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Quadripartite entanglement from a double three-level A-type-atom model
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We present a theoretical scheme for the generation of four quantized modes in a three-level double-A atomic
system driven by two counterpropagating far-detuned pump beams and find the entanglement between the
four modes. By using the second-order perturbation method and the phase-matching condition for the four-wave
mixing processes, the effective Hamiltonian is derived, which clearly illustrates the generation of four light beams
and their entanglement. The dependence of the four-mode entanglement on interaction time, pump detuning,
strength of interaction force, and the ratio of Rabi frequency of two pump beams is analyzed with inseparability.
The result presented here provides a method for the experimental generation of multipartite entanglement in an

atomic system.
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I. INTRODUCTION

Quantum entanglement is a crucial resource in quantum
network for large-scale quantum information processing [1].
In a quantum information network, light or photons are
naturally used as carriers of entanglement to exchange the
quantum information between the separated quantum nodes
in remote locations [2] where the atoms generate, process,
and store quantum information locally [3]. Fundamentally, this
endeavor is the quantum interface that converts quantum states
from one physical system to those of another in a reversible
fashion. Such quantum connectivity can be achieved by optical
interaction of photons and atoms [4]. Therefore, the quantum
entanglement of light with the wavelength matching with the
considered atomic transitions is necessarily required.

Up to now, many technologies, such as four-wave paramet-
ric interaction [5] and optical parametric oscillator [6], have
been shown to result in the quantum effects of squeezed state
and quantum entanglement [7]. These effects have been proved
to be the basis for the research field of quantum information
processing and communications [8]. Apart from the above-
mentioned nonlinearities technologies, another interesting
nonlinear process due to atomic coherence has attracted
much attention [9], since it has potential application in the
storage of quantum information and quantum memory [10,11],
effective generation of squeezing without cavity [10], and
multimode squeezing with possible applications to quantum
imaging [12,13]. The experimental and theoretical studies
have revealed that the atomic coherence of electromagnetically
induced transparency (EIT) [14] played an important role in the
generation of correlated photon pairs via the four-wave-mixing
(FWM) process [15-19]. Thus, the combination of EIT and
FWM opens the way for the generation of bright entangled
beams at atomic wavelength [20]. Based on this process, a
series of works for the preparation of two bright correlated
beams with the wavelength of rubidium were implemented in
a vapor cell [20-23]; a corresponding theoretical work was
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also presented to try to give the detailed effects of the FWM
in an atomic system [24]. Moreover, with the development
of the quantum teleportation network [25], controllable dense
coding [26], and so on, the investigation of the multipartite
entanglement was needed, and aroused a great deal of
interest. To date, the scheme for generation of multipartite
entanglement was mainly studied in the parametric process
[27-31]. The investigation of multipartite entanglement with
an atomic system is even important for developing the
multinode quantum network. In this paper, we propose a
scheme to realize the four-wave entanglement in two double- A
atomic systems combining with FWM, and the parameters we
used in the analysis show that the supposed system can be
easily realized in experiment.

II. THEORETICAL MODEL

Consider a three-level system with one upper state |3)
and two lower states |1) and |2), as shown in Fig. 1(a). A
schematic experimental setup is shown in Fig. 1(b), where
two strong pump beams (which can be split from one laser
beam) with the same frequency wy are counterpropagating
through the system with the opposite wave vectors (denoted
as 12,, r and —12,,3, respectively). A weak probe field with
frequency w, propagates into the cell with a small angle 6.
The frequencies of three levels |I) (I =1,2,3) are w; and
their difference is w;; = w; — w;. Both strong pump beams
induce the transition [3) — |1) and |3) — |2) with detunings
A =wy— w3 and § + A = wy — w3z, where § = w» is the
frequency difference between levels |2) and |1). The Rabi
frequency of the forward (backward) pump beam (classical
field) is € (€2,). We consider the generation of four quantized
modes, a of frequency w,, b of frequency wj, ¢ of frequency
w:, and d of frequency w,. Theqwa\q/e vectors of tlle four
quantized modes are denoted as k,, k,, —k., and —k; [see
Fig. 1(b)]. Here we consider an ideal system in which the
Doppler effects and Langevin noise operators will not be taken
into account. Note that four new photons are generated when
both the forward and backward pumping beams are applied.
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FIG. 1. (Color online) The level diagram.

If only the forward pumping beam (Q, = 0) is applied, two
photons will be generated (bipartite photon entanglement)
[12].

A. Hamiltonian and equation of motion

We begin with the Hamiltonian under the rotation wave
approximation (7 = 1),

3
H =7 wou+ Hy@), (1)
=1

where the interaction Hamiltonian is
Hv(t) — (Qefl’w()t + Be*ia)bt)o,:”
+(Qe " 4 Ae™i®")g3, + H.c. )

In the above Q= Qle"k!"“;ﬁ—i— Qze"'kﬂ’*';,a A = dypae’te” 4+
djyce ™7 and B = dy be’™ 7 4 dj de= ™ with dy, ds
and dj,, d}, being the coupling constants between the two
atomic transitions and the four quantized modes (b,a and
d,c), respectively. Here we have assumed w;, = wy, 0, = .,
l_éa = l;d, and l_éb = /QL. due to the symmetry consideration.

The dynamics of a single atom is described by the atomic
operator, and satisfies the Heisenberg operator equation of
motion under the dipole approximation, i.e.,

C-"mn = iWupOmp + i[Hy (@), Opp]l, m,n= 1,2,3. (3)

Substituting Eq. (2) into Eq. (3), one can obtain a set of
equations of motion:
(5’1] = Y1033 + I(Q + eiiatB)eiiwotO':;]
_ Z(Q* + ei(StB-‘r)eiw()to,lS, (4)

62 = 12033 + i(Q+ €' A)e "™ o3,
_ I(Q* + e—iStA+)eiw0tO_23’ (5)

633 = —(y1 + ¥2)o33 — i(Q+ e ' Ble oy
—i(Q+ € Ae ™ 03y +i(Q* + € BY)e! ™ 013
+i(Q + e AT)e " o3, (6)
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631 = (iw31 — y31)031 + i (e + ' B)(01; — 033)
+ i(Q*eiwot + eiw"zAJr)O'z], (7)

63 = (iwp — y3)o3 + (%™ + ' By,
+i(Q " + &' AT )(om — 033), (8)

621 = (iwa1 — ya1)o21 — 1(Q* + €% BT)e!™ 05
+i(Q+ e Ae o3, 9)

where § = wy — w, = wp — wy = wy; and the atoms can de-
cay from the excited state |3) into the two metastable states |1)
and |2) with decay rates y; and y,, respectively. y31, 32, and y»
are the dephasing rates between levels |3) and 1), |3) and |2},
and |2) and |1), respectively, with y31 = vy = (y1 + 2)/2.
Here the Langevin noise operators [32] are not taken into
account, because their effect is small due to large single-
photon detunings (§ and A). In Appendix A, we calculate
the contribution of the Langevin noise for a two-mode case,
and find it can be neglected. We can obtain the two-mode case,
by setting 2, = d}, = dj; = 0. The correlation for the two
modes in the two-mode case is also presented in Appendix A.

