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We extend the formalism of cluster-state quantum secret sharing, as presented by Markham and Sanders [Phys.
Rev. A 78, 042309 (2008)] and Keet et al. [ Phys. Rev. A 82, 062315 (2010)], to the continuous-variable regime.
We show that both classical and quantum information can be shared by distributing continuous-variable cluster
states through either public or private channels. We find that the adversary structure is completely denied from the
secret if the cluster state is infinitely squeezed, but some secret information would be leaked if a realistic finitely
squeezed state is employed. We suggest benchmarks to evaluate the security in the finitely squeezed cases. For
the sharing of classical secrets, we borrow techniques from the continuous-variable quantum key distribution
to compute the secret-sharing rate. For the sharing of quantum states, we estimate the amount of entanglement
distilled for teleportation from each cluster state.
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I. INTRODUCTION

Secret sharing is a cryptographic task aiming to distribute
a secret among a group of parties. A good secret-sharing
protocol should allow authorized subsets of parties, known as
the access structure, to faithfully reconstruct the secret, while
other unauthorized parties, known as the adversary structure,
are denied any information about the secret. Classical secret-
sharing protocols have been proposed [1,2], where classical
information is encoded by a mathematical transformation.
The protocols can be proven to be information-theoretically
secure, i.e., no information about the secret can be obtained
by the adversary structure even when they have unlimited
computational power, if the communication channels between
the dealer and the parties are secure.

Following the rapid development of quantum information,
the extension of secret sharing to the quantum regime has
received much theoretical attention [3–6]. The objective
of quantum secret sharing (QSS) is to use the quantum
correlations in well-constructed entangled states to securely
transmit a set of classical or quantum information to only
the access structures. As the involved parties are supposed
to be spatially well separated, an optical system is the
most suitable implementation for QSS due to its excellent
mobility. Several proof-of-principle experiments have already
been demonstrated [7–9]. However, constructing a large-scale
optical QSS state is technically challenging, because the
nonlinear interaction between photons is weak, and some QSS
protocols require more than two quantum levels, where the
commonly employed polarization encoding is not applicable.
Recently, Markham and Sanders [10] proposed a unified
QSS approach based on qubit cluster states [11,12], which
could be constructed efficiently using only linear optics and
postselection [13–15].

Cluster states have another advantage in that an N -mode
cluster is well characterized by N stabilizers or an N -
vertex connected graph, in contrast to a general quantum
state that has to be expressed in an exponential number of
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superpositions. Therefore, the theoretical construction and
the security analysis of a cluster-state QSS scheme could
be simplified. The idea of cluster-state QSS has also been
extended to odd-dimensional states (qudits) in [16].

In this paper, we further extend the idea of cluster-state
QSS into the continuous-variable (CV) regime. While many
quantum information protocols can be optically implemented
by using discrete- or continuous-variable formalism, CV
systems have the advantages that multipartite entangled states
can be produced deterministically, and the measurement is
high in fidelity using present technology. In particular, CV
cluster states are proposed to be useful resources to conduct
measurement-based universal quantum computation [17,18].
A CV cluster state can be efficiently implemented in an optical
system by various approaches including the conventional
method of controlled-PHASE (CPHASE) operation [17,19],
linear optics with offline squeezing [20], optical parametric
oscillator [21–23], and quantum nondemolition gate [24].
Recently, CV cluster states involving four optical modes have
been demonstrated experimentally [25,26]. For simplicity,
we consider that the CV cluster states are prepared by the
conventional method of CPHASE operation, though the states
can be equivalently prepared by other approaches, and our
result is independent of the method of state preparation.

The main objective of this work is to investigate how
CV cluster states can be used to securely share quantum
and classical secrets. Instead of directly extending the qudit
approach to the d → ∞ limit, a CV cluster state is critically
different from its discrete-variable counterparts in that a
perfect (infinitely squeezed) CV cluster state is physically
and hence, practically, impossible. We find that when realistic
finitely squeezed cluster states are instead utilized, QSS is still
possible but the security is inevitably reduced, i.e., the secret
is not precisely recovered by the access structure while partial
information is leaked to unauthorized parties. We suggest
benchmarks to evaluate the performance of each of the QSS
tasks. For the sharing of classical information, we calculate
the amount of secure key that can be distilled from each
cluster state for encoding the secret. A procedure is provided
to transform the distilled state to the standard form that can
be analyzed by the techniques in CV quantum key distribution
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(QKD). For the sharing of quantum information, we estimate
the number of cluster states required to establish a high-fidelity
teleportation channel to transmit the secret state. The amount
of entanglement is quantified by the logarithmic negativity. In
both tasks, we give two examples to demonstrate the decoding
and security analysis procedures.

As we want to focus our discussion on the application of the
quantum correlations of CV cluster states, the states received
by the parties are assumed to be the same as when prepared by
the dealer; i.e., all quantum channels are ideal (noiseless and
lossless). Detections are also assumed to be perfect in fidelity.

Our paper is outlined as follows. In Sec. II, we intro-
duce QSS and classify it into three tasks. The physical
and mathematical background of CV cluster states are also
reviewed. In Secs. III and IV, we analyze the security of
classical information sharing when the cluster state is delivered
through secure and insecure channels, respectively. In Sec. V,
we discuss the performance of quantum state sharing. We
conclude in Sec VI with a short discussion.

We denote the quantities of the access structure by the
subscript A, that of the adversary structure by E, and that of
the dealer by D. We pick h̄ = 1 in the following calculations.
All logarithm in this paper uses base 2.

II. BACKGROUND

A. Quantum secret sharing

In the literature, the idea of QSS has been developed to
serve one of the following three tasks [10].

CC. Classical information is shared among parties by
distributing QSS states through private (secure) channels,
which are invulnerable to eavesdropping. The role of quantum
resources is to substitute the classical secret-sharing encoding
with the quantum correlations in a QSS state.

CQ. Classical information is shared among parties by
distributing QSS states through public (insecure) channels,
which are open for eavesdropping. The quantum correlations
in the QSS states can be used both to detect the disturbance of
eavesdropping and to encode secret sharing. When compared
with the hybrid approach that unifies classical secret sharing
and QKD, the CQ scheme can reduce the cost of communica-
tion [3].

QQ. Also known as quantum state sharing, a secret quantum
state is shared among parties by distributing QSS states
through public channels. The QQ scheme can be implemented
by either encoding the quantum secret into a QSS state or using
a QSS state to distribute entanglement between the dealer and
the access structure for teleporting the secret state. We consider
the latter approach in the current paper.

The three tasks form a hierarchy of the required resources;
i.e., a QQ quantum state can perform all three tasks, and a CQ
state can be used for CC, while the reverse is not always true. In
principle, constructing a QQ state is versatile, but the amount
of resources and the required infrastructure can be optimized
according to the properties of the shared information and the
channels.

For CC and CQ, we consider that the cluster states are
measured by the dealer and the access structure. Because of the
entanglement, random but strongly correlated measurement

outcomes will be obtained, from which the dealer and the
access structure can distill secure keys. Therefore, the secret-
sharing rate, i.e., the amount of classical information securely
shared in each round of QSS, is determined by the net amount
of secure key distilled from each cluster state.

For QQ, we consider that the dealer and the access structure
extract entanglement from the cluster states. After accumulat-
ing enough extracted states, entanglement distillation can be
conducted to distill a more entangled state, through which the
secret state can be teleported from the dealer to the access
structure with higher fidelity.

We note that in all the QSS tasks, the objective of the
dealer is to securely transmit the secret to the access structure,
although the identities of the access structure are not revealed
until all QSS states have been received. Because, in a secure
protocol, the mutual information between the dealer and the
access structure is larger than the information obtained by
the adversary structure, the access structure’s identities can
be authenticated using parts of the shared information. The
dealer should then trust the access structure and cooperate in
subsequent postprocessing of the shared QSS states.

