank Paolo Zanardi and Sai Vinjanampathy
for helpful discussions. We also acknowledge partial support
from Merlion funding: No 3.08.11 LUMATOM.

APPENDIX A: MEASUREMENT-INVARIANT OPERATORS

First, we prove a lemma that is very useful for our
discussions about MIOs. We consider a Hermitian MIO A

in a Hilbert space that can be decomposed as H = HX ⊕ HI ,
whereHI is an invariant subspace of {Mq}, i.e., πXMqπ

I = 0.
Here, πX (πI ) is the projector of the subspace HX (HI ).
Because A is a Hermitian operator, πXAπX can be diago-
nalized. According to eigenstates of πXAπX, we can further
decompose the Hilbert space as H = H+ ⊕ H0 ⊕ H− ⊕ HI ,
where Hη (HI ) is spanned by {|ϕ(η)

l 〉} ({|ϕI
l 〉}); η = +, 0,

and − correspond to positive, zero, and negative eigenvalues
of πXAπX, respectively. Then, A can be written as A =
A+ − A− + AI , where

A± =
∑

l

λ
(±)
l |ϕ(±)

l 〉〈ϕ(±)
l | (A1)

and

AI = πIAπI + (πIAπ (+) + πIAπ (0) + πIAπ (−) + H.c.).

(A2)

Here, {λ(±)
l } are all positive, and π (η) = ∑

l |ϕ(η)
l 〉〈ϕ(η)

l | is the
projector of the subspace Hη.

Lemma 1. H± are two invariant subspaces of {Mq}, and A±
are both MIOs.

Proof. BecauseP is a trace-preserving CP map, Tr(PA+) =
TrA+, where TrA+ = ∑

l λ
(+)
l and

Tr(PA+) = Tr(π (+)PA+) + Tr(π (0)PA+)

+ Tr(π (−)PA+) + Tr(πIPA+). (A3)

Because A is a MIO, PA = A and Tr(π (+)PA) = Tr(π (+)A),
where Tr(π (+)A) = ∑

l λ
(+)
l . By noticing HI is an invariant

subspace of {Mq} (π (+)Mqπ
I = 0), we have Tr(π (+)PAI ) = 0

and

Tr(π (+)PA) = Tr(π (+)PA+) − Tr(π (+)PA−). (A4)

Combining Eqs. (A3) and (A4), we have

Tr(π (0)PA+) + Tr(π (−)PA+) + Tr(πIPA+)

= −Tr(π (+)PA−), (A5)

where each term on the left-hand side is non-negative while
the term on the right-hand side is nonpositive (A+ and A− are
both positive and P is a positive map), which implies all terms
are zero. Because

Tr(π (0)PA+) =
∑
q,l,l′

λ
(+)
l |〈ϕ(0)

l′ |Mq |ϕ(+)
l 〉|2 = 0, (A6)

Tr(π (−)PA+) =
∑
q,l,l′

λ
(+)
l |〈ϕ(−)

l′ |Mq |ϕ(+)
l 〉|2 = 0, (A7)

Tr(πIPA+) =
∑
q,l,l′

λ
(+)
l |〈ϕI

l′ |Mq |ϕ(+)
l 〉|2 = 0, (A8)

we have〈
ϕ

(0)
l′

∣∣Mq

∣∣ϕ(+)
l

〉 = 〈ϕ(−)
l′ |Mq |ϕ(+)

l 〉 = 〈ϕI
l′ |Mq |ϕ(+)

l 〉 = 0.

(A9)

Similarly,〈
ϕ

(+)
l′

∣∣Mq

∣∣ϕ(−)
l

〉 = 〈ϕ(0)
l′ |Mq |ϕ(−)

l 〉 = 〈ϕI
l′ |Mq |ϕ(−)

l 〉 = 0.

(A10)

Therefore, H± are two invariant subspaces of {Mq}.
Because HI and H− are invariant subspaces, π (+)Mqπ

I =
π (+)Mqπ

(−) = 0. Thus, π (+)(PAI )π (+) = π (+)(PA−)π (+) =
0. Then, we have A+ = π (+)Aπ (+) = π (+)(PA)π (+) =
π (+)(PA+)π (+). Because H+ is an invariant subspace,
π (+)(PA+)π (+) = PA+. Therefore, PA+ = A+, and A+ is
a MIO. Similarly, PA− = A−, and A− is a MIO. �

Now, we apply Lemma 1 to the case that H = HX and HI

is empty. For any Hermitian MIO, positive eigenvalues and
negative eigenvalues correspond to two invariant subspaces of
{Mq}, respectively. And, any Hermitian MIO can be written as
a linear superposition of two positive Hermitian MIOs.