To eliminate the fast oscillating phase terms in Eqgs. (4)—(9),
we introduce the following transformations:

Omm = Owmm, m=1,2,3)

031 = 0316—1:(90:’ (10)
QO3 = ope '™,

021 = 021.

Then the interaction Hamiltonian becomes

HV(I) — (Qe—iu)gt + Be—ia)bt)Q3leiw0t
+(Qe"" + Ae" ") Q'™ + H.c.
= (Q+4 Be Q3 + (Q+ Ae*) 03, + Hee., (11)

and the equations of atomic operators become

O =103y —i(Q +*BY)Q13+i(Q+e ' B)Qs,
00 =103 —i(Q +e AN 0n +i(Q+ 7 A)0x,
On=—(y1+ )03 —i(Q+ e B)03
—i(Q+e”A)03 +i(Q* + e BM)Q13
+i(QF e AT Oss, (12)

031 =i, 031 + (" + ' B)(Q11 — 033)
+i(Q" + e AT Oy,
03 = —il,Qn +i(Q + B0 (13)
+i(QF + e AT Q0 — 03),
021 = iT21 Q0 — i(Q* + BT 003 + i(Q+ € A) 031,
where ')y = —A +iy3, Ty =8+ A =iy, Ty =8 +iya,

and A = wp — W3].
Here we use the perturbation method to solve Q3; and Q»3:

0= 05+ 0% + 05+ -

(14)
Q23 = Q53 + Q53 + Q53 + .
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Note that Q(O) or Q(O) does not involve the quantized mode
and Q

Q(223) contains two operators. Substituting Eq. (14) into Eq. (11)
and keeping the terms containing the quantized modes, A and
B (i.e., a, b, c, d), to the second order (all orders for 2), we
have an effective Hamiltonian,

operators, Q31 involve a single operator, and Q31 or

HV([) — (Q + Be—itst)(Qfo) + Q(l) + Q(z))
—|—(Q* + A+€7MZ)(Q(O) Q(l) Q(z)) +H.c.
~ Be*iét lel) + QQ%ZI)+A+€71& Q(l) +Q*Q(2) +Hec.
(15)

The last equals sign is present because the terms having a
single quantized mode operator could not satisfy the phase-
matching condition and can be neglected, while the constant
term is just a shift.

B. Perturbation solution for Q3; and Q3

As the generated four quantized modes and the probe are
weak, we can use the perturbation method by keeping them
to the second order and keeping the classical pump field to
all orders. The steady solution of the zeroth order is (see
Appendix B for details)

1
0y = [82(A2+y2)+8<6+2m|sz| +41Q1*,  (16)

0y = G—[82(A2+2A8+y2+82)
2
—8(8 +20)|Q* + 4|2, (17)
262
(0) 2
=P, 18
033 G2| | (18)
5
o= Gy + 25 +21201 = (1), (19)
8 . *
W= G RU6+ A —ins—22F] = (23)" )
0 _ 12 iy —aiefl = (09),
ol = G, B0 = 2iy) — 4@l = (Q17)" @D
where
Gy = 82(8%* +2A8 +2A% +2yH) + 28%|Q7 + 8%, (22)

and we have taken y; = ¥, = y31 = y3» = Y and set y»; = 0.
From Egs. (16)—(21) one can clearly see, under the conditions
IA/812 ~ 0 and |y /8%, |Q/8]2, |AQ/8%| — 0, that Q) ~
Q(o) ~ Q(O) ~ Q(zo) ~ Q(O) ~ O0and Q(O) ~ 1, which indicates
that the strong pump and weak probe configuration put all the
atomic population approximately in the state of |2).

In a similar way, one can also obtain the first-order and
the second-order steady solutions for lel), (213) and ngl),
Q(223) (see Appendix C for details), which are Egs. (C6) and
(C22). In the system of M three-level atoms, the phase-match
conditions must be satisfied in order to have the output of the
four modes.
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C. Effective Hamiltonian

Now let us obtain an effective Hamiltonian which is
equivalent to the Hamiltonian, Eq. (1), under the second-order
perturbation approximation. Substituting Eq. (14), Egs. (16)—
(21), and Egs. (C6), (C9), (C22), and (C25) in Appendix C
into Eq. (2) and n0t1c1ng B = d31be’k“ +dj, de— %7 and
Q=Q etk 4 Qze”kﬂ“ A= d32ae’k“’ +di, ce—ikeT , we
can obtain the effective Hamiltonian in the interaction plcture
(see Appendix D):

Hey = k1a™ bt + kpctdt + 2 /kika(a™d™ + ¢bt) + Hee,
(23)

k1 = kQd5dy, ko = kQd3d3, (24)

B 485(8 +2A) [y2 + (8 + API(y? + A?)
T [8%(8% +2A8 + 24P (1912 + 121

+ (8% 4+ 68A + 6A% — 27/2)}, (25)

where dsy ~ dj, and ds; ~dj; have been used due to
the very close frequencies of the four modes. Please note
that we will have the two-mode case by setting Q, =
0. In Eq. (23), we keep the correlation terms, and have
dropped the constant terms which lead to an overall shift
and the linear terms (containing one operator of the four
modes) which lead to a frequency shift of the atomic
levels. When the backward pump field is absent (£, = 0),
Eq. (23) reduces to the two-mode case. For convenience, we
setk; = |kp| e'® = i/c%ei("””/z),/cz = lia| € = iKc}e!@ /D,
ate@-m/D/2 — G+ btel@-m/2/2 — bt ctel@-m/D/2 — gt
and d*e'@="/2/2 = g+ Thus Eq. (23) can be rewritten as

H. —l[K atbt +rpetdt + 2k pkp@tdt + b))+ He,
(26)
where
/cj% = |KQ%d§<1 3
Ky = |k Q3d5,d; (27)

KfKkp = |K§_21$_22d;1d;<2|.

The generation of the four modes is due to the following four
processes, which satisfy the phase-matching condition: the
first, absorbing a forward pumping photon and then generating
a photon of w;, with an atom from level |2) to level [1) via
level |3), and then absorbing a forward pumping photon and
then generating a photon of w, with an atom from level |1)
back to level |2) again via level |3); the second, absorbing a
backward pumping photon and then generating a photon of w,
with an atom from level |2) to level |1) via level |3), and then
absorbing a backward pumping photon and then generating a
photon of w, with an atom from level | 1) back to level |2) again
via level |3); the third, absorbing a forward pumping photon
and then generating a photon of w;, with an atom from level
|2) to level |1) via level |3), and then absorbing a backward
pumping photon and then generating a photon of w. with
an atom from level |1) back to level |2) again via level |3);
the fourth, absorbing a backward pumping photon and then
generating a photon of w,; with an atom from level |2) to level
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|1) vialevel |3), and then absorbing a forward pumping photon
and then generating a photon of w, with an atom from level
|1) back to level |2) again via level |3).

III. EQUATIONS OF MOTION FOR THE FOUR
QUANTIZED MODES

From Eq. (26) one can find the Heisenberg equations of
motion for the four quantized modes,

da _ - db
— = /c]%b+ + 2k pipd T i K%ZlJr + 2k kT

Ccizt~ dd @
d—j = K}%J+ + 2Kflcbl;+, E = KEEJF + ZKbeffL.