We also note that in the limit of infinite squeezing, our
cluster-state scheme is not as general as the QQ scheme
proposed in Ref. [6]. However, our scheme is interesting
because all three kinds of QSS are considered in a unified
approach, and the resource state is a cluster state that can be
efficiently constructed and easily analyzed.

B. Continuous-variable cluster states

As an analog to the discrete-variable cluster state, which
is formed by preparing all qudits in an eigenstate of the
generalized Pauli X operator and then applying the CPHASE

gate, a CV cluster state is formed by first preparing all quantum
modes as squeezed vacuum states and applying CV CPHASE

gates, given by Ĉ = exp{iAij q̂i q̂j }. An n-mode CV cluster
state can be characterized by an n-vertices graph, where the
quantum modes act as the vertices V = {vi}, and a CPHASE

operation is applied across edges E = {eij = {vi,vj }} with
weight Aij [16]. The CV cluster state |�〉 is defined as

|�〉 :=
∏
eij ∈E

exp{iAij q̂i q̂j }|ψ0〉⊗n, (1)

where in the infinitely squeezing case,

|ψ0〉infinite = |0〉p, where p̂|0〉p = 0, (2)

and in the finitely squeezing case,

|ψ0〉finite =
√

σ

π1/4

∫
e−σ 2q2/2|q〉qdq, (3)

where |q〉q is the eigenstate of q̂ with eigenvalue q; σ is a
parameter characterizing the degree of squeezing.

1. Nullifier representation

Apart from the ket vector representation, an infinitely
squeezed cluster state can be characterized by its stabilizers
[18,27]. A stabilizer Ŝ of a state |ψ〉 is defined as the operator
of which |ψ〉 is an eigenstate with + 1 eigenvalue, i.e.,
Ŝ|ψ〉 = |ψ〉. Analogous to the discrete-variable cluster state,
an n-mode infinitely squeezed CV cluster state has at least
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n independent stabilizers. Although any sum and product of
the stabilizers is a new stabilizer, the whole set of stabilizers
uniquely specifies the cluster state [28].

In a CV system, considering that the nullifiers of a cluster
state is sometimes more convenient than the stabilizers. A
nullifier N̂ is defined as an operator of which |ψ〉 is an
eigenstate with eigenvalue 0, i.e., N̂ |ψ〉 = 0. There can be
infinitely many choice of nullifiers as any sum and product
of nullifiers is another nullifier. For an infinitely squeezed CV
cluster state, we choose a set of nullifiers, which we call the
standard set, i.e., [28]

N̂i = p̂i −
∑
j∈N

Aij q̂j , (4)

where the position operators are summed over indices of
the neighbors of the vertex i in the graph, i.e., j |(i,j ) ∈ E .
The standard nullifiers can be constructed by considering that
before the CPHASE operations, the squeezed vacuum modes are
nullified by p̂i’s. The CPHASE operation between the mode i

and j transforms the nullifiers as p̂i → eiAij q̂i q̂j p̂ie
−iAij q̂i q̂j =

p̂i − Aij q̂j . From the construction procedure, it can be easily
shown that all standard nullifiers commute and are linearly
independent.

2. Wigner function representation

As an extension to the nullifier representation, the Wigner
function is a good description of the quantum correlation of
finitely squeezed CV cluster states. The Wigner function of a
single mode CV state ρ̂ is defined as [28]

W (q,p) := 1

2π

∫ ∞

−∞
exp(ipx)

〈
q − x

2

∣∣∣
q
ρ̂

∣∣∣q + x

2

〉
q
dx, (5)

where the definition can be trivially generalized to the
multimode state. The Wigner function of n finitely squeezed
vacuum states is given by

W0(q, p) = 1

πn

n∏
i

exp
(−σ 2

i q2
i

)
exp

(
−p2

i

σ 2
i

)
, (6)

and that of a finitely squeezed CV cluster state is

Wc(q, p) ≡ W0(q,N) = 1

πn

n∏
i

exp
(−σ 2

i q2
i

)
exp

(
−N2

i

σ 2
i

)
,

(7)

where q = (q1, . . . ,qn)T , p = (p1, . . . ,pn)T , and N =
(N1, . . . ,Nn)T ; Ni is the standard nullifier in Eq. (4) with
the operators replaced with the respective scalar variables;
the initial degree of squeezing of each mode i is σi . In the
infinitely squeezing limit, i.e., σi → 0 ∀ i, the exp(−σ 2

i q2
i )

would converge to a constant function while the exp(−Ni/σ
2
i )

term becomes a δ function; i.e.,

Winfinite(q, p) ∝
n∏
i

δ(Ni). (8)

3. Correlations of measurement

Consider an infinitely squeezed CV cluster state that
is locally measured by the operators {M̂i}, where M̂i is a
linear combination of q̂i and p̂i , i.e., homodyne detection

in a rotated basis. If the measurements are compatible to
a nullifier, there exists a linear combination of M̂i’s that
equals a linear combination of standard nullifiers, i.e.,∑

i=1,n kiM̂i =∑i=1,n liN̂i for some real ki’s and real li’s,
then the measurement outcomes would be correlated due to
the entanglement as

∑
i=1,n kiMi = 0.

Similar quantum correlations of measurements prevail in
finitely squeezed CV cluster states, but the accuracy depends
on the degree of squeezing. Consider a finitely squeezed CV
cluster state that is measured by the same set of measurement
operators {M̂i}; the expectation value of the measurement out-
comes are statistically correlated as in the infinitely squeezed
case, i.e., 〈∑

i=1,n

kiM̂i

〉
=
〈∑

i=1,n

liN̂i

〉
= 0. (9)

However, the variance is finite, i.e.,〈
�

(∑
i=1,n

kiM̂i

)2〉
=
〈
�

(∑
i=1,n

liN̂i

)2〉

=
∫ (∑

i=1,n

liNi

)2

Wc(q, p)dnqdn p

=
∑
i=1,n

l2
i σ

2
i

2
, (10)

but scales as σ 2
i that is small. The correlation comes from

the exp(−N2
i /σ 2

i ) terms in Eq. (7), which are narrow-width
Gaussian functions.

In subsequent discussions, we regard a quantum correlation
as “strong” if the collective variance of the local measurement
outcomes is small, and so the modes are strongly correlated
if their local operators produce strong correlations. Our QSS
scheme is secure if the access structure is stronger correlated to
the secret than the unauthorized parties. According to Eq. (10),
the local measurement operators are strongly correlated if they
linearly combine as a nullifier and σi’s are small, so we usually
encode the secret in nullifiers.

4. Cluster-class state

A class of states that shares similar properties as the CV
cluster state can be constructed by applying local Gaussian
operators onto |�〉. The operations linearly transform the
quadrature operators in nullifiers, as well as the quadrature
parameters in the Wigner function, as q̂ → aqq̂ + bqp̂ + cq

and p̂ → apq̂ + bpp̂ + cp for some real constants a,b,c that
obey the uncertainty principle. General linear transformations
can be implemented by only three kinds of basic operators [29]:
displacement, squeezing, and Fourier operator.

A displacement operator D̂(α) shifts a nullifier by a
constant factor; i.e., the components in nullifiers are trans-
formed as q̂ → q̂ + √

2Re(α) and p̂ → p̂ + √
2Im(α). All

the displacements do not affect the measurement basis nor
the variance of the quantum correlations, but only the ex-
pectation values of the measurement results are changed. A
squeezing operator Ŝ(γ ) = exp[−ir(q̂p̂ + p̂q̂)/2] scales the
quadrature operators as Ŝ†q̂Ŝ → γ q̂ and Ŝ†p̂Ŝ → p̂/γ , where
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γ = er . Linear coefficients of x̂i and p̂i in the nullifiers
will be altered but the measurement basis remains the same.
A Fourier operator F̂ (θ ) = exp[−iθ (q̂2 + p̂2)/2] transforms
the quadrature operators as F̂ †q̂F̂ = cos θq̂ + sin θp̂ and
F̂ †p̂F̂ = − sin θq̂ + cos θp̂. The Fourier operator changes the
local measurement bases for the quantum correlation.