1. The unique MIO of the map P ( j )

If there exists a Hermitian MIO �
(j )′
R which is linearly

independent with �
(j )
R , one can compose a third nonzero

Hermitian MIO �
(j )′′
R whose trace vanishes, as a linear

superposition of �
(j )
R and �

(j )′
R . MIO �

(j )′′
R must have positive

and negative eigenvalues. The map P (j ) is a map in the
subsystemH(j )

R . Now by applying Lemma 1 to the mapP (j ), we
can find that positive-valued and negative-valued eigenstates
of �

(j )′′
R form two invariant subspaces of {M (j )

q }. However,H(j )
R
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is irreducible. Therefore, �(j )
R is the unique Hermitian MIO up

to a scalar factor.

2. The complement subspace

As shown in the main text, the Hilbert space can be
decomposed as H = HC ⊕ HSR , where HC is the comple-
ment subspace and HSR = ⊕

j (H(j )
S ⊗ H(j )

R ) is an invariant
subspace of {Mq}. Then, we can apply Lemma 1 to the case
that HX = HC and HI = HSR . Without loss of generality, we
consider a positive Hermitian MIO. For a positive Hermitian
MIO A, eigenvalues of πCAπC must be all zero; otherwise,
the complement subspace includes one invariant subspace
of {Mq} (there are not any negative eigenvalues). In other
words, πCAπC = 0. Here, πC (πSR) is the projector of the
subspace HC (HSR). Because A is positive, all off-diagonal
elements between two subspaces HC and HSR are also zero,
i.e., πSRAπC = πCAπSR = 0. Therefore, for any Hermitian
MIO A, we have A = πSRAπSR and πCA = AπC = 0 (any
Hermitian MIO can be written as a linear superposition of two
positive MIOs).

3. Off-diagonal elements between two MISs

In general, we can rewrite the decomposition as H =
HC ⊕ H1 ⊕ H2 ⊕ H3 ⊕ · · ·, where H1,H2,H3, . . . are MISs.
Because the complement subspace is irrelevant for a Hermitian
MIO A (πCA = AπC = 0), the Hermitian MIO can be written
as A = ∑

i,i ′ πiAπi ′ , where πi is the projector of the MIS
Hi and i = 1,2,3, . . .. Because {Hi} are MISs, πCMqπi = 0
and πiMqπi ′ = 0 if i 	= i ′. Thus, πiAπi ′ = πiP(A)πi ′ =
πi[P(πiAπi ′ )]πi ′ = P(πiAπi ′ ), and {πiAπi ′ } are MIOs. With-
out loss of generality, we consider two MISs H1 and H2. In
the following, we prove that, if the Hermitian MIO A12 =
π1Aπ2 + π2Aπ1 is nonzero, H1 and H2 must be isomorphic.
Hence, ifH1 andH2 are not isomorphic, π1Aπ2 = π2Aπ1 = 0.
Therefore, π (j )Aπ (j ′) = 0 if j 	= j ′.

If the Hermitian MIO A12 is nonzero, there must exist two
nonempty invariant subspaces H+ and H− corresponding to
positive and negative eigenvalues of A12, respectively, as a
consequence of Lemma 1 (HX = H1 ⊕ H2 is an invariant sub-
space of {Mq} andHI is empty). Here, we would like to remark
that TrA12 = 0. For convenience, we denote eigenstates of A12

with positive eigenvalues as vectors {( ul

vl
)}, where the vector

ul (vl) corresponds to a state in the subspace H1 (H2). In the
subspaceH1 ⊕ H2, measurement operators can be represented

as M (12)
q = ( M

(1)
q 0
0 M

(2)
q

), where M (1)
q = π1Mqπ1 and M (2)

q =
π1Mqπ1 are matrices which are the same as measurement
operators of corresponding R systems, respectively.