We introduce the quadrature operators for each mode as
Xy = (04 0")/v/2, Py = (0 = 0)/(iv/2),[X,, Pyl =i,0 =
a, b, ¢, d. Using the quadrature components X, P, to re-form
Eq. (28) into the following forms,

dX; dX;
a =/<2-X,;+2Kf/c;,X(;, il =K2Xa+2KthX5,
dt / dt !
dX; dX;
- =K£XJ~|—2KbeX5, =4 =K§X5+2KbeXgl,
dt dt
(29)
and
dP; dP;
d_ta = —K%PE—ZKbePJ, d_[b = —szcpa —2KbePE,
dP; dP;
£ = —KZPJ — 2K pp P, el —KZPE — 2K pKp Py
dt dt

(30)
These equations (29) and (30) can be solved analytically with

their initial values,
Xa(t) = 21 Xz(0) + 22 X5(0) + A3 Xz(0) + A4 X 5(0),
X5(1) = 22X5(0) + 21 X5(0) + 24 X#(0) + A3 X5(0),

X:(t) = 23Xa(0) + 24 X5(0) + A5 X(0) + 26X 5(0), Gh
X7(1) = 24 Xz(0) + A3 X5(0) + A X(0) + 15X ;5(0),
and
Pa(1) = A1 Pa(0) — 12 P5(0) + A3 P:(0) — A4 P3(0),
Ps(t) = =22 P4(0) + A1 P(0) — A4 Pz(0) + A3 P;(0), (32)
P:(t) = 23 P2(0) — 14 P5(0) + A5 Po(0) — A6 P4(0),
Py(t) = —A4Pz(0) + A3 P5(0) — A6 P=(0) + As P7(0),
where
1
A= E[€+ cosh(nt) + &_ cosh(n_1)],
1
Az = 56 sinh(n1) + & sinh(y-1)], (33)
Ay = 2Kk [cosh(n1) — cosh(n-1)],
2KfK}, . .
g = T[Slnh(n+l) — sinh(n_1)],
1
As = E[g_ cosh(nyt) + &, cosh(n_1)], 34
1
Ao = E[g, sinh(n41) 4 &1 sinh(n_1)],
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with & =V} + 14iji) + 1), &2 =&+ (7 — &), and
Nt = (K]% + K; + &)/2. All the information needed to cal-

culate the van Loock—Furusawa (VLF) correlation [25] is
contained in Egs. (31) and (32).

IV. FOUR-MODE ENTANGLEMENT

For any quantum system, a set of sufficient conditions
for multimode entanglement is derived by VLF. For the
four-mode system under consideration and our definitions
for quadrature [X, = (0 + 0o1)/v/2, P, = (0 —0")/(iv2),
[X,, P,]=1i, 0o=4,b,¢d], the VLF inequalities can be
given by

Vs = 8%(Xs — Xj) + 8%(P; + Py + g. Pz + g4 Py) < 2,
Vae = 8°(Xa — X&) + 87 (Pa + g, P + Pz + g Py) < 2,
Vig = 8*(Xa — X3) + 8*(P2 + g, Py + gL P- + P;) <2,
Ve = 83X — Xz) + 8% (ga Pa + Py + P-4+ g/ P;) < 2,
Vsa = 8% (X5 — X3) + 8%(g, Pa + Py + 8/ Pe + Pp) < 2,
Vag = 8% (Xe — Xg) + 8%(g Pa + &) Ps + Pe + P7) < 2,
(35)

where §%(X) = (X?) — (X)? and the parameters g;, g/, g/ are
arbitrary real numbers. As shown in Refs. [25,29], among the
above six inequalities, three conditions are sufficient to verify
the full inseparability of a four-mode, four-party state. Thus
we may choose

Vig <2, Vig<2, V<2 (36)

The system is fully inseparable and there is genuine
fourfold entanglement if the three inequalities are all satisfied.
Please note that Eq. (35) or Eq. (36) is the sufficient
condition, but not the necessary condition for a fourfold
entanglement. For further obtaining the expression, say Vj;,
these average values (%), (@*?), (b%), (b*?), (ab*), (@*h),
and (@), (@*), (b), (bT) are needed. For this system, at the
initial time ¢ = 0, all the fqur modes~ are in vacuum; thus we
have (a@(0)) = (a*(0)) = (b(0)) = (b (0)) = 0, which leads
to the average values of the amplitude all being zero, i.e.,
(X,(0)) = (Pp(0)) =0 and (X,(1)) = (P,()) =0. Due to
the bosonic communication relations, not all the moments
vanish, such as (X,(0)X,(0)) = (P,(0)P,(0)) = 8,,/2, and
(X,(0)Py(0)) = —(Py(0)X,(0)) = i,y /2. The variances at
time ¢ can be obtained based on Egs. (31) and (32),

82X, = 86Xy = 82P; = 8 P;
1
= E[S+ cosh(2ni1) +§_ coshn_n)],  (37)
8’ X: = 8°X; = 8°P: = §°P;
1
= E[S_ cosh(2n 1) + &, cosh(2n_1)],  (38)
and |
(XaXph = =(PaPy) = (€4 Sinh@u,0) + - sinh(2-0)],

1
(XeXg) = =(PePy) = ;o [6- Sinh(@n,1) 4§, sinh(29-1)],

(39)

042314-4
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(XaXz)

(PaPr) = (X;Xg) = (P Pg)

= w[cosh(Znth) — cosh(2n_1)],
: (40)
(XaX ) = —(PaP) = (X;Xe) = —(Pp Ps)

B | 6inh(2, 1) — sinh(2y_1)].

As the average values of the amplitudes are all zero, the above
average values are actually the covariances.

Next, we investigate optimize of the VLF criteria by using
the freedom allowed in the choice of g;, g/, g/, which are
arbitrary real. Using the relations (X,(t)) = (P,(¢)) = 0, the
required variance can be rewritten as, taking V;; as an example,

Vi = 487 Xa + (g2 + £5)8° P: — 4(X2 Xp)
+2(ge + 8)(PsPs + PaPs) +28c84(PePy).  (41)

Following Ref. [33], a simple minimization of the right-
hand sides of Eq. (41) with respect to the g, and g, gives

(Pa Pz) + (Py Pz)

(PP +P)

8 =81 = — (42)

where we have used the relations in Egs. (37)-(40). Once this
optimization process has taken place, one can find

Vi = 462X, + 2g%8° Ps — 4(Xa X5)
4 4g.(PsPs + Py Ps) +2g>(P:P3). (43)
Similarly, one can obtain that

Ve = (24 82)8° X + (2 + g57)8* X — 4(X; Xz)
+2848(PaPy) + 28a((PaPj) + (PaPe))
+2g,(P; Py + PePy),

Vog = 482X +2¢/%8° Py — 4(X:X3)
+4g/(PyP: + PiPy) + 28/ (P; P;),

(44)

where we have set
8a = [((PaPj) + (PaP:)8* Py
— ((PyPy + P:P3)){Pa Py)/[(PaPy)* — 8% Pa8” Py,
gy = [(PyPy + P:P;)8* P; — ((P: Pp)
+ (P Pe)) (P2 Py)1 /(P2 Py)* — 87 P28” Py,
gy = —(PiP: + PaP3)/({P3 P;) + 8 Py).