III. CC QUANTUM SECRET SHARING

In the CC setting of QSS, the dealer is connected to the n

parties through secure quantum channels. A classical secret
value s is encoded by displacing certain modes i of the
cluster state by some function fi(s). The value of fi(s), the
strength of the CPHASE Aij , and the neighbors of the cluster
N are designed for specific access and adversary structure.
A CV cluster state can be used for CC QSS if for each
access structure, there is a nullifier containing s and the local
quadrature operators of only that access structure, i.e., there
exists real numbers li such that

N∑
i

li N̂i =
∑
j∈A

kjM̂j + g(s), (11)

where kj are real numbers, M̂j are linear combinations of the
local quadrature operators of an access structure party, g(s) is
a nontrivial function of s. On the other hand, every adversary
structure cannot construct a nullifier containing s and only
their local operators.

In the case of infinitely squeezing, the access structure can
obtain g(s), and thus s, by locally measuring their modes
according to M̂j . The scheme is secure if the reduced Wigner
function of the adversary structure is independent of s.

In the case of finitely squeezing, the access structure also
measures according to M̂j . Their results are merely strongly
correlated to s, while some information about the secret is
leaked to the adversary structure due to the weak correlation.
The security of the QSS scheme can be analyzed by comparing
the amount of information obtained by the access structure and
the adversary structure.

The information obtained by the access structure is quanti-
fied by the mutual information, I (D : A), between the dealer
and the access structure [30]. Let the dealer chooses a secret
value s following a probability PD(s). The access structure
would not obtain exactly the same value due to the finite
squeezing. The probability of obtaining a result s ′ follows a
probability distribution PA|D(s,s ′), while the total probability,
PA(s ′), of the access structure’s result is given by

PA(s ′) =
∫

PD(s)PA|D(s,s ′)ds. (12)

The mutual information I (D : A) is defined as [30]

I (D : A) = H (A) − H (A|D), (13)

where H (A) is the entropy of the access structure’s result,
which is defined as

H (A) = −
∫

PA(s ′) logPA(s ′)ds ′, (14)

and H (A|D) is the entropy of access structure conditioned on
knowing s, which is defined as [30]

H (A|D) = −
∫

PD(s)PA|D(s,s ′) logPA|D(s,s ′)dsds ′. (15)

On the other hand, the adversary structure can unite their
modes through ideal quantum channels and can conduct any
operation allowed by physics. The amount of information
leaked to the adversary structure, I (D : E), is capped by the
Holevo bound χ [30,31], i.e.,

I (D : E) � χ = S(ρ̂E) −
∫

PD(s)S(ρ̂E|D(s))ds, (16)

where S(ρ̂) is the von Neumann entropy, ρ̂E|D(s) is the state
obtained by the adversary structure if s is prepared by the
dealer, ρ̂E is the average state obtained by the adversary
structure, viz.,

ρ̂E =
∫

PD(s)ρ̂E|D(s)ds. (17)

As CV cluster states are Gaussian, the reduced state of
the adversary structure is also Gaussian. The von Neumann
entropy of Gaussian states can be calculated by using their co-
variance matrix V , which is defined as Vij := 〈{�xi,�xj }〉/2
[18]. If the Wigner function of an r-mode Gaussian state is
known, V can be obtained through the relation [18]

W (x̂) = exp[−1/2(x − x̄)T V −1(x − x̄)]

(2π )r
√

det V
, (18)

where x = (q1,p1, . . . ,qr ,pr )T . Covariance matrices can be
characterized by their symplectic spectrum {νk}, which is equal
to the eigenspectrum of the matrix |i�V | [18], where

�i,j =

⎧⎪⎨
⎪⎩

1 if i = 2k − 1, j = 2k,

−1 if i = 2k, j = 2k − 1,

0 else,

(19)

for k = 1, . . . ,r . The von Neumann entropy is calculated using

S(ρ̂) =
r∑
i

g(νk), (20)

where

g(ν) :=
(

ν + 1

2

)
log

(
ν + 1

2

)
−
(

ν − 1

2

)
log

(
ν − 1

2

)
.

(21)

In the case that the covariance matrices of ρ̂E and ρ̂E|D are
independent of s, their respective von Neumann entropies are
also independent of s. Then the Holevo bound can be simplified
as

I (D : E) � S(ρ̂E) − S(ρ̂E|D). (22)

The minimum secret-sharing rate in each round of the protocol
is thus

Kcc = I (D : A) − I (D : E). (23)

With the strongly correlated random numbers s and s ′, and the
expected amount of secret information, Kcc, a secure key can
be distilled to encode and share the classical secret [32].
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FIG. 1. Schematic representation of the cluster states for the (2,3)
protocol (left), and the (3,5) protocol (right). Each oval represents
a squeezed mode, which will be distributed to the party, denoted
by the label inside the ovals. The subscript of each mode denotes
the squeezing parameter and the displacement before the CPHASE

operation. The edges joining modes represent CPHASE operations
with the strength denoted by the edges’ label.

As examples, Kcc for the (2,3) and the (3,5) protocol are
calculated. Readers who are mainly interested in the general
formalism of QSS can skip the examples.

A. Example 1 of CC quantum secret sharing: (2,3) protocol

In a (2,3)-CC protocol, the access structure is any two of
the three parties collaborating, while the adversary structure is
any collaboration with only one party. The (2,3)-CC protocol
can be implemented by a linear three-mode cluster, as shown
in Fig. 1. We assume the dealer picks the secret classical value
s following a Gaussian probability distribution with a width
�, i.e.,

PD(s) = 1√
π�

e−s2/�2
. (24)

The state is encoded by displacing mode 2 by is/
√

2 and mode
3 by −is/

√
2. In the infinitely squeezing case, the nullifiers of

the CV cluster state are

N̂1 = p̂1 − q̂2 − q̂3; N̂2 = p̂2 − q̂1 + s;
(25)

N̂3 = p̂3 − q̂1 − s.

1. Parties {1, 2} collaborating

Consider parties 1 and 2 to be the access structure. If
the cluster state is infinitely squeezed, the shared secret is
the difference between p̂ measurement outcome of party 1
and q̂ measurement outcome of party 2; i.e., s = q1 − p2

according to N̂2. Deriving from Eq. (8), the reduced Wigner
function of party 3 is a constant function independent of s;
thus, the protocol is secure. In the finitely squeezing case,
the Wigner function is given by Eq. (7) with the nullifiers in
Eq. (25). For simplicity, we assume the modes are equally
squeezed, i.e., σi = σ for all i, but our analysis is applicable
for inhomogeneous σi .

The measurement basis of the parties is the same as the
infinitely squeezing case. The classical probability of the
measurement results p2 and q1 is

P (s)
A|D;{1,2}(q1,p2) = 1

π
e−(p2−q1−s)2/σ 2

e−σ 2q2
1 , (26)

which is obtained by tracing out q1, p2, and the contributions
of party 3 in the Wigner function. The probability distribution

of the difference of the measurements, s ′ = q1 − p2, can be
obtained by tracing out an orthogonal quantity, e.g., (p1 +
q2)/2, then we get

PA|D;{1,2}(s,s ′) = 1√
πσ

exp

[
− (s − s ′)2

σ 2

]
, (27)

and thus,

PA;{1,2}(s ′) = 1√
π

√
σ 2 + �2

e−s ′2/(σ 2+�2). (28)

The mutual information between the dealer and the access
structure can then be calculated using Eq. (13).