Because H+ is an invariant subspace of {Mq}, we have(
M (1)

q 0
0 M (2)

q

) (
ul

vl

)
=

∑
l′

αl,l′

(
ul′

vl′

)
, (A11)

which indicates that M (1)
q ul = ∑

l′ αl,l′ul′ and M (2)
q vl =∑

l′ αl,l′vl′ . We would like to remark that {ul} and {vl} are
decoupled under M (12)

q . Hence, {ul} and {vl} are invariant
subspaces of {M (1)

q } and {M (2)
q }, respectively. The rank of

{ul} ({vl}) must be the same as the dimension of H1

(H2); otherwise, H1 (H2) is reducible. It is similar for the
subspace corresponding to negative eigenvalues. Therefore,
the dimensions of H1, H2, H+, and H−, and the ranks of {ul}
and {vl}, must be the same. And {ul} ({vl}) is a set of linearly
independent vectors.

Because the ranks of {ul} and {vl} are the same and each of
them is a set of linearly independent vectors, we can define an
invertible transformation T satisfying T ul = vl , so that M (1)

q =
T −1M (2)

q T and M (2)
q = T M (1)

q T −1. Because {M (2)
q } satisfy the

completeness equation, we have∑
q

M (2)†
q M (2)

q =
∑

q

T †−1M (1)†
q T †T M (1)

q T −1 = 1v, (A12)

which means
∑

q M
(1)†
q T †T M (1)

q = T †T , i.e., T †T is a
Hermitian invariant operator of the dual map. Here, 1v is the
identical operator of the vector space spanned by {ul} (or
{vl}). In the next section, we show T †T is proportional to 1v .
Therefore, T is proportional to a unitary transformation and
two subspaces H1 and H2 are isomorphic.

4. Dual measurement-invariant operators

A dual map in the MISH1 readsP (1)†• = ∑
q M

(1)†
q • M (1)

q .
Because {M (1)

q } satisfy the completeness equation, 1v is a dual

MIO, i.e.,
∑

q M
(1)†
q 1vM

(1)
q = 1v . If there exists a Hermitian

dual MIO that is linearly independent with 1v , we can show
that H1 is reducible. Therefore, all dual MIOs of the MIS H1

are proportional to 1v .
We suppose D̄ is a Hermitian dual MIO that is linearly

independent with 1v . Then, we always have another nonzero
dual MIO D = D̄ − λ̄min1v , where λ̄min is the minimal
eigenvalue of D̄. The dual MIO D can be written as D =∑

l λ
(+)
l w(+)

l w(+)†
l , where {λ(+)

l } are all positive, and {w(+)
l }

({w(0)
l }) are eigenstates of D with positive (zero) eigenvalues.

We would like to remark that {w(+)
l } and {w(0)

l } are both
nonempty. Because

∑
q M

(1)†
q DM (1)

q = D,∑
l

w(0)†
l

∑
q

M (1)†
q DM (1)

q w(0)
l

=
∑
q,l,l′

λ
(+)
l′ |w(+)†

l′ M (1)
q w(0)

l |2 = 0. (A13)

Therefore, w(+)†
l′ M (1)

q w(0)
l = 0 and {w(0)

l } is an invariant sub-
space of {M (1)

q }.

APPENDIX B: THE EFFECTIVE HAMILTONIAN

Because {H(j )
S ⊗ H(j )

R } are invariant subspaces of {Mq},
Mq = Mqπ

C +
∑

j

π (j )Mqπ
(j ). (B1)

Then,

M†
qMq = πCM†

qMqπ
C +

∑
j

πCM†
qπ

(j )Mqπ
(j )

+
∑

j

π (j )M†
qπ

(j )Mqπ
C +

∑
j

π (j )M†
qπ

(j )Mqπ
(j ).

(B2)
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Due to the completeness equation, we have∑
q

πCM†
qMqπ

C = πC, (B3)∑
q

π (j )M†
qπ

(j )Mqπ
(j ) = π (j ), (B4)

and∑
q

πCM†
qπ

(j )Mqπ
(j ) =

∑
q

π (j )M†
qπ

(j )Mqπ
C = 0. (B5)

Lemma 2. For any operator A, if πCAπC = 0
and TrR(π (j )Aπ (j )) = Ã(j ), πCP(A)πC = 0 and
TrR[π (j )P(A)π (j )] = Ã(j ).