x%(MHz)

PHYSICAL REVIEW A 88, 042314 (2013)

V. DISCUSSIONS

First, let us consider the two-mode entanglement case. As
mentioned above, we can obtain the two-mode entanglement
case by taking 0, = dj}, = dj; = 0. In this case, we have k;, =
0,& = K} and ny = &, n— =0, and from Egs. (37), (39), and

(43) we can find that V,; = 2e7 X < 2, which demonstrates
the genuine bipartite entanglement, as expected [12]. In Fig. 2,
for the two-mode case, we plot the graph of squeezing parame-
ter szc as the function of Q(=2;) and A for several given values

of 8: G = /Mds; = vMdsy, = —250 MHz (M is the atom
number density), and y = 4.56 MHz, (a) § = 3.0 GHz, (b)
6 = 9.2 GHz. From Fig. 2 one can clearly see that /c?- increases
with the decreasing value of § and the increasing absolute value
of A (especially for A > 0), respectively. In addition, for the
case of A > 0, K)% becomes bigger as the increasing value €.
This case is not true for the case of A < 0. It is interesting to
notice that the effect of A on szc is unsymmetrical, i.e., one

can obtain a bigger value of KJ% with the increasing value of
A > 0 than that with the increasing absolute value of A < 0
for a given value of §. Especially, K]% is very small when the
resonance is present (A = 0), that is to say, an appreciable
value of A # 0 is necessary to generate the observable
entanglement.

Next, we turn to the general four-mode case with asym-
metric pumping strengths and arbitrary detuning. Substitut-
ing Eqs. (37)—(40) into Eqs. (43) and (44), the analytical
expressions can be found, but the expression will be very
complicated. Here we use numerical calculation to present
the results. In Fig. 3, we plot the VLF correlations of the
four quantized modes for different pumping detunings A:
(a) A =34.78y, (b) A =104.35y, (c) A =17391y, (d)
A =347.83y, with § = 0.52 x 10°y, Q; = 104.35y (2, =
0.8€2)), and G = —43.48y. These parameters are based on
the Rb atoms [34-36]. The black line is for V3, red line is for
Vi » and blue line is for Vi (for simplicity, the tilt is neglected
in all figures). From Fig. 3, we find that three correlations
fall below 2 in a certain interaction time range, which
demonstrates the quadripartite entanglement. Furthermore, the
correlation V. between b and ¢ modes seems stronger than
those involved in the other two modes. The interaction time
range, within which quadripartite entanglement is present,
decreases with the increasing detune A. In order to observe the
quadripartite entanglement with other parameters fixed, small

Q(GHz) Lo

A(GHz) 3

FIG. 2. (Color online) The squeezing parameter /c; as the function of (=), and A with G = —250 MHz and y = 4.56 MHz;

(a) 8 = 3.0 GHz, (b) § = 9.2 GHz.
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(b) A=104.35y

= oyt

301(d) A=347.83
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FIG. 3. (Color online) The VLF correlations for (a) A = 34.78y, (b) A = 104.35y, (¢c) A = 17391y, (d) A = 347.83y with § = 0.52 x

10°y and ; = 104.35y, as well as G = —43.48y.

A corresponds to a long interaction time (or long vapor cell),
and large A corresponds to a short interaction time (or short
vapor cell).

In Fig. 4, we plot the VLF correlations for different
combination of §, A, and the pumping Rabi frequency.
Comparing Figs. 4(a) and 4(b) with Figs. 4(c) and 4(d), we
find that we can have the quadripartite entanglement over a
longer range of interaction time for a bigger 4/y. Therefore,

i yt
0 5 10 15 20
300 (o)
2.5/
2.0
1.5 Ved
1.0 Vab
0.5 Vbe
L L L yt
0 5 10 15 20

the interaction time to observe the entanglement is different
for different §. The bigger §/y is, the longer interaction time
is needed. As shown in Figs. 3 and 4, there is an unambiguous
demonstration of the inseparability of the four modes as soon
as the interaction begins. In Fig. 5, we present the dependence
of the VLF correlation of the four modes on the coupling
constant G ranging from —43.86y to —76.75y, which tells
us that the quadripartite entanglement can exist over a long

= oyt

2.55

2.04
1.5;
1.0 -

0.5

L L L L yt
0 5 10 15 20

FIG. 4. (Color online) The VLF correlations for (a) A = 104.35y, and (b) A = 173.91y with § = 1182.6y, Q; = 104.35y; (c) A =
131.58y, and (d) A = 219.30y, with § = 2017.5y, Q; = 131.58y. Here Q, = 0.8Q, and G = —43.48y are the same as in Fig. 3. These

parameters in (a)—(d) are based on the Rb and Cs atoms, respectively.
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yt

ST S ”
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FIG. 5. (Color online) The VLF correlations for (a) G = —43.48y, (b) G = —54.83y, (¢) G = —65.80y, (d) G = —76.75y with

8§ =2017.5y, Q, = 0.8Q;,and A = Q; = 131.58y.

interaction time range, which is shortened with the increase
of |G|.

In general, the Rabi frequencies of the forward and
backward pump fields are unsymmetrical. Here we consider
the effect of the ratio (Q,/€) of forward and backward pump
Rabi frequencies on the four-mode entanglement, which is
plotted in Fig. 6. For Q,/Q; < 1, the degree of inequality
violation for b and & modes becomes stronger, and the curves
of Vz; and Vj; tend to coincide, when Q,/Q; increases to

3.0 _ _
(a) 2,=0.90,
25

2.0

15"
.07
05"
|: 1 yt
0 5 10 15 20
300 _
[ (C) Qz=l.201

25"
2.0 X
1.5;
1.0;

0.5

.i -
0 5 10 15 20

1. For Q, =, the curves of V:; and V,; are completely
overlapped. On the contrary, for Q,/Q; > 1, the curves of V5
and Vj; are separated and the degree of the inequality violation
for b and & modes becomes weaker, when €2, /1 increases.

VI. CONCLUSIONS

We have examined the three-order nonlinear interaction
scheme of Boyer et al. [9], which motivates us to propose a

(b)) D=0y
2.5j

yt
0 5 10 15 20

3.0¢ — —
E (d) Q2=1.4QI

25"
2.0:
1.5;
1.0;

0.5

; t
0 5 10 15 20

FIG. 6. (Color online) The VLF correlations for (a) 2, = 0.9Q,, (b) Q, = 1.0Q,, (c) , = 1.2, (d) £, = 1.4Q,, with § = 2017.5y,

G = —54.83y, and A = &, = 131.58y.
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theoretical scheme to generate the entanglement of four light
beams in a three-level double-A atomic system derived by
two counterpropagating far-detuned pump beams. The degree
of entanglement between the four-mode is evaluated by using
the sufficient inseparability criterion proposed by van Loock
and Furusawa and the effective Hamiltonian. The dependence
of entanglement on the detuning of pump beams, the ratio
of counterpropagating pump field, as well as the coupling
constant of four generated fields with the atomic system is
also discussed. It is shown that a nonzero detuning is necessary
for generating the observable entanglement under the current
atomic configuration. These results supply a concrete method
for preparation of multipartite entanglement in an atomic
system experimentally.
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APPENDIX A: LANGEVIN NOISE EFFECT
IN A TWO-MODE CASE

In this Appendix, we consider the Langevin noise effect
to the quantum entanglement (correlation). For simplicity,
here we only consider the two-mode case, whose effective
Hamiltonian can be given by taking Q, =0 (Q; = Q) in
Eq. (23),i.e.,

Her = k1aTb™ + k1ab, (A1)
where x| = Kde;Id;} and « is defined in Eq. (25) with
Q, =0.