We now consider the adversary structure. The reduced
Wigner functions of ρ̂E and ρ̂E|D(s) are

WE|D;{3} = σ 2

π
√

1 + σ 4
e
− σ2[(p3−s)2+q2

3 (1+σ4)]

1+σ4 ; (29)

WE;{3} =
∫

WE|D;{3}ds

= σ 2

π
√

1 + σ 4 + σ 2�2
e
−σ 2(q2

3 + p2
3

1+σ4+σ2�2 )
. (30)

The covariance matrices of these states are

V E|D;{3} =
(

1
2σ 2 0

0 1+σ 4

2σ 2

)
, V E;{3} =

(
1

2σ 2 0

0 1+σ 4+σ 2�2

2σ 2

)
,

(31)

where the symplectic eigenvalues are νE|D;{3} = √
1 + σ 4/2σ 2

and νE;{3} = √
1 + σ 4 + σ 2�2/2σ 2, respectively. The Holevo

bound can then be calculated using Eqs. (20) and (22), and
hence the secret-sharing rate can be obtained from Eq. (23).

Because both party 2 and party 3 hold the end mode of
the cluster state, the structure of their local states is the same;
i.e., all Wigner functions will be the same as above except
replacing the subscript 2 with 3 and s with −s. The security for
party {1,3} collaboration can be analyzed by similar procedure
as the {1,2} collaboration, and the secret sharing in both
collaborations will be the same.

2. Parties {2,3} collaborating

Consider now that parties 2 and 3 are the access structure. In
the infinitely squeezed case, because the operator N̂2 − N̂3 =
p̂2 − p̂3 + 2s is also a nullifier, the secret s can be obtained if
both parties conduct p̂ measurement, i.e., s = (−p2 + p3)/2.
The protocol is secure because the reduced Wigner function
of party 1 is a constant independent of s.

In the finitely squeezed case, the measurement results of p̂1

and p̂2 follow a probability distribution

P (s)
A|D;{2,3}(p1,p2) = 1

π
√

2 + σ 4
exp

[
− (p2 − p3 + 2s)2

σ 2(2 + σ 4)

]

×e−σ 2[(p2+s)2+(p3−s)2]/(2+σ 4). (32)

The first exponent accounts for the strong correlations while
the last exponent is higher order weak correlations. The
quantity s ′ = (−p2 + p3)/2 follows the probability

PA|D;{2,3}(s,s ′) = 1√
2πσ

exp

[
−2(s − s ′)2

σ 2

]
, (33)
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and thus

PA;{2,3}(s ′) =
√

2

π (σ 2 + 2�2)
exp
(

− 2s ′2

σ 2 + 2�2

)
. (34)

For the adversary structure party 1, the reduced Wigner
function of ρ̂E|D;{1} is

WE|D;{1} = σ 2

π
√

2 + σ 4
e
−σ 2(q2

1 + p2
1

2+σ4 )
. (35)

Because Eq. (35) is independent of s, the Wigner function of
ρ̂E;{1} and ρ̂E|D;{1} would be the same, i.e., WE|D;{1} = WE;{1}.
Therefore, the Holevo bound vanishes and party 1 cannot get
any information, and hence the secret-sharing rate is simply
I (D : A).

B. Example 2 of CC quantum secret sharing: (3,5) protocol

In a (3,5)-CC protocol, the access structure is any three
of the five parties collaborating, while the adversary structure
is any collaboration with less than three parties. The (3,5)-
CC protocol can be implemented by a star-shaped five-mode
cluster, as shown in Fig. 1. All five modes of the cluster state are
displaced by −is/

√
2, where the classical secret s is assumed

to be chosen according to the probability distribution given in
Eq. (24). In the infinitely squeezing case, the nullifiers of the
CV cluster state are given by

N̂i = p̂i − q̂i+1 − q̂i−1 − s, (36)

where i + 1 = 1 when i = 5; i − 1 = 5 when i = 1.
Ten different combinations of access structure can be

formed in this protocol, but they can be categorized into two
classes of collaborations, which are three neighboring parties,
and two neighbors with one disjoint party. Without loss of
generality, we consider parties {1,2,3} as an example of three
neighbors collaboration, and parties {1,3,4} for two neighbors
collaboration. The security proof and secret-sharing rate of
these two cases can be adapted to other collaborations after
changing indices.

1. Parties {1,2,3} collaborating

Consider parties 1, 2, and 3 to be the access structure.
In the infinitely squeezing case, the secret s can be obtained
if both parties 1 and 3 measure q̂ and party 2 measures p̂,
i.e., s = −q1 + p2 − q3 according to N̂2 in Eq. (36). The
reduced Wigner function of parties {4, 5} collaboration is
a constant function after tracing out the contributions of the
access structure in Eq. (8).

In the finitely squeezing case, the probability measurement
by parties {1,2,3} is determined by the reduced Wigner
function WA|D;{1,2,3}(q1,p1,q2,p2,q3,p3) after tracing out the
contributions of parties 4 and 5. As the measurement bases
are q̂2, p̂1, and q̂3, the measurement probability is obtained by
tracing out the dependence of p1, q2, and p3 from the reduced
Wigner function. The probability distribution of the received
secret, s ′ = p2 − q1 − q3, can be obtained by first substituting
the set of variables (q1,p2,q3) by another linearly independent
set of variables (q1,s

′,q3) and then tracing out q1 and q3. The
Jacobian matrix of this variable transformation is 1, so the
form of probability distribution remains the same [33].

The tracing processes described above involves different
physical meanings, but the end result is that all contributions
except s ′ are traced out. So the probability distribution of
s ′ can be obtained in only two steps: first substituting p2 =
s ′ + q1 + q3 in the total Wigner function and then tracing out
all variables except s ′. In this case, we get

PA|D;{1,2,3}(s,s ′) = 1√
πσ

exp

[
− (s − s ′)2

σ 2

]
, (37)

and thus,

PA;{1,2,3}(s ′) = 1√
π

√
σ 2 + �2

e−s ′2/(σ 2+�2). (38)

For the adversary structure parties 4 and 5, the reduced
Wigner function of WE|D;{4,5} and WE;{4,5} can be obtained by
tracing out the contribution of parties 1,2,3. The covariance
matrices of these states are

V E|D;{4,5} =

⎛
⎜⎜⎜⎜⎝

1
2σ 2 0 0 1

2σ 2

0 1
σ 2 + σ 2

2
1

2σ 2 0

0 1
2σ 2

1
2σ 2 0

1
2σ 2 0 0 1

σ 2 + σ 2

2

⎞
⎟⎟⎟⎟⎠ , (39)

V E;{4,5} =

⎛
⎜⎜⎜⎜⎝

1
2σ 2 0 0 1

2σ 2

0 1
σ 2 + σ 2+�2

2
1

2σ 2 0

0 1
2σ 2

1
2σ 2 0

1
2σ 2 0 0 1

σ 2 + σ 2+�2

2

⎞
⎟⎟⎟⎟⎠ , (40)

where the symplectic spectra are νE|D;{4,5} =
{√1 + σ 4/2σ 2,

√
1 + σ 4/2σ 2} and νE;{4,5} =

{√1 + σ 4/2σ 2,
√

1 + σ 4 + 2σ 2�2/2σ 2}. The von Neumann
entropy can then be calculated using Eq. (20), and the
secret-sharing rate is calculated from Eq. (23).

2. Parties {1,3,4} collaborating

Consider now that parties 1, 3, and 4 are the access
structure. In the infinitely squeezing case, the secret s can
be obtained when party 1 measures p̂ and parties 3 and
4 measure p̂′ = (p̂ − q̂)/

√
2. Because N̂1 − N̂3 − N̂4 is a

nullifier, their measurement results are correlated as −p1 +√
2p′

3 + √
2p′

4 = s. The reduced Wigner function of parties
{2,5} collaboration is a constant function, so the secret sharing
is secure.