Proof. Using Eq. (B1), we have

πCP(A)πC =
∑

q

πCMqAM†
qπ

C

=
∑

q

πCMqπ
CAπCM†

qπ
C = 0, (B6)

and

π (j )P(A)π (j ) =
∑

q

π (j )MqAM†
qπ

(j )

=
∑

q

π (j )Mqπ
(j )Aπ (j )M†

qπ
(j )

+π (j )Mqπ
CAπ (j )M†

qπ
(j )

+π (j )Mqπ
(j )AπCM†

qπ
(j ). (B7)

By noticing π (j )Mqπ
(j ) = 1(j )

S ⊗ M
(j )
q and using Eqs. (B4)

and (B5), we have

TrR

( ∑
q

π (j )Mqπ
(j )Aπ (j )M†

qπ
(j )

)

= TrR

( ∑
q

π (j )M†
qπ

(j )Mqπ
(j )Aπ (j )

)
= TrR(π (j )Aπ (j )) = Ã(j ) (B8)

and

TrR

(∑
q

π (j )Mqπ
CAπ (j )M†

qπ
(j )

)

= TrR

(∑
q

π (j )M†
qπ

(j )Mqπ
CAπ (j )

)
= 0, (B9)

TrR

(∑
q

π (j )Mqπ
(j )AπCM†

qπ
(j )

)

= TrR

(∑
q

π (j )AπCM†
qπ

(j )Mqπ
(j )

)
= 0. (B10)

Here, we have used that for any operator X and operator
YR in the subsystem R, TrR[X(1S ⊗ YR)] = TrR[(1S ⊗ YR)X].
Therefore, TrR[π (j )P(A)π (j )] = Ã(j ). �

Lemma 3. For an operator A, if πCAπC = 0
and TrR(π (j )Aπ (j )) = Ã(j ), TrR[π (j )S∞(A)π (j )] = Ã(j ) and
π (j )S∞(A)π (j ) = Ã(j ) ⊗ �

(j )
R .

Proof. Using Lemma 2, we have πCPm(A)πC =
0 and TrR[π (j )Pm(A)π (j )] = Ã(j ) for any m. Hence,
TrR[π (j )S∞(A)π (j )] = Ã(j ). Because S∞(A) is a MIO and
Tr�(j )

R = 1, π (j )S∞(A)π (j ) = Ã(j ) ⊗ �
(j )
R . �

Effective Hamiltonian. If the state ρ is a MIO,
ρπC = 0. Hence, πCHρπC = 0. Using Lemma 3,
we have π (j )S∞(Hρ)π (j ) = H̃ρ

(j ) ⊗ �
(j )
R , where H̃ρ

(j ) =
TrR(π (j )Hρπ (j )).

We suppose the MIO ρ = ⊕
j (ρ(j )

S ⊗ �
(j )
R ),

and π (j )Hπ (j ) = ∑
s,s ′ |�(j )

s 〉〈�(j )
s ′ | ⊗ H

(j )
s,s ′ . Then,

ρπ (j ) = π (j )ρπ (j ) = (ρ(j )
S ⊗ �

(j )
R ), and

TrR(π (j )Hρπ (j )) = TrR
[
π (j )Hπ (j )(ρ(j )

S ⊗ �
(j )
R

)]
=

∑
s,s ′

TrR
(
H

(j )
s,s ′�

(j )
R

)∣∣�(j )
s

〉〈
�

(j )
s ′

∣∣ρ(j )
S .

(B11)

Therefore, TrR[π (j )S∞(Hρ)π (j )] = H̃
(j )
S ρ

(j )
S , where

H̃
(j )
S =

∑
s,s ′

TrR
(
H

(j )
s,s ′�

(j )
R

)∣∣�(j )
s

〉〈
�

(j )
s ′

∣∣
= TrR

[
π (j )Hπ (j )(1(j )

S ⊗ �
(j )
R

)]
. (B12)

Because S∞(Hρ) is a MIO, S∞Hρ = H̃ρ, where H̃ =⊕
j (H̃ (j )

S ⊗ 1(j )
R ). Similarly, S∞ρH = ρH̃ .