Taking the Langevin noise operators into account, the
equations of atomic operators become

Q31 =il Q31 +i(Q" +d5,¢”'b")( Q11 — 033)
+i(QF + de at) Qo1 + Fa1,

Q23 = iT} 0 — i(Q+dye™b)0s)
—i(Q+ dne a)(Qrn — 033) + Fas,

021 = iT21 Q21 +i(Q + d3e™a) Q3
—i(Q" +d5e”'b )03, + P,

Q13 = —iT% Q13 — i(Q + dsie”"'b)(Q11 — O3)
—i(Q+dne”a)Q1 + Fis,

Qun = =il O +i(Q" +d3 b)) 01
+i(Q* + dpe at)(Qn — 033) + Fa,

Qir = —iT3 Q1 —i(Q" +djhe ™aM) Q13
+i(Q+dsie™'b) 03 + Fio,

where Fj; are the Langevin operators, characterized by

(F;j(t)) =0, and (Fij'_(t)Fi’j’(t/)) =2D;;ij8(t —1"),

(A2)

(A3)

which defines the diffusion coefficients D;; ;.
For the contribution of the Langevin noise to the field,
first order is enough [37,38]. The terms containing the field

PHYSICAL REVIEW A 88, 042314 (2013)

operators in Q3 and (»3 have already been included in
the effective Hamiltonian, so that here we only consider the
Langevin noise contribution (neglecting higher-order terms
such as Fjja,F;;b and Fjja™,F;;b*, and only keeping the
contribution of F;;). Dropping the terms containing field
operators and substituting the zero-order solution for the
atomic operators Q1;, O, Q33 into Egs. (A2) and (A3), we
obtain the steady state solution [37,38],
0=il,03 +iQ (0} — 0F) +iQ" Qa1 + Fa1,
0= —iT,Qn +iQ"(0y — 0%) +iQ" Q2 + F, (Ad)
0=il21001 —iQ* 023 +iQ031 + Far.
with
iFy =T,0%) + "0,
iF =T} 0% — 05/,
i =T 04 — 27 0% + Q0.
Consequently, we obtain the Lagevin noise contribution to the
field through

(A5)

031 — F, = a3 F3 + ooz Foz +ao Foy,  for Qs A6)
003 = Fy = B31F31 + BoaFz + o1 Fo1,  for Qos,
where we have set
i i
oy = ?(Q*)z, ) = T(W +35 4+ A)QY,
. (A7)
l
s = (=iyd — 8" —sA +1QP),
and
i, i .
B3 = TQ , Pu= 7(—1)/ + A)Q2,
. (AB)
i,
By = L (=i +5A+ 121%),
with the definition of the denominator as
T =8(y*—iy8+8A+ A+ Qiy +8)IQ% (A9)

With considering the noise, the effective Hamiltonian,
Eq. (Al), is modified as

Her = K1d+b+ + k1ab

+{d31¢"'bF, + de'aTF, + He}, (A10)

and the Heisenberg motion equations for optical fields are
given by
d . d .
—a=—ikib" —iF,, —bT =ikja+iF,,
dt ! Podr !
where we have set Fj, = djye "' F, F, =ds e "' F,.
Here we introduce ib = b,—ibT = b™, and write the
quadrature amplitude and phase operators as X, = (a +
at)/V2, Po=(a—a")/(V2i), X, =b+b")/V2, P, =
(b —b*)/(+/2i), and then the equations for the quadrature
amplitude and phase are

(Al1)

d E)*t - F
EXH = K]Xh + l(h)Tb,
5 (A12)
d (FOt+ F,
—Xp = Kk1X, ,
dt V2
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d E)" + F
EPa = —x1Pp — (b)%,
- - (A13)
d P, = P + (Fa)+ - Fa
dt b= —Kily \/zl .

In order to solve Egs. (A12) and (A13), we rewrite Eq. (A12)
as

%u(t) = Ju(t) + F(1), (A14)
where
Xa(t) 0 K1
“(I)Z[Xb(t)]’ J:<K1 0)’
- (A15)
1 | i(Fp)" —iFp Ja(@)
F = —_— ~ ~ = N
W=7 [Fb +(F } [fb(t)}
The solution of Eq. (A15) is
ut) =e’ [u(O) —i—/ e""F(t/)dt’} . (A16)
0

In order to solve Eq. (A14), we can diagonalize the matrix
J as

J=UJ, U, (A17)

with
(A18)

Consequently, we have

X,(t) = cosh[k17]1X 0 + sinh[x;1]X 0

+ / r{cosh[:q(t — )] fa®)

+ silom[,q(t — )1 fp(t))dr, (A19)

X,,(t) = sinh[ic;]X 40 + cosh[ic; 11X o
+ f t{sinh[/q(t — )] fat)

+ cc;)sh[/c, @t — 1 f("H}dr, (A20)

where X o and X0 are the initial quadrature amplitude. From
Egs. (A19) and (A20), we obtain

Xo(t) — Xp(t) = (Xao — Xpo) e’
+ f (Lfult)) = fio!Hle™ " )dr’. (A21)
0

In a similar way, we obtain
P,(t) = cosh [k1t] P,y — sinh [k11] Ppo
t
+ / {cosh[ic;(t — )] f,(t")
0

—sinh[k;(t — 1")] fo(t)}dt’, (A22)

PHYSICAL REVIEW A 88, 042314 (2013)

and
P,(t) = —sinh [kt] P,o + cosh [kt] Py
+ / {—sinh[x(t — )] f.(t")
0
+ cosh[k(t — t")] f(¢")}dt, (A23)
as well as

Pu(t) + Pp(t) = (Pao + Pro) e "

+ / (L) + LNt (A24)
0

where P,y and Py are the initial quadrature phase and

| - 1 ~ ~
fa@®) = _E[(Fbﬁ_ + Rl f0) = ﬁ[(Fb)+ — Fl.