In the finitely squeezing case, the probability distribution of
the quantity s ′ = −p1 + p3 − q3 + p4 − q4 can be obtained
by first substituting the set of variables (q1,p1,q3,p3,q4,p4)
with the new set of variables (q1,s

′,q3,p3,q4,p4). The deter-
minant of the Jacobian matrix of this transformation is 1. All
variables except s ′ are traced out from the reduced Wigner
function, then we get

PA|D;{1,3,4}(s,s ′) = 1√
3πσ

exp

[
− (s − s ′)2

3σ 2

]
, (41)

and thus,

PA;{1,3,4}(s ′) = 1√
π

√
3σ 2 + �2

e−s ′2/(3σ 2+�2). (42)
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For the adversary structure parties 2 and 5, the covariance
matrices of the states ρ̂E|D;{2,5} and ρ̂E;{2,5} are

V E|D;{2,5} =

⎛
⎜⎜⎜⎜⎝

1
2σ 2 0 0 0

0 1
σ 2 + σ 2

2 0 1
2σ 2

0 0 1
2σ 2 0

0 1
2σ 2 0 1

σ 2 + σ 2

2

⎞
⎟⎟⎟⎟⎠ , (43)

V E;{2,5} =

⎛
⎜⎜⎜⎜⎝

1
2σ 2 0 0 0

0 1
σ 2 + σ 2

2 + �2

2 0 1
2σ 2 + �2

2

0 0 1
2σ 2 0

0 1
2σ 2 + �2

2 0 1
σ 2 + σ 2

2 + �2

2

⎞
⎟⎟⎟⎟⎠ .

(44)

The symplectic spectra are νE|D;{2,5} = {√1 + σ 4/2σ 2,√
3 + σ 4/2σ 2} and νE;{2,5} = {√1 + σ 4/2σ 2,√
3 + σ 4 + 2σ 2�2/2σ 2}, respectively. The von Neumann

entropy can then be calculated by Eq. (20), and hence the
secret-sharing rate can then be calculated by Eq. (23).

3. Results

The secret-sharing rate for the (2,3) and (3,5)protocols is
plotted against σ in Fig. 2. Apart from the {2,3} in (2,3)
protocol that can completely remove the entanglement from
the adversary structure, CC QSS is secure unless the squeezing
parameter is larger than some threshold limit. The thresholds
for both protocols we considered are around σ ≈ 1. This
suggests that a CC QSS can be implemented with modest
technological requirement.

On the contrary to common beliefs that a CV state with
σ = 1 cannot transmit secure information, we note that the
CC secret-sharing rate is nonzero in some scenarios even
when σ � 1. The result is not surprising in cluster-state QSS,
because implementing a CPHASE requires the initial modes to
be squeezed. In fact, a two-mode cluster state can be easily

FIG. 2. Secret-sharing rate of CC QSS protocols using CV cluster
states with different squeezing parameters σ . The variance of the
classical secret probability is chosen as � = 1. (Left) (2,3) Protocol
for {2,3} collaboration (solid line) and {1,3} collaboration (dashed
line). (Right) (3,5) Protocol for {1,2,3} collaboration (solid line) and
{1,3,4} collaboration (dashed line).

showed to be locally unitarily equivalent to a finitely squeezed
EPR state unless σ → ∞.

Surprisingly, although any access structure collaboration
can obtain s in the infinitely squeezing case, different collabo-
rations obtain different security rates in the finitely squeezing
case. The unequal secret-sharing rate is related to the entangle-
ment structure of the cluster state. In practice, the dealer has
to consider the disadvantage of certain collaborations when
applying CC QSS.

IV. CQ QUANTUM SECRET SHARING

In the CQ setting of QSS, the dealer is connected to the
parties through insecure quantum channels, so the unautho-
rized parities can manipulate all the modes sent from the
dealer. The CC protocol mentioned in Sec. III is insecure
in this setting, because the adversary structure can capture
and measure the modes to obtain s. This eavesdropping can
be intractable if the adversary structure resends to the access
structure an infinitely squeezed state with the same s encoded,
so the access structure will have the same measurement result
as the adversary structure.

Here we modify the CC protocol for the CQ setting. We first
present an entanglement-based protocol and discuss how it can
be reduced to a mixed-state protocol that reduces the resource
requirement. Instead of constructing an n-mode cluster state
and encoding a classical secret s into the state, the dealer
prepares an (n + 1)-mode standard cluster state, where n of
the modes are delivered to the parties while the dealer keeps
the remaining one, denoted as mode D. A good CQ protocol
should produce quantum correlation between the dealer and
the access structure much stronger than that between the dealer
and the unauthorized parties.

Here we make two assumptions to simplify the demonstra-
tion of the security, but the assumptions will be relaxed at the
end of this section without compromising the secret-sharing
rate. We assume the access structure parties are connected
by secure and ideal quantum channels, so the modes can be
sent to one party, say party h, with perfect fidelity. We also
assume both the dealer and the access structure have quantum
memories, so the cluster states in each round of CQ are stored
with perfect fidelity for subsequent quantum operation and
measurement.

The procedure of CQ QSS is outlined as follows. In each
round of CQ QSS, an entangled state is shared between
the dealer and the access structure. Consider that the strong
correlation is represented by the two nullifiers, p̂D − Q̂A

and q̂D − P̂A, which are linear combinations of the standard
nullifiers. Q̂A and P̂A are linear combinations of only the
access structure parties’ local q̂ and p̂ operators. By applying
a global operation, ÛA, on all the modes at party h, Q̂A and
P̂A are transformed to q̂h and p̂h. As a result, the strong
correlations with mode D are transferred to mode h.

After all the rounds of cluster-state distribution, the stage of
parameter estimation ensues. The dealer or party h randomly
selects half of the shared modes for measurement, and the
selection is announced. Both the dealer and party h measures
the selected modes in either the x̂ or the p̂ basis. The
measurement outcomes are announced for characterizing the
unmeasured states.
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In the infinitely squeezing case, the estimated parameters
should indicate that the state between mode D and mode h

is maximally entangled [34]. The dealer and party h measure
each residual mode randomly in either the q̂ or the p̂ basis,
the basis is then announced. Each measurement outcome is a
random number on the real axis, and the outcomes are the same
if the measurement bases are matching; i.e., one party measures
in q̂ while the other measures in p̂. The common random
numbers can be used as secure keys to encode the secrets.
Because the state was maximally entangled, no information is
leaked to unauthorized parties.

In the finitely squeezing case, although mode D and mode
h are strongly correlated, the state of adversary structure is
still weakly correlated with mode D. As to be discussed,
local quantum operation is applied on each residual mode to
rectify the covariance of the state according to the estimated
parameters. The dealer and party h then measure each mode in
either the x̂ or the p̂ basis and announce the basis. Unlike the
infinitely squeezed case, postprocessing is required to distill
secure keys from the correlated measurement outcomes due to
two reasons. First, even if the measurement basis is matching,
the measurement outcomes of the dealer and the access
structure are merely strongly correlated but not exactly equal.
Besides, partial information about the outcomes is leaked to
unauthorized parties due to the nonuniform distribution of the
measurement outcomes and the weak entanglement between
the unauthorized parties’ and the dealer’s modes.

In the following, we employ the security analysis tech-
niques from CV-QKD [35] to estimate the minimal rate of
secure key distilled from each cluster state and hence the
secret-sharing rate in each round of CQ QSS.

A. Equivalence of CQ quantum secret sharing and QKD

We now show why CQ QSS and CV-QKD can be analyzed
using the same techniques. Consider that before the CPHASE

operation, mode D is squeezed with σD while all other modes
are squeezed with σ . Assume mode D is connected to N

neighbors after the cluster-state formation, the reduced Wigner
function of mode D is

WD(qD,pD) = σσDe−σ 2
Dq2

D

π

√
N + σ 2σ 2

D

exp
(

− p2
D

σ 2
D + N/σ 2

)
.

(45)

WD is the same as the reduced Wigner function of a two-mode
cluster state |CN 〉, where mode D is connected to a mode u that
is squeezed with σ/

√
N . Because both the CQ cluster state and

|CN 〉 are pure, the amount of entanglement between the mode
D and the delivered modes is the same as the entanglement
between the modes in |CN 〉.