APPENDIX C: THE PROOF OF THE ZENO EFFECT WITH
NONSELECTIVE MEASUREMENTS

As we show in the following, 	 includes three parts for
each time interval of τ/N2, and

	 =
N2∑
n=1

[	I(n) + 	II(n) + 	III(n)]. (C1)

By using the notation VN1 = [PU(τ/N )]N1 , we have

ρ(τ ) = VN2
N1

ρ(0)

= VN2−1
N1

eL̃τ/N2ρ(0) + 	I(1) + 	II(1) + 	III(1)

= VN2−2
N1

eL̃2τ/N2ρ(0) + 	I(1) + 	II(1) + 	III(1)

+	I(2) + 	II(2) + 	III(2)

. . .

= eL̃τ ρ(0) +
N2∑
n=1

[	I(n) + 	II(n) + 	III(n)]. (C2)

For each time interval of τ/N2,

VN2−n+1
N1

eL̃(n−1)τ/N2ρ(0)

= VN2−n
N1

[1 + (τ/N2)SN1L]eL̃(n−1)τ/N2ρ(0) + 	I(n)

= VN2−n
N1

[1 + (τ/N2)L̃]eL̃(n−1)τ/N2ρ(0) + 	I(n) + 	II(n)

= VN2−n
N1

eL̃nτ/N2ρ(0) + 	I(n) + 	II(n) + 	III(n). (C3)

Here,

	I(n) = VN2−n
N1

{VN1 − [1 + (τ/N2)SN1L]}eL̃(n−1)τ/N2ρ(0),

(C4)
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	II(n) = VN2−n
N1

{[1 + (τ/N2)SN1L] − [1 + (τ/N2)L̃]}
×eL̃(n−1)τ/N2ρ(0), (C5)

and

	III(n) = VN2−n
N1

{[1 + (τ/N2)L̃] − eL̃τ/N2}eL̃(n−1)τ/N2ρ(0).

(C6)

1. The norm of �I(n)

As shown in the main text, ρn = eL̃(n−1)τ/N2ρ(0) is a MIO.
Thus,

	I(n) = VN2−n
N1

{VN1 − [PN1 + (τ/N )
N1∑

m=1

PmLP (N1−m)]}ρn.

(C7)

Because unitary operations (U) and trace-preserving CP maps
(P) do not increase the trace norm of a Hermitian operator
(see the last paragraph of this section for an explanation), VN1

do not increase the trace norm of a Hermitian operator, and we
have

‖	I(n)‖1 �
∥∥∥∥∥
{

[PU(τ/N )]N1

−
[
PN1 + (τ/N )

N1∑
m=1

PmLP (N1−m)

]}
ρn

∥∥∥∥∥
1

.

(C8)

After expanding evolution operators, we have

‖	I(n)‖1 �
∥∥∥∥∥
{[

P
∞∑
l=0

(τ/N )l

l!
Ll

]N1

−
[
PN1 + (τ/N )

N1∑
m=1

PmLP (N1−m)

]}
ρn

∥∥∥∥∥
1

,

(C9)

where terms of the second part are all included in the expansion
of the first part (corresponding to the term without L and terms
with only one L of the first part). After further expanding,

‖	I(n)‖1

�
∑
{ni }

∑
{mi }

α{ni }{mi }‖PmN1LnN1 · · ·Pm2Ln2Pm1Ln1Pm0ρn‖1,

(C10)

where {ni} and {mi} are some strings of non-negative integers
(
∑

i ni � 2 and
∑

i mi = N1) and {α{ni }{mi }} are all positive
real coefficients. Again, because trace-preserving CP maps do
not increase the trace norm of a Hermitian operator, we have

‖	I(n)‖1 �
∑
{ni }

∑
{mi }

α{ni }{mi }(2J )
∑

i ni ‖ρn‖1, (C11)

where the right-hand side can be obtained by replacing P with
1, L with 2J , and ρn with ‖ρn‖1 in the right-hand side of

Eq. (C9), i.e.,

[e2Jτ/N2 − (1 + 2Jτ/N2)]‖ρn‖1

=
∑
{ni }

∑
{mi }

α{ni }{mi }(2J )
∑

i ni ‖ρn‖1. (C12)

Because ‖ρn‖1 = 1, we have

‖	I(n)‖1 � [e2Jτ/N2 − (1 + 2Jτ/N2)]. (C13)

Trace norm and the trace-preserving CP map. For a
Hermitian operator, the trace norm is the sum of the ab-
solute values of eigenvalues. A Hermitian operator A can
be decomposed as A = A+ − A−, where A+ and A− are
two positive Hermitian operators corresponding to positive
eigenvalues and negative eigenvalues of A, respectively. Then,
‖A±‖1 = TrA± and ‖A‖1 = Tr(A+ + A−). Because PA±
are also positive Hermitian operators, ‖PA‖1 � ‖PA+‖1 +
‖PA−‖1 = Tr[P(A+ + A−)] = ‖A‖1.

