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Phase-matching condition for enhancement of phase sensitivity in quantum metrology
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We find a phase-matching condition for enhancement of sensitivity in a Mach-Zehnder interferometer
illuminated by an arbitrary state in one input port and an odd (even) state in the other port. Under this condition, the
Fisher information becomes maximal with respect to the relative phase of two modes, and the phase sensitivity is
enhanced. For the case with photon losses, we further find that the phase-matching condition remains unchanged
with a coherent state and a coherent superposition state as the input states.
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I. INTRODUCTION

With the development of quantum information theory
[1–5] and quantum technology [6–8], quantum metrology is
becoming more and more practical nowadays. Improving the
precision of a parameter is always the basic theme in quantum
metrology. Its fundamental procedure is the parametrization
process. There are three main methods to perform this proce-
dure: (i) unitary parametrization, (ii) channel parametrization,
and (iii) accelerating parametrization. Unitary parametrization
is the most useful and well-studied method because it is widely
applied in the phase estimation, the main task in quantum
metrology. Precision measurement of gravity, temperature,
weak magnetic strength, and many other parameters can
be classified in the category of phase estimation. Channel
parametrization has also been widely studied in frequency
estimation, noise estimation [9,10], and other fields for many
years. With the help of quantum technology, it may be possible
to proceed with the parametrization in an accelerating way
[11], in which the relativistic effects cannot be neglected any
longer. In this paper, we mainly focus on the category of phase
estimation and study how to effectively enhance the phase
sensitivity.

In 1981, Caves [12] found out that, for phase estimation,
taking a high-intensity coherent state and a low-intensity
squeezed vacuum state as the input states of a Mach-
Zehnder interferometer, the precision can beat the shot-noise
limit(quantum standard limit), i.e., 1/

√
N , where N is the total

photon number in both modes. Since then, many protocols
have been proposed to fulfill a similar job, such as NOON
states, entangled coherent states [13], two-mode squeezed
states [14], number squeezed states [15], and so on. With high
intensity, some of these states can even theoretically achieve
or surpass the Heisenberg limit, i.e., 1/N . In the pioneering
work of Caves [12], to enhance the precision, the phases of
the two input states need to satisfy a relation. This can be
considered a kind of phase-matching condition (PMC). Thus,
it is reasonable to study if there is a more general PMC for
more general states to enhance the phase sensitivity. This is
the major motivation of this paper. To depict the precision of a
parameter θ , quantum Fisher information (QFI) is an available
useful concept because it describes the lower bound on the
variance of the estimator θ̂ due to the Cramér-Rao theorem:
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Var(θ̂) � 1/(νF ) [16,17], where Var(·) is the variance, ν is the
number of repeated experiments, and F is the QFI.

In this paper, we discuss a general scenario of a Mach-
Zehnder interferometer. In this interferometer, one of the input
ports is an arbitrary state and the other one is an even (odd)
state. This scenario covers many important cases, including the
famous protocol of Caves [12] and a recent one proposed by
Pezzé and Smerzi [15]. We give an analytic expression of the
QFI and identify a PMC to optimize the parameter precision. In
this scenario, the QFI is only determined by the average photon
numbers of the two modes and the corresponding expectation
values of the square of the annihilation operators. We then
give two examples of our scenario. Further, for the case where
photon losses occur in both arms with the same transmission
coefficients and the input state is a product of a coherent state
and a coherent superposition state, the analytic expression of
QFI is provided. Based on this expression, we prove that the
PMC remains unchanged for any transmission coefficient.

II. MACH-ZEHNDER INTERFEROMETER

The Mach-Zehnder (MZ) interferometer is a well-known
optical device in quantum metrology which is constructed
with two beam splitters and one or two phase shifts. The
interferometer we consider here is constructed with two 50:50
beam splitters and two phase shifts in both arms, as shown
in Fig. 1. The well-used 50:50 beam splitter can be described
by [18–20] Bx = exp (−i π

2 Jx), where Jx = 1
2 (a†b + b†a) is

one of the operators in the Schwinger representation of bosons.
The others are Jy = 1