(A25)

For the initial input vacuum state, we have (X, ;(0))
(Pap(0)) =0, (Fup@)) =0, and (X,(0)X,(0))
(PO(O)PU’(O)) = 600//2’ so that we have (Xa(t) - Xb(t» =
(Pp(t) + P,(t)) = 0. Then we obtain

([Xa(t) — Xp(D)])

— (AP + /0 (By(t.£) By, di”,

(A26)
([Pa(t) + Py()T)
= ((AOP) + / (Ba(t.1)Bo(t.4"Y)ddr ",
0
where we have set

Ai(t) = e (X0 — Xp0)

Ay(1) = €™ (Pug + Pyo)
2(t) = e (Pyo + Ppo) A27)

Bi(t,t)) = e O£t — fo(t)],
By(t,1") = e O f1() + L)),

and assumed (X, .(0) f4..(t)) = (Pa.c(0) fo.c(t")) = 0. Finally
we can express the correlation as

1
I'= S{([Xat) = Xp(O1) + ([Pa(t) + Po()]?)}
=e X 4 % / (By(t,1")By(t,t"))dt'dt"
0

1 t
+5 f (By(t,1")Ba(t,1"))dtrdt". (A28)
0

To derive the second and third terms in Eq. (A28), we need
to calculate some correlation items, such as (f,(¢') f,/(t”)) and
(fot" f2t") (o = a,b). Using Eqgs. (Al5) and (A25), and
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denoting d3, 8;; — Bij, ds1;j — «;j, we obtain

1 B
(fa) fut")) = —E{elzat Dy p+ — Dpi p — Dy pr + €2 Dy p}8(t" — 1),
(A29)
| R e
(fal) fot")) = 14" Dy o + Do = Diar = €7 Dy a}3(t" = 1),
(o) fut") = %(Da,w — Dype™ "+ Dyr yre'® — Dgr )8t — 1),
(A30)
’ " 1 i28t —i28t' / "
(fh(t )fh(t )) - E{e 2 Dcﬁ,cfr - Da*,a - Da,cﬁr +e 2 Da,a}8(t —1 )a
and
1IN £l o !l 1 i28t —i28t / "
(Lo Fat") = (€™ Dy e + Dy + Dy e + €72 Dy )51 —1"),
LI\ £l gl i i28t —i268t / "
(fa(t )fb(t )) - E{e 2t L)Ifr,aJr - Db*,a + Db,a+ —e 261 Db.a}(s(t —1 )7
(A31)

(fb/(t/)fa/(t”)) = %{eiz&,Da*,b* + Da*.h - Da,lfr - eii28t/Da,h}8(t/ - t”)a

1yl YN/ 1 i28t" —i28t' / Vi / 7
(S = =S le Dyt at — Dar.a — Daar + €Dy )8t — 1"y = —(fit) fu(t")),

where D, is defined by Do,o’ = (FoFy), Do*,o’ = ((F0)+Fo’), Da*,b(s(t - t,) = ([Fa(t)]Jer(t/)), and Da*,b = (Db+,a)*,

and D, ,+ = (F,(F,)"), whose expressions will be deter-
mined later.

Substituting Eqgs. (A29)—(A31) into Eq. (A28) we finally
obtain the variance

—2K 1t

Dyp+ = (Dpg+)*. In Eq. (A32), the first item e 2’
corresponds to the entanglement without the Langevin noise,
and the second item is the contribution of the Langevin noise
(the effect of atom spontaneous emission) to the entanglement.

Using the generalized Einstein relation [37,38] and the

1—e
4K]
+ i(D(ﬁ,b - Db*,a + Db,zﬁr - Da,h*)}a

[ =e 200 4 {Dp+.p + Dp p+ Heisenberg-Langevin equations (A2) and (A3), the Langevin

diffusion coefficients for atomic operators can be obtained.

(A32) Here we are interested in the diffusion coefficients due to

where Dy p+8(t —t') = (Fp(t)Fpe (1)), Dy p8(t — 1) = the Langevin noise operators, F3;, Fp3, F»;, and their adjoint
([Fy (O] Fy(1))), Dy o+8(t — 1) = (Fy(O[Fa(t)]T),  Fi3. Fo, Fio,
|
0 (Qx) O 0 0 0
(Q33) 0 0 0 0 0
0 0 2(Qu)+(Qs3) 0 2(0mn)
Ty _ . —t
([KOIK®OI) =y 0 0o 0 0 0 0 8t —1), (A33)
0 0 0 2(Qa1) 0 2(Q2)+(03)
0 0 0 0 0 0

where [K(t)] = [Fi2(t)F1(t) Fi3(t) F31(t) Fx3(t) F3(t)]7. Using Eqgs. (A33) and (A6), we can finally obtain (here we recover
Bij — dyBij, aij = daiaij)

Dy p = yldnl2183117(Qn1) + (B2 > + 1B311)(Q33)},
Dy = yldnl*(21217(Q2) + (B2 + 1B21)(Q33)},
Dy+ o = yd31d3{285,031(Q11) + (B3 1021 + B3031)(Q33)},
Dy o+ = yd3pd3{2B23053(02) + (B0 + Br3cz;){(Q33)}-

(A34)
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FIG. 7. (Color online) The entanglement / as the function of
time. Here we have chosen the parameters G = —250 MHz, y =
4.56 MHz, and 2 = 0.4 GHz, § = 9 GHz, A = 0.8 GHz.

Here we have assumed y; = y, = y. It is easy to see that
D; ; in Eq. (A34) satisfy the phase-matching condition. Note
(Q;i)(@ = 1,2,3) are replaced with their zero-order values of
Ql(.?) in Egs. (16)—(22). The special expressions for D; ; can
be derived by substituting Eqs. (A5) and (A6) into Eq. (A34).
In Fig. 7, we plot the entanglement / in Eq. (A32) as the

1 1 1 0 0 0
0 0 1y iQ —iQ 0
0 0 »m 0 0 iQ

—Q* 0 @ -I, 0 0
0 - @ 0 0 T,
O 0 0 - 0 0

- 0 @ 0 -TIi 0
0 - Q 0 0 0
0o 0 0 0 - Q

Taking y; = y» = y30 = y31 = ¥ and y»; = 0, then solving
Eq. (B2), one can obtain the zero-order steady solutions for
0} (j.k = 1,2,3) shown in Egs. (16)~(21).

APPENDIX C: FIRST-ORDER SOLUTION
In a similar way, the first-order steady equations are given
by
0= 0ff+ 0+ 0
my; = l)/Q(l) + Q*Q(l) _ Qlel)s
my = iy Q% + Q0% — 0%,
ms =T, 05 + (0} - 0%) + 2705,

PHYSICAL REVIEW A 88, 042314 (2013)

function of time (see the red curve) where we also plot
the entanglement without considering the Langevin noise by
dropping the second term in right-hand side of Eq. (A32). It is
clear that the effect of Langevin noise on the entanglement
I is very small; thus we can neglect it in our further
calculations.

APPENDIX B: ZERO-ORDER SOLUTION

Taking the zero-order steady solution of Egs. (10)—(13), we
can derive

=0\ + 0% + 05
0=y0Q% —iQ Q) +iQ05),
0= 105y —iQ QY +i0Y),

0=T Q(O) (Q(O) Q(O)) + Q* Q;(;)’
0=r.08 - ar(ef - o) - el

(0) 0) 0) (B
0=T20y — 0y + 205,
0= F Q(O) (Q(O) Q(O)) QQ(201)’
0=T30\ -0y +270f).