2. The norm of �II(n)

It is straightforward that

‖	II(n)‖1 � (τ/N2)‖(SN1L − L̃)ρn‖1. (C14)

3. The norm of �III(n)

Similar to 	I(n), after expanding, one can find that

‖	III(n)‖1 � [e2J̃ τ/N2 − (1 + 2J̃ τ/N2)]. (C15)

4. The norm of �

In summary,

‖	‖1 �
N2∑
n=1

‖	I(n)‖1 + ‖	II(n)‖1 + ‖	III(n)‖1

� N2{[e2Jτ/N2 − (1 + 2Jτ/N2)]

+ [e2J̃ τ/N2 − (1 + 2J̃ τ/N2)]}

+ (τ/N2)
N2∑
n=1

‖(SN1L − L̃)ρn‖1. (C16)

APPENDIX D: THE PROOF OF THE ZENO EFFECT WITH
SELECTIVE MEASUREMENTS

First, we consider an initial state that is a product state
of two subsystems, e.g., ρ(0) = ρ

(j )
S (0) ⊗ �

(j )
R . Without loss

of generality, we suppose ρ
(j )
S (0) = ∑

s ws |�(j )
s 〉〈�(j )

s |. By
introducing a virtual system H(j )

S̄
spanned by {|�̄(j )

s 〉}, the

state ρ
(j )
S (0) can be represented as the reduced state of

a pure state |�(0)〉 = ∑
s

√
ws |�̄(j )

s 〉 ⊗ |�(j )
s 〉 in the space

H(j )
S̄

⊗ H(j )
S , i.e., ρ

(j )
S (0) = TrS̄ |�(0)〉〈�(0)|. Then, the initial

state in the extended Hilbert space H(j )
S̄

⊗ H(j )
S ⊗ H(j )

R is

ρext(0) = |�(0)〉〈�(0)| ⊗ �
(j )
R .

For nonselective measurements, the final state in the ex-
tended Hilbert space is ρext(τ ) = |�(τ )〉〈�(τ )| ⊗ �

(j )
R , where

|�(τ )〉 = e−i1S̄⊗H̃
(j )
S τ |�(0)〉 and 1S̄ is the identity operator
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of the virtual subsystem. And the state |�(τ )〉 satisfies
TrS̄ |�(τ )〉〈�(τ )| = ρ

(j )
S (τ ) = e−iH̃

(j )
S τ ρ

(j )
S (0)eiH̃

(j )
S τ .

For selective measurements, we suppose the final state
in the extended Hilbert space is ρext(τ ; {q}). The final
states for nonselective measurements and selective mea-
surements satisfy ρext(τ ) = ∑

{q} ρext(τ ; {q}). Here, states
ρext(τ ; {q}) are not normalized. Hence, |�(τ )〉〈�(τ )| =∑

{q} TrRρext(τ ; {q}). Because |�(τ )〉〈�(τ )| is a pure
state, TrRρext(τ ; {q}) ∝ |�(τ )〉〈�(τ )| for any outcomes, i.e.,

ρext(τ ; {q}) = |�(τ )〉〈�(τ )| ⊗ ρ
(j )
R ({q}). Using ρ(τ ; {q}) =

TrS̄ρext(τ ; {q}), one can find that for the product-state initial
state, ρ(τ ; {q}) = ρ

(j )
S (τ ) ⊗ ρ

(j )
R ({q}).

In general, a MIO initial state is a linear superposition
of product-state initial states, i.e., ρ(0) = ⊕

j (ρ(j )
S (0) ⊗ �

(j )
R ).

Then, the final state for selective measurements is also a
linear superposition of ρ

(j )
S (τ ) ⊗ ρ

(j )
R ({q}), i.e., ρ(τ ; {q}) =⊕

j [ρ(j )
S (τ ) ⊗ ρ

(j )
R ({q})].
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