2i
(a†b − b†a) and Jz = 1

2 (a†a − b†b).
Here a, b are annihilation operators for ports A and B,
respectively. Operators Jx , Jy , Jz satisfy the commutation
[Ji,Jj ] = iεijkJk , with εijk being the so-called Levi-Civita
symbol. Usually, a phase shift can be expressed by a unitary
transformation exp [iθN̂A(B)], where N̂A = a†a, N̂B = b†b,
and θ is an unknown parameter. In our scenario, denoting
θ as the relative phase between the two arms, one can describe
the transformation of the total phase shift by the operator
Pz = exp (iθJz). With the above devices we can construct a
well-used MZ interferometer, the transformation of which can
be written as Umz = BxPzB

†
x . Through some algebra, one can

find that this transformation can be simplified as

UMZ = exp (−iθJy), (1)

which is a rotation along the y direction.
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FIG. 1. (Color online) Sketch of the Mach-Zehnder interfer-
ometer. The transformation of the beam splitters is described by
exp (±iπJx/2), and that of the phase shift is described by exp (iθJz).
The input states in ports A and B are an arbitrary state and an even
(odd) state, respectively.

III. PHASE-MATCHING CONDITION FOR QFI

Quantum Fisher information is a central concept in quantum
metrology, and it is defined as [16,17] F := Tr (ρL2), where L

is the so-called symmetric logarithmic derivative determined
by ∂θρθ = (ρθL + Lρθ )/2. We consider a separable input state
ρin = ρA ⊗ ρB. Here ρA is an arbitrary state, and ρB = |ϕ〉〈ϕ|
is an even (odd) state. Utilizing the spectral decomposition
ρA = ∑M

j=1 pj |ψj 〉〈ψj |, the quantum Fisher information can
be written as [16,17,21]

F =
M∑

j=1

4pj 〈φj |J 2
y |φj 〉 −

M∑
j,j ′=1

8pjpj ′

pj + pj ′
|〈φj |Jy |φj ′ 〉|2, (2)

where M is the dimension of the support of ρA and |φj 〉 =
|ψj 〉 ⊗ |ϕ〉 is an eigenstate of ρin with eigenvalue pj .

As the input state in port B is an even (odd) state in our
scenario, it satisfies 〈ϕ|b|ϕ〉 = 0. Then after some algebra, the
QFI can be expressed by

F = 2n̄An̄B + n̄A + n̄B − 2Re(〈a†2〉〈b2〉), (3)

where n̄A = Tr(ρAa†a) and n̄B = 〈ϕ|b†b|ϕ〉 are average pho-
ton numbers for modes a and b, respectively. To optimize
this Fisher information, the input states need to satisfy the
following PMC:

|Arg (〈a2〉) − Arg (〈b2〉)| = π. (4)

Under this condition, the QFI becomes

Fm = 2n̄An̄B + n̄A + n̄B + 2|〈a2〉||〈b2〉|. (5)

One key feature of the above result is that the QFI is only
determined by the mean photon numbers and the expectations
of a2 and b2. We emphasize that one input state is arbitrary.

For the case where |〈a2〉||〈b2〉| = 0, the phases of the input
states can be chosen arbitrarily. For example, if ρB is a Fock
state, i.e., ρB = |n〉〈n|, then the QFI reduces to Fm = 2n̄An̄B +
n̄A + n̄B, which is the result in Ref. [15] and has been discussed
in detail. In the following, we give two examples of the PMC.

Example 1. In this example, we choose ρA to be a coherent
state |β〉〈β| and ρB to be a coherent superposition state
|α〉+〈α|, where |α〉+ = Nα(|α〉 + | − α〉) with |α〉 also being
a coherent state and N2

α = 1/(2 + 2e−2|α|2 ). It is easy to
find that +〈α|b|α〉+ = 0. Here, we denote α = |α| exp (iα),
β = |β| exp (iβ); then from Eq. (4), the phase-matching
condition can be specifically written as

|α − β | = π

2
. (6)