As in the common security analysis of QKD, we grant
the unauthorized parties full power to manipulate the modes
sent from the dealer. Then there will be no difference for the
dealer to prepare the CQ cluster state or |CN 〉, because the
unauthorized party can transform the delivered cluster-state
modes to mode u or vice versa. Then our CQ state delivery is
equivalent to the following scenario: The dealer first prepares
|CN 〉 and delivers mode u through an insecure quantum

D

D u

D

h

D h

Decoding

Delivered mode
captured by adversary

Tracing out
modes besides h

D

Deliver strong 
correlation to mode h

Local unitary
equivalent

Modes delivery

D u

QSSQKD

Dealer

Unauthorized parties

Authorized parties

FIG. 3. (Color online) Strategy for computing the secret-sharing
rate using CV-QKD techniques. Strongly (weakly) correlated modes
are linked by solid (dotted) lines. The procedure of CQ QSS is shown
on the right while that of QKD is shown on the left. The key idea is
that both QKD and QSS have the same initial (pure entangled state
with parts delivered) and final resources (strongly correlated state
between the dealer and the authorized parties.)

channel. The unauthorized parties capture mode u, entangle it
with ancillae, and forward some modes to the access structure.

The access structure’s modes are then gathered at party
h. After the operation ÛA, modes other than mode h are
still weakly correlated with mode D. For simplicity, these
weak correlations are neglected in our analysis; i.e., all modes
except h are traced out. This action only reduces the quantum
correlations between the dealer and the access structure;
thus, the security is not unphysically improved. Now the
CQ protocol is effectively reduced to a CV-QKD protocol:
The dealer first prepares a two-mode Gaussian state, |CN 〉,
and delivers one mode. The access structure finally gets a
mode h that remains strongly correlated with mode D, but
the quantum correlation is reduced due to the entanglement
with the environment controlled by the unauthorized parties.
The degradation of quantum correlations in the encoding and
decoding processes in CQ QSS can be analogous to the loss
and noise when transmitting an EPR state through an imperfect
channel in QKD. The whole idea is summarized schematically
in Fig. 3.

B. Secret-sharing rate

In the unified picture of CV-QKD, a finitely squeezed
two-mode squeezed state is prepared by the dealer and
delivered to the authorized party through an imperfect channel
[18,36]. Both parties measure some of the delivered states to
estimate the covariance matrix, V , of the unmeasured states.
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Using the fact that Gaussian states minimize the distilled
secure key rate for every state sharing the same V [36,37],
assuming the unmeasured states being Gaussian upper bounds
the information leakage to unauthorized parties. Because a
Gaussian state is completely characterized by its covariance
matrix, the secure key rate can be deduced from only V . For
realistic channels that are usually symmetrical for quadratures
x̂ and p̂, V can be expressed in a standardized form as

V =
(

V I cZ

cZ V ′ I

)
, (46)

where I and Z are the 2 × 2 identity and Pauli Z matrices,
respectively; V is the variance of the undelivered mode of
the dealer; V ′ is the variance of the mode received by the
authorized party; c is the correlation between the two modes.
V can be characterized by only V and two channel parameters,
the transmittance, τ , and the noise, χ , which are defined by
the relations

c =
√

τ

(
V 2 − 1

4

)
; V ′ = τ (V + χ ). (47)

To estimate the minimal secret-sharing rate of the CQ QSS,
in the parameter-estimation stage the dealer and the access
structure construct the covariance matrix by measuring some
of their modes. A quantum operation is then applied on the
unmeasured modes to transform their covariance matrix to
the standard form, from where the analogous τ and χ can be
extracted according to Eq. (46). For the pedagogic purpose, we
demonstrate in Secs. IV C and IV D the procedure of getting the
standardized covariance matrix for different collaborations in
the (2,3)- and (3,5)-CQ protocols, respectively. Readers who
are mainly interested in the general formalism can skip the
examples.

We assume our protocol is direct reconciliation, i.e., the
measurement result of the dealer is the secret value that has to
be estimated by the access structure, but the secret-sharing rate
of a reverse reconciliation protocol can be easily calculated by
similar procedure [35]. The secret-sharing rate, KCQ, is given
by [35]

KCQ = I (D : A) − I (D : E), (48)

where I (D : A) is the mutual information between the dealer
and access structure; the information obtained by unauthorized
parties is given by I (D : E), which is capped by the Holevo
bound.

The mutual information I (D : A) can be calculated by
comparing the variance of mode h with and without knowing
the measurement results of mode D. In terms of the analogous
channel parameters, the mutual information is given by [35]

I (D : A) = 1

2
log

(
V + χ

χ + 1
4V

)
. (49)

In direct reconciliation protocols, the Holevo bound of the
unauthorized parities’ information is defined as

I (D : E) = S(E) − S(E|D), (50)

where S(E) is the von Neumann entropy of unauthorized
parties’ state, S(E|D) is the conditional von Neumann entropy

if the measurement result of the dealer is known. As the
unauthorized parties can control the environment that purifies
the whole system, the entropy of the unauthorized parties
is the same as that of the system DA, i.e., S(E) = S(DA).
The entropy can be calculated using Eq. (20) as S(DA) =
g(ν+) + g(ν−) [18], where the symplectic spectrum of V ,
{ν+,ν−}, is given by

ν± = 1
2 [
√

(V + V ′)2 − 4c2 ± (V − V ′)]. (51)

Similarly, because the state of system AE is pure after
system D is measured, the conditional entropy S(E|D) is the
same as S(A|D). The covariance matrix of system A after the
measurement of the dealer is given by [38,39]

V A|D =
(

V − c2/V 0

0 V ′

)
, (52)

where the symplectic eigenvalue is

νc =
√

V ′
(

V ′ − c2

V

)
= τ

√
(V + χ )

(
1

V
+ χ

)
. (53)

Hence, we get S(E|D) = g(νc).
With the strongly correlated measurement outcomes and

the expected amount of secret information, KCQ, the dealer
and the access structure can collaborate to distill secure key to
encode the classical secret [32].

C. Example 1 of CQ quantum secret sharing: (2,3) protocol

In a (2,3)-CQ protocol, any two of the three parties can
form a strong correlation with the dealer, while any one party
is only weakly correlated with the dealer. The protocol can
be implemented by a diamond-shaped CV cluster state with
AD3 = A13 = A12 = 1 and AD2 = −1, as shown in Fig. 4. We
note that the diamond-shaped CV cluster state is also a form
of error correction of a CV cluster state [20]. In the infinitely
squeezing case, the nullifiers are

N̂D = p̂D + q̂2 − q̂3; N̂1 = p̂1 − q̂2 − q̂3;
(54)

N̂2 = p̂2 + q̂D − q̂1; N̂3 = p̂3 − q̂D − q̂1.

The finitely squeezed state is described by Eq. (7) with the
above nullifiers.

The access structure can be composed by parties {1,2},
{1,3}, and {2,3}. The entanglement structure possessed by
collaborations {1,2} and {1,3} are equivalent, because the

σ

σ
1

σ
2 3

σ

σ
1

σ
5 2

σ σ
4 3

σd
D

σd
D

-1

FIG. 4. Schematic representation of the cluster state for the
(2,3)-CQ protocol (left), and the (3,5)-CQ protocol (right). All of the
modes are not displaced before the CPHASE operation. The strength
of unlabeled edges is A = 1.
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nullifiers of {1,2} will be the same as that of {1,3} if the
dealer applies a π -phase operation, F̂ (π ), to his mode. On
the other hand, the collaboration {2,3} possesses a different
entanglement structure.

1. Parties {1,2} collaboration

If parties {1,2} are the access structure, the strong correla-
tions are specified by the nullifiers

N̂D − N̂1 = p̂D − p̂1 + 2q̂2 and N̂2 = q̂D − q̂1 + p̂2.