The solution of Eq. (B1) can be written in the matrix form

©
oy
-1 ©)
0 0 0 1 2
0 0 0 0 ()
—-iQ* 0 0 0 Qfg)
0 —QF 0 0 03
0 0 —Q* 0] = Q(l%) (B2)
QF —le 0 0 Q(O)
0 0 —Q 0 (33)
rx —Q 0 0 23
0 0 —I3, 0 ()
21
)
O
[
my = T,0%) — Q701 — (0% — 0%)),
ms = leQ(l) Q* Q(213) + Qlel), (CDH
where we have set
m e—iSZBQ(;)]) _ ei&tB-f- Q(](;)’
my = eiétAQgg) it gt Q(z(;)v
ms; = _efiStAJr Q(Ol) t&tB+(Q(0) (2%))7 (C2)
m =ei5tB+Q(102)+ —15ZA+( (0) Q(O))
ms = ei5tB+Q(2%) lﬁtAQ(O)
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The solutions of Qilk) (j, k =1,2,3) are given by
(e))

PHYSICAL REVIEW A 88, 042314 (2013)

11
(1
2 0
oy m
(1) 2
Q13 m3
Q(311) =Ur" [ ma |,
(1) ms
Q23 m:
) 3
32 ny
o "
(1)
01
where
1 1 1 0 0 0 0 0
0 0 iy QF —-Q 0 0 0
0 0 iy 0 0 Q* —-Q 0
Q* 0 —Q* 0 (A +iy) 0 0 QF
U=]0 -Q Q* 0 0 0 S+A—-iy) O
0 0 0 0 Q —Q* 0 8
Q 0 —-Q (—A—-iy) 0 0 0 0
0o —-Q Q 0 0 S+A+iy) 0 —Q
0 0 0 QF 0 0 —Q 0
and
N = detU; = 2y%|Q*{[2A% + (8 + 2A)8 + 21°18% + 28%|1Q)* + 8|2|*}.
We write Q(;l) and Q(213) as
D E
) 1 ) 1
Q3 = N O3 = N
where
1 1 1 0 0 0 0 0
0 0 iy QF mi 0 0 0
0 0 iy 0 m, QF —Q 0
Q* 0 —QF 0 ms 0 0 Q*
Dy =det] 0 —-Q Q* 0 N 0 S+A—-iy) O
0 0 0 0 ms —Q* 0 3
Q 0 —-Q (-A—-iy) m} 0 0 0
0o —-Q Q 0 my; B+ A+iy) 0 —-Q
0 0 0 Q* m3 0 —-Q 0
1 1 1 0 0 0 0 0
0 0 iy Q* —Q my 0 0
0 0 iy 0 0 m; —-Q 0
Q* 0 —Q* 0 (A +iy) ms 0 Q*
Ei=det] 0 —QF Q*F 0 0 mgy (+A—-iy) O
0 0 0 0 Q ms 0 3
Q 0 —-Q (—A—-iy) 0 mj 0 0
0 -Q Q 0 0 mj 0 —-Q
0 0 0 Q* 0 m —-Q 0

noooo

*

> O o

*

noeooo

> O O

*

noooo

oo

(=2}

Keeping the terms including only single operator and satisfying the phase-matching condition, we write

Dy — y A" (V. Ei— —QyB e p,,
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where
o = —i QWSHA% + 2 + (5 + 2A)8] +25(5 — 20)|Q)% + 412/}
+ (0 — OIS (A2 + ¢ — (y —iA)8® +28Qy +i8)IQI* — 4i|Q*]

(0)
Q” 2y —iANA® + 208 4 y* +87) + (2 A% — 28y 8 + i A8 — 3y8 —i8)|Q + 4(y +2i8)|Q]*}

- QQ%Of[zzA 8 +2AY8 4+ 3i A8 +4iy®s — y8* +i8> + 4(—iA +2y +i8)|Q], (C10)
and
= (0 — OB i(A2 +yD) — (y — i A)S1+ 282y +i8)|QI7 — 4i|Q[*) —i Q1A% + )82 +2(35 +2A)5|2 + 412[*]

©)
- %[SZ(AZ + 9Dy +iA +i8) +8QRiA*+2Ay +3iA8 — y&)|QP + 4(y + 28|21

+ OVQ 82 A% — 2Ay + i A8 +4iy? — 3y8) +4Q2y 4 2i8 +iA)Q?). (C11)
Substituting the zero solutions Eqs. (16)—(21) into Egs. (C10) and (C11), we have

82
—é—[az(—A — PP A2+ 2A8 + 2 +8H)—8(4y? —2iyS + 4iAy + 382 +4A8)|Q7 + 2Qiy + 6A + 8)|Q4

2)/

a

[5 AT+ )iy — A —8) +8(4y2 +2iy8 —4iAy — 8% —4AAS)|Q* — 2Q2iy — 6A — 58)|2*], (C12)

1222
where
Gy = 82(8% + 2A8 + 2A% + 297 + 28%1Q% + 8I2*. (C13)
Finally, Eq. (C9) becomes
Dy — y A" (Q)u, = —Ae“"‘”(Q*)Z%{az(—A — iy} AT +2A8 + y* + 8%
—8(4y? —2iy8 —4iAy 4+ 38> +4A8)|Q7 +2Qiy + 6A +8)|Q|Y, (C14)
E\ > —@Py Btely, = —B*eiQ? 2VG (B3A% 4 YA + iy - )
+ 84y +2iy8 +4iAy — 8% —4A8)|Q* — 2(—6A + 2iy — 58)|22*). (C15)

The correlation items resulting from the first-order steady solutions, Q(l) and Q(213), are

. D E
e QN + Ate™ QW) 4 He = Be ™ =L A+e—“”—1 +Hc — AAB+ A ATBT + He.

= (Ay+ ADAB + (AX + Ap)ATBT = AAB + A*AT BT, (C16)
where we have set
82 2
“ N’(’; (Y82 (—=A — iy (A% +2A68 + 2 + 82)—8(4y* — 2iys — 4iAy + 387 +4A8)|Q)% + 2Q2iy + 6A + 8|,

252
Ay = N’é QUSHA® + yH)(—A +iy — 8) 4+ 8Ay? +2iys + 4iAy — 8% — 4A8)|Q)* — 2(—6A + 2iy — 58)|Q*], (C17)

252
A=A, +A} = NG W(Q*)Z{wZ[zy —iy8+ (8 +2A)E + A)I(y —iA) + 4826 +20)|Q1° — 4Q2iy + 6A + 38)|Q)*}.

(C18)
Note N = 2y2|Q2|*G>, so

2

_ 6
(G

Q*
{i82[2y2 —iy8+ (8 +2M)6 + A)(y — iA)E + 4828 + 2A)(Q%)? — 4Qiy + 6A + 36)|Q|2(Q*)2}, (C19)
which is just the contribution to correlation from the first-order solutions.
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Next, we consider the second-order solutions. From Egs. (12) and (13), the matrix form of second-order steady equations is
given by
2)

11
2

oY) 0
2

0% m
© n2
13 ns

0% | =ur' | ns |, (C20)
2) ns
23 n;
2

Q(32) n;
2 *

Q(Ql) n5
2)