Under this condition, the QFI reduces to

Fm = 2n̄An̄B + n̄A + n̄B + 2n̄A|α|2, (7)

where n̄A = |β|2 and n̄B = |α|2 tanh |α|2. As tanh |α|2 is a
monotonic function and very close to 1 for |α| � 2, for most
values of |α|, n̄B is equal to |α|2, and the QFI reduces to
Fm = 4n̄An̄B + n̄A + n̄B. It is not difficult to obtain that Fm �
N2 + N , where N = n̄A + n̄B is the total photon number. The
equality can be achieved when n̄A = n̄B. For the case where
the total photon number N is fixed, this bound is the optimal
value of the QFI. Considering the PMC, the optimal value
can be achieved when β = ±iα. From the optimal value of
Fm = N2 + N � N2, one can find that, with high intensity,
the pair of the coherent state | ± iα〉〈±iα| and the coherent
superposition state |α〉+ can surpass the Heisenberg limit.
Reference [13] considered the same input states as in our
scenario but with only one phase shift in one arm. In their
case, utilizing an analysis similar to that above, it is easy to
find that the input states |α〉 and |α〉+ are the optimal choice
and can reach the maximum value of QFI.

Example 2. Another well-known even state is the squeezed
vacuum state, which is defined as [22] |ξ 〉 = S(ξ )|0〉, where the
squeezing operator reads S(ξ ) = exp ( 1

2ξ ∗b2 − 1
2ξb†

2
), with

ξ = |ξ | exp (iξ ). For convenience, we still choose the input
state in port A to be a coherent state |β〉〈β|. In this example,
the PMC is

2β − ξ = 0. (8)

Under this condition, the QFI can be expressed as

Fm = 2n̄An̄B + n̄A + n̄B + 2n̄A

√
n̄2

B + n̄B, (9)

where n̄A = |β|2 and n̄B = sinh2 |ξ |. This equation is equiva-
lent to the corresponding equation in Ref. [23]. In this expres-
sion of QFI, it is only related to the average photon numbers
in both ports: n̄A and n̄B. Figure 2 shows the variation of
Fm/N2 with the change of n̄A, n̄B. From this plot one can
find that the optimal value of the quantum Fisher information
for a fixed N is obtained near the nA = nB line, especially
for a large N . This is because when n̄B is large, for fixed
N , Fm � 4n̄An̄B + n̄A + n̄B � N2 + N , and the optimal value
can be achieved when n̄A = n̄B. Adding the PMC, the optimal
choice for a large N is that β = exp (iξ/2) sinh |ξ |. Also,
from Fig. 2 one can see that with the increase of N , the range
that Fm > N2 is increasing, which indicates that the high-
intensity input state is good for the enhancement of the phase
sensitivity.
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FIG. 2. (Color online) The variation of Fm/N 2 with the average
particle numbers n̄A and n̄B. The input states here are a coherent state
|β〉〈β| in port A and a squeezed vacuum state |ξ〉〈ξ | in port B.

IV. PMC WITH UNBALANCED BEAM SPLITTER

For a more general beam splitter transformation exp (iτJx)
with τ ∈ [0,2π ), the total setup of the interferometer can be
described by

UMZ = exp [iθ (Jz cos τ − Jy sin τ )]. (10)

If we restrict the input state ρA to a pure state, i.e., |ψ〉〈ψ |,
and ρB is still an even (odd) state, the QFI reads F =
4Var (Jz cos τ − Jy sin τ ). Due to the property of the even
(odd) state, one can find that

F = 4 cos2 τVar (Jz) + 4 sin2 τVar (Jy). (11)

It is known that for product states

Var (Jz) = 1
4 [Var (a†a) + Var (b†b)] (12)

and Var (a†a), Var (b†b) are irrelevant to the phase; therefore
the phase-matching condition is decided by the second term,
Var (Jy), and keeps the same form as Eq. (4).

V. PMC WITH PHOTON LOSSES

Now we consider the effects of photon losses on the PMC.
The scenario we use is shown in Fig. 1. Traditionally, the
photon losses can be described by a fictitious beam splitter
[24–29]. Here we use BT = exp [i(2 arccos

√
T )Jx] to de-

scribe this fictitious beam splitter. T is the so-called transmis-
sion coefficient, and we also define R = 1 − T as the reflection
coefficient. When T = 1 (R = 0), there are no photon losses
in the interferometer, and when T = 0 (R = 1), all the photons
leak out of the interferometer. The whole photon-loss scenario
can be mapped into a neat scenario, which includes two steps:
first, the input state goes through a particle loss channel, and
then the output state imports into a MZ interferometer without
losses.