(55)

A global operation is applied on the access structure’s mode to
transfer the strong correlation to mode 2; i.e., mode 2 is treated
as mode h. The transformation can be implemented by various
sequence of operations, but the final measurement results and
the covariance matrix are not affected. One possible choice is
the {1,2} decoding sequence: (i) apply exp(−iq̂1q̂2); (ii) then
exp(ip̂1p̂2); (iii) finally F̂2(π ).

After tracing out the modes other than mode D and mode
2, the covariance matrix of the resultant state ρ̂DA is given by

V DA;{1,2} =

⎛
⎜⎜⎜⎜⎜⎝

1
2σ 2

D

0 0 1
2σ 2

D

0 1
σ 2 + σ 2

D

2
1
σ 2 0

0 1
σ 2

1
σ 2 + σ 2

2 0
1

2σ 2
D

0 0 σ 2

2 + 1
2σ 2

D

⎞
⎟⎟⎟⎟⎟⎠ .

(56)

The covariance matrix will be revealed in the parameter-
estimation stage when half of the states are measured. As
V DA;{1,2} is not in the standard form, i.e., Eq. (46), rectifying
quantum operations are applied onto the residual states. First
of all, the variance of q̂D and p̂D are balanced by squeezing
mode D with the squeezing parameter

γD =
√

σD

σ

√
2 + σ 2σ 2

D. (57)

Next, mode 2 is squeezed to balance the coherent terms, i.e.,
〈�q̂D�p̂2〉 and 〈�p̂D�q̂2〉. The squeezing parameter is given
by

γ2 =
√√√√ 2σD

σ

√
2 + σ 2σ 2

D

. (58)

In practice, both γD and γ2 can be obtained from the
results in parameter-estimation stage, i.e., without knowing the
squeezing parameter of the initial cluster state. This squeezing
stage will transform the state ρ̂DA as

ρ̂DA → ρ̂ ′
DA = ŜD(γD)Ŝ2(γ2)ρ̂DAŜ

†
2(γ2)Ŝ†

D(γD), (59)

where the covariance matrix becomes

V ′
DA;{1,2} =

⎛
⎜⎜⎜⎝

V(2,3) 0 0 c

0 V(2,3) c 0

0 c V ′
q 0

c 0 0 V ′
p

⎞
⎟⎟⎟⎠ , (60)

for V(2,3) =
√

2 + σ 2σ 2
D/2σσD; c = 1/

√
2σσD; the variance of

mode 2 is

V ′
q = 1 + σ 2σ 2

D

σσD

√
2 + σ 2σ 2

D

; V ′
p =

(2 + σ 4)
√

2 + σ 2σ 2
D

4σσD

. (61)

We note that γD and V(2,3) are the same for any collaboration
in the (2,3) protocol, because mode D is kept with the dealer
that is not affected by operations on delivered modes. The
disparity between V ′

q and V ′
p implies imbalanced noise for

the quadratures q̂2 and p̂2. As the aim of this paper is to
demonstrate the possibility of performing CQ QSS using CV
cluster states, we balance the variances of q̂2 and p̂2 by a
“state-averaging” process, which would nonetheless sacrifice
some quantum correlations. Consider that the dealer randomly
divides the unmeasured states into two sets, and the choice
of division is announced. In one set, the dealer applies a
Fourier operator, F̂D(−π/2), on each mode that transforms
the quadrature operators as q̂D → p̂D and p̂D → −q̂D . In the
other set, party 2 applies F̂D(−π/2) on each mode that causes
the transformation q̂2 → p̂2 and p̂2 → −q̂2. After that, the
choice of division is discarded. The state will be transformed as

ρ̂ ′
DA → ρ̂ ′′

DA = 1
2 F̂D(−π/2)ρ̂ ′

DAF̂
†
D(−π/2)

+ 1
2 F̂2(−π/2)ρ̂ ′

DAF̂
†
2 (−π/2). (62)

The covariance matrix of ρ̂ ′′
DA is given by

V ′′
DA;{1,2} =

⎛
⎜⎜⎜⎝

V(2,3) 0 c 0

0 V(2,3) 0 −c

c 0 VA;{1,2} 0

0 −c 0 VA;{1,2}

⎞
⎟⎟⎟⎠ , (63)

where VA;{1,2} = (V ′
q + V ′

p)/2 with the definition in Eq. (61).
Finally, the modes are measured by the dealer and party 2
in either the q̂ or p̂ basis. The variances of the measurement
results will be given by Eq. (63).

We note that ρ̂ ′′
DA is not a Gaussian state because the

stage-averaging process in Eq. (62) is not a Gaussian operation.
To calculate the secret-sharing rate using the techniques in
Sec. IV B, we assume the measurement results originates
from a Gaussian state ρ̂G where its covariance matrix is V .
According to Refs. [36,37], Gaussian states minimize the
secure key rate for all states with the same covariance matrix.
Therefore, our action maximizes the power of the unauthorized
parties and lower bounds the secret-sharing rate.

By comparing Eq. (63) with Eq. (46), the variance of
the dealer’s mode is V = V(2,3), and the analogous channel
parameters can be deduced as τ = c2/(V 2

(2,3) − 1/4) = 1 and
χ = VA;{1,2} − V(2,3). The minimal secret-sharing rate can then
be calculated by Eqs. (48)–(51) and (53).

2. Parties {2,3} collaboration

If parties {2,3} are the access structure, the strong correla-
tions are specified by the nullifiers

N̂D = p̂D + q̂2 − q̂3 and
N̂2 − N̂3

2
= q̂D + p̂2

2
− p̂3

2
.

(64)
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The quantum correlation can be transferred to mode 2 by
the {2,3} decoding sequence, which is simply a 50:50 beam
splitter that transforms â2 → −(â2 + â3)/

√
2 and â3 → (â2 −

â3)/
√

2. The resultant covariance matrix between mode D and
mode 2 becomes

V DA;{2,3} =

⎛
⎜⎜⎜⎜⎜⎝

1
2σ 2

D

0 0 1√
2σ 2

D

0 1
σ 2 + σ 2

D

2
1√
2σ 2 0

0 1√
2σ 2

1
2σ 2 0

1√
2σ 2

D

0 0 σ 2

2 + 1
σ 2

D

⎞
⎟⎟⎟⎟⎟⎠ . (65)

The secure sharing rate can be deduced by process similar
to that in the {1,2} collaboration: squeezing and transforming
local modes to construct a state with standardized covariance
matrix and then measuring the states to obtain the analogous
channel parameters for computing the information of different
parties. However, the {2,3} collaboration is special as the dealer
and party 2 are actually holding a pure state, i.e., the beam
splitter has removed all entanglement from the unauthorized
parties. This can be seen from the symplectic spectrum of
Eq. (65), ν{2,3} = {1/2,1/2}, so the entropy of the system DA

vanishes, i.e., S(DA) = 0. Therefore, the unauthorized parties
cannot obtain any information about the secret by entangling
their modes to the dealer’s mode. The secret-sharing rate is
hence the same as the mutual information between the dealer
and the access structure, which is given by

I (D : A) = log(2V(2,3)). (66)

D. Example 2 of CQ quantum secret sharing: (3,5) protocol

In a (3,5)-CQ protocol, any three of the five parties can form
a strong correlation with the dealer, while any collaboration
with less than two parties is only weakly correlated with the
dealer. The protocol can be implemented by a pentagonal CV
cluster state, as shown in Fig. 4, where each connected vertex is
entangled by a CPHASE operation withAij = 1. In the infinitely
squeezing case, the nullifiers are

N̂D = p̂D −
5∑

i=1

q̂i ; N̂i = p̂i − q̂i+1 − q̂i−1 − q̂D, (67)

where i + 1 = 1 when i = 5, and i − 1 = 5 when i = 1. The
finitely squeezed state is described by the Wigner function in
Eq. (7) with the above nullifiers.

The access structure can be composed by two categories of
collaboration: three neighboring parties, e.g., parties {1,2,3},
and two neighbors with one disjoint party, e.g., {1,3,4}.
The collaborations in each category hold nullifiers with the
same form, so the decoding sequence will be the same. If
the squeezing parameter is identical for all five modes, the
secret-sharing rate of the collaborations in each category will
also be the same.