12
where U, is defined in Eq. (C4), and

n = efisrBlel) _ gt Q(lls)’

ny = ei&tAlez) _ e—i51A+Q(213)’

ny = _efiatA+ Q(le) _ eiBtB+(Q(lll) _ (313))’ (C21)
ng = eM’BJrQ(llz) + eiiBtAJr(Q(zlz) — Q(313)),

ns = S gt Q(213) — A lel)_

The solutions of Q(321) and Q(223) are written as

) )
0% — H% L 02 = H% ’ (C22)
where
1 1 0 0 0 0 0 0
0 iy Q* ni 0 0
0 0 iy 0 ny QF —Q 0 0
QF 0 —Q* 0 n; 0 0 QF 0
H? =det| 0 - @ 0 na 0 G+A—iy) 0 -—-Q [, (C23)
0 0 0 0 ns —Q* 0 0
Q 0 -Q (-A-iy) n} 0 0 0 Q
0 -9 9 0 ni G+ A+iy) 0 -2 0
0 0 0 QF n: 0 —Q 0 8
1 1 0 0 0 0 0 0
0 iy QF —Q ny 0 0
0 0 iy 0 0 ny —-Q 0 0
Q* 0 —Q* 0 (A +iy) n3 0 Q* 0
H? =det| 0 - o 0 0 ng G+A—iy) 0 —Q[. (C24)
0 0 0 0 Q ns 0 0
Q@ 0 -2 (-A-iy) 0 n 0 @
0 - @ 0 0 n 0 20
0 0 0 Qo 0 n} —Q 0

We are only interested in these terms AB and A* B™ involved in Hé? and Hz(?, because they might satisfy the phase-matching
condition. Substituting the zero-order and the first-order solutions into Eqs. (C23) and (C24) and only extracting these terms only
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including AB and AT B, we obtain

, H<2>
Qof) = ]3' — wiAB + AT BT,

(2)
Q* Q) = @ ]\2]3 — u3AB + g ATB”.

(C25)

where we have set

8)/68'9'49*2 5
=== 28y + i + APy + 5+ M)y + A

+ 548yt —4iy3s — 8% — 108°A — 126° A% + 48 A3 + 8A* 4+ 492387 + 58 A + 4AY) +2iy8(82 + 65 A + 6AH)]|Q
+283[118% — 4iy> 4+ 2925 4+ 2A) + 428° A + 548 A + 20A% — 4iy (287 4+ 58 A + 5AD)]|Q*
— 8822y +iyS+ 382 +95A + 10A%)[2]° +328(2iy — 38 — 2A)|2® + 64]22|'), (C26)

8 659294
iy = — WN—H{56y+l(a+A)]<a+2A)(y +A%)

—28%y3(58 + 4A) — y AQ28% — SA —4AY) +iy2(687 + 118A + 4A2) 4+ i(—28° A +T8A% + 4AH]1Q2)?

—28%[4y> — 4iy? (28 + A) + 4y (287 + 58A + 5A) + i (78> + 3082 A + 365 A% + 12A%)]1Q)*

+4i82[12y% + 982 +4iy (8 + 2A) + 168 A + 20A2122(° — 16i8(6iy — 118 — 10A)|Q|® — 64i|Q|'}, (C27)
_8iyos@n)’IQf!

N3

— S+ A)S*+TEA +4A%) —i(5 + A8 4+ 28°A — 58 A2 — 4AH Q)

+28%[4y3 — 4iy?(8 — A) + 4y (287 + 58 A + 5A%) +i(8° + 682 A — 12A%)]1Q)*

—4i8%[12y% 4+ 1387 — 4iy (8 + 2A) + 248 A + 20A%]|Q|% — 16i8(—6iy + 8 — 10A)|2® + 64i|2|'°,  (C28)

3 {8512 + (8 4+ A1 + 2A)y — iA) + 28 [—iy (8 +4A)S — A) + (6 — 4A)

8y°8|Q[*Q?
wa = %{255[)/ + 6+ Ay —iA iy — A)

+ 8*[8y* — 4iy38 + 8% 4 68> A 4 2487 A% + 285 A% 4 8A* 4 4y? (287 4+ 38 A + 4A?) + 2iy8(8* 4+ 68 A + 6A%)] Q)
+28%[38% — 4iy® — 2p%(8 +2A) + 68°A — 68 A% — 20A° — 4iy(28% + 58 A + 5AD)Q*
— 8822y +iyS + 482 + 118A + 10AD)|Q° — 328(5 — 2iy — 2A)|2® + 64]2|'). (C29)

Thus substituting Egs. (C25) and (C16) into Eq. (15), we have
HV —> Be~ —idt Q(l) + QQ(Z) + A+e—i8f Q(213) + OF Q(zé) + H.c.
= AAB + A*ATBT 4+ {|AB + AT Bt + u3AB + u4ATBT 4+ Hel}
= (A + 1+ p3 + pu5+ pu)AB +He. =2 AB + A ATBY, (C30)
where

Ay = A+ + ps+py + g
486 2 2 2 2 2 *\2
= G3(8+2A) 2+ + A2 +A) +(8 — 292+ 68A + 6A%)(Q)

1652(8 + 2A)

o [82(y? 4287 4+ 58A + 5A%) + 8212 — 81211212(2%)%. (C31)
2

Considering the assumption condition |Q/8|> — 0, then we have

A 2 — G+ 20y + 6 + A(y? + A? ) + (8% = 292 4+ 68 A + 6A)(2%)? (C32)
I — G% y y y )

Gy~ 82(82 +2A8 +2A% + 292, (C33)
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APPENDIX D: EFFECTIVE HAMILTONIAN

From Egs. (C32) and (C30) and noting 2 = Qle”zl’"'; + Qe ks T

>

A = dyae™T + diyce™*7 B = d31be™7 4 délde_iz"';,
we have
QAT BY = (Qe*rrT 4 Que T TR (dhate e 4 At R Ty at bt e R 4 difdt ek
= dpdiat b+[Q% ol Qo —ka=k) T +20,%, ol kpr—kp—ka—kp) T T Qgef,-(;ﬁlzﬁz,;w);]

+ddyatd [ CRrRARDT | 00y, (i brr —Rn—kitkOT | Q9 pithu—kat 2k 7]

+ddsbtet [Q%ei(z%,mf/?ﬁ/&)i +28, Qzei(E,,Fle,,r/E,,Hg_); n Q%e*"(’;b*’;f”’;vﬂ)f]

+d3sdy; c+d+[Q%ei(ZE"F+E"+Iz")'; +28 Qzei(ilﬁf—’zzJB+/zc+/?¢z)-F + Q%e—i(21;p8—;,-—];d)'?]’ D1)
and

|Qleikpf:-; + Qze—ikpg';|2 — |Q] |2 + |S_22|2 + QlQéei(kPF-‘rk,,E); + QTQze—i(ka-‘rkl,B)';. (D2)

- -

We only examine the phase-matching items, and notice I:p F= I_ép B, ko = kg, l_éb = I:C. Under the phase-matching condition,

O:]_C'a +]_<'b_2]_épF9
0:]_('d+]_€'c_2]_éva

- . - (D3)
0=kp —ke —kpr +kpp,
0= l%, —l;a +l€,,p - ]_épBa
Equations (D1) and (D2) can be rewritten as
Q*ATBY = [Qld5dyatht 4+ 20 Qodiydyiatd T + 2Q Qodysdi b et + Qidysdyietd T, (D4)
and
Q17 4 Qo T = |92 4 R0l (DS)
Substituting Egs. (C32) and (C33), and (D4) and (D5) into (C30) yields the effective Hamiltonian
Hyr = k1a b + koctd™ + 2 /kikca(a™d™ + bt et) + Hee., (D6)

where k| and k, are defined in Eqs. (24) and (25). For simplicity, here we have taken d3; & dj,, d3» ~ dj,, because the frequencies

are almost the same.
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