We assume that the leaks in both arms share the same
transmission coefficient T and the input state is separable:
ρA ⊗ ρB. Then after the particle loss channel, the reduced
density matrix ρ reads

ρ = TrCD(�D�CρA ⊗ ρB�C†�D†), (13)

where the operator of the particle loss channel can be ex-
pressed by �C = exp [i

√
2 arccos

√
T (J AC

x + J BC
y )] and �D =

exp [i
√

2 arccos
√

T (J BD
x + J AD

y )]. Here J AC
x = 1

2 (a†c + ac†)
and J BC

y = 1
2i

(b†c − bc†), with c, c† being the annihilation and
creation operators of mode C. J BD

x and J AD
y are defined simi-

larly. Next, ρ goes through a regular MZ interferometer, which
can be described by exp (−θJy). Utilizing this representation,
this photon-loss scenario can be classified into a normal MZ
interferometer scenario with a mixed input state.

Now we choose the initial states to be ρA = |iαei〉〈iαei|
and ρB = |α〉+〈α|. Here  is the relative phase and  ∈ [0,π ).
Based on the PMC, its optimal value is zero for the no-loss
scenario. A similar scenario has been considered with only one
phase shift in one arm [13,30,31]. Through some calculations,
one can obtain the analytic expression of the QFI:

F = 4T |α|2[N2
α + T |α|2(2N2

α − 1
)] + 4T 2|α|4G cos2 

− 16T 2N4
α |α|4(1 − p2

r

)
p2

t sin2 , (14)

where pr = exp (−2|α|2R), pt = exp (−2|α|2T ), and G =
1 − 4N4

α (1 − p2
r ). From this equation, one can see that for

a fixed α and transmission coefficient T , the maximum value
of Eq. (14) can always be obtained at  = 0, which indicates
that the phase-matching condition remains unchangedin this
photon-loss case and is not affected by the transmission coef-
ficient T . Under the phase-matching condition, the quantum
Fisher information reads

Fm = 4T N2
α |α|2 + 8T 2N2

α |α|4[1 − 2N2
α

(
1 − p2

r

)]
. (15)

Utilizing the input average photon number n̄A and the input
total photon number N , it can be rewritten as

Fm = T N + 2T 2Nn̄A
[
1 − 2N2

α

(
1 − p2

r

)]
. (16)

This equation can reduce to Eq. (7) for T = 1 (R = 0).
From this equation, one can find that the photon losses have
a negative influence on the QFI. With the decrease of the
transmission coefficient T , the QFI reduces. For small losses,
namely, R is very small, the QFI reduces to

Fm = N + 2Nn̄A − [1 + 4n̄A(N + 1)]NR. (17)

When R < Rc, with Rc = 2n̄A/[1 + 4n̄A(N + 1)], the QFI
can still be larger than N , which indicates that these input
states can still surpass the shot-noise limit. This device is loss
tolerant and robust within the region where R ∈ [0,Rc]. For a
large N , Rc � 1/(2N ).

VI. CONCLUSION

In summary, we have considered a general scenario of a
Mach-Zehnder interferometer, where the input state in one
port of the interferometer is an arbitrary state and the other
one is an even (odd) state. We have provided an analytic
expression of the QFI and shown a general PMC under which
the phase sensitivity can be enhanced. We give two explicit
examples with one port in a coherent state and another in an
even coherent state or the squeezed vacuum state. The PMC
plays an important role in improving the sensitivity in these
cases.

For the unbalanced beam splitters, we find the PMC is
unchanged with one port in an arbitrary pure stare and another
in an even (odd) state. We also considered the example of
a coherent superposition state with photon losses and found
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that the PMC remains unchanged and is not affected by the
transmission coefficients. In addition, for a small loss, we show
that this setup is robust and loss tolerant. The present work
sheds light on the problem of how to enhance phase sensitivity
in quantum metrology.
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