1. Parties {1,2,3} collaboration

If parties {1,2,3} are the access structure, the strong
correlations are specified by the nullifiers

N̂D − N̂1 + 2N̂2 − N̂3 = p̂D − (p̂1 + 3q̂1) + (2p̂2 + q̂2)

− (p̂3 + 3q̂3)

and − N̂2 = q̂D − p̂2 + q̂1 + q̂3. (68)

The quantum correlations can be transferred to party 2 by
the {1,2,3} decoding sequence: (i) applying exp(−iq̂1q̂2) and
exp(−iq̂2q̂3); (ii) then exp(ip̂1p̂2) and exp(ip̂2p̂3); (iii) finally
exp[ip̂2(2p̂1 + q̂1)] and exp[ip̂2(2p̂3 + q̂3)].

The covariance matrix of the state ρ̂DA between mode D

and mode 2 is given by

V DA;{1,2,3} =

⎛
⎜⎜⎜⎜⎜⎝

1
2σ 2

D

0 0 1
2σ 2

D

0 5+σ 2σ 2
D

2σ 2
5

2σ 2 0

0 5
2σ 2

5+6σ 4

2σ 2 −σ 2

1
2σ 2

D

0 −σ 2 1+σ 2σ 2
D

2σ 2
D

⎞
⎟⎟⎟⎟⎟⎠ . (69)

All terms in V DA;{1,2,3} can be revealed by x̂ and p̂ measure-
ments in the parameter-estimation stage except for the local
coherent terms 〈(�q̂2�p̂2 + �p̂2�q̂2)/2〉. However, these
terms do not affect the parameters in the squeezing stage and
will be eventually canceled during state-averaging.

The unmeasured states are squeezed locally to balance the
variance of q̂D and p̂D , as well as the coherent terms. The state
is transformed as in Eq. (59), where the parameters for the
{1,2,3} collaborations are

γD =
√

σD

σ

√
5 + σ 2σ 2

D; γ2 =
√

σ

5σD

√
5 + σ 2σ 2

D. (70)

The covariance matrix of the transformed state is given by

V ′
DA;{1,2,3} =

⎛
⎜⎜⎜⎝

V(3,5) 0 0 c

0 V(3,5) c 0

0 c V ′
q 0

c 0 0 V ′
p

⎞
⎟⎟⎟⎠ , (71)

where V(3,5) =
√

5 + σ 2σ 2
D/2σσD; c = √

5/2σσD , and the vari-
ance of mode 2 is given by

V ′
q =

(5 + 6σ 4)
√

5 + σ 2σ 2
D

10σσD

; V ′
q = 5

(
1 + σ 2σ 2

D

)
2σσD

√
5 + σ 2σ 2

D

.

(72)

The value of γD and V(3,5) are the same for any collaboration
in the (3,5) protocol.

State averaging ensues to balance the correlations of pD −
q2 and qD − p2. Half of the unmeasured states are transformed
by F̂D(−π/2), while the other half are transformed by
F̂2(−π/2). After discarding the choice of division, the state
transforms as Eq. (62), where the covariance matrix becomes

V ′′
DA;{1,2,3} =

⎛
⎜⎜⎜⎝

V(3,5) 0 c 0

0 V(3,5) 0 −c

c 0 VA;{1,2,3} 0

0 −c 0 VA;{1,2,3}

⎞
⎟⎟⎟⎠ ,

(73)

for VA;{1,2,3} = (V ′
q + V ′

p)/2 with the definition in Eq. (72).
We note that the local coherent terms vanish after state
averaging because their sign in F̂D(−π/2)ρ̂ ′

DAF̂
†
D(−π/2) and

F̂2(−π/2)ρ̂ ′
DAF̂

†
2 (−π/2) are opposite.
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We again assume the measurement results come from a
Gaussian state with the same covariance matrix V ′′

DA;{1,2,3}.
The variance of the dealer’s mode is recognized as V = V(3,5),
and the analogous channel parameters can be deduced as τ =
c̄2/(V 2

(3,5) − 1/4) = 1 and χ = VA;{1,2,3} − V(3,5). The minimal
secret-sharing rate can then be calculated by Eqs. (48)–(51)
and (53).

2. Parties {1,3,4} collaboration

If parties {1,3,4} are the access structure, the strong
correlations are specified by the nullifiers

N̂D − 2N̂1 + N̂3 + N̂4 = p̂D − (2p̂1 + q̂1) + (p̂3 − 2q̂3)

+ (p̂4 − 2q̂4)

and N̂1 − N̂3 − N̂4 = q̂D + p̂1 − (p̂3 − q̂3)

− (p̂4 − q̂4). (74)

The quantum correlations can be transferred to mode 1 by the
{1,3,4} decoding sequence: (i) apply exp[−i(q̂1 + p̂3 − q̂3)]
and exp[−i(q̂1 + p̂4 − q̂4)]; (ii) followed by exp(ip̂1p̂3) and
exp(ip̂1p̂4); (iii) then exp(i2p̂2

1); (iv) finally F̂ (π ).
The covariance matrix of the state ρ̂DA between mode D

and mode 1 is given by

V DA;{1,3,4} =

⎛
⎜⎜⎜⎜⎜⎝

1
2σ 2

D

0 0 1
2σ 2

D

0 5+σ 2σ 2
D

2σ 2
5

2σ 2 0

0 5
2σ 2

5+6σ 4

2σ 2 −2σ 2

1
2σ 2

D

0 −2σ 2 1+3σ 2σ 2
D

2σ 2
D

⎞
⎟⎟⎟⎟⎟⎠ . (75)

After the parameter-estimation stage, local-squeezing is
applied as in Eq. (59) except mode 1 is now mode h. The
squeezing parameter in the current collaboration is

γD =
√

σD

σ

√
5 + σ 2σ 2

D; γ1 =
√

σ

5σD

√
5 + σ 2σ 2

D. (76)

The covariance matrix of the unmeasured states then becomes

V ′
DA;{1,3,4} =

⎛
⎜⎜⎜⎝

V(3,5) 0 0 c

0 V(3,5) c 0

0 c V ′
q 0

c 0 0 V ′
p

⎞
⎟⎟⎟⎠ , (77)

where c = √
5/2σσD , and the variance of mode 1 is given by

V ′
q =

(5 + 6σ 4)
√

5 + σ 2σ 2
D

10σσD

; V ′
p = 5

(
1 + 3σ 2σ 2

D

)
2σσD

√
5 + σ 2σ 2

D

.

(78)

State averaging ensues to balance the correlations of pD −
q1 and qD − p1. The covariance matrix becomes

V ′′
DA;{1,3,4} =

⎛
⎜⎜⎜⎝

V(3,5) 0 c 0

0 V(3,5) 0 −c

c 0 VA;{1,3,4} 0

0 −c 0 VA;{1,3,4}

⎞
⎟⎟⎟⎠ ,

(79)

FIG. 5. Secret-sharing rate of CQ QSS protocols using CV
cluster states with different squeezing parameters σ . The squeezing
parameter of dealer’s mode is set as σD = σ . (Left) (2,3) Protocol
for {2,3} collaboration (solid line) and {1,3} collaboration (dashed
line). (Right) (3,5) Protocol for {1,2,3} collaboration (solid line) and
{1,3,4} collaboration (dashed line).

where VA;{1,3,4} = (V ′
q + V ′

p)/2 with the definition in Eq. (78).
Similar to the {1,2,3} collaboration, the local coherent terms
are eliminated by state averaging.

After local q̂ and p̂ measurements, we again assume the
results come from a Gaussian state. The variance of the dealer’s
mode is recognized as V = V(3,5), and the analogous channel
parameters can be deduced as τ = c̄2/(V 2

(3,5) − 1/4) = 1 and
χ = VA;{1,3,4} − V(3,5).

E. Results

The secret-sharing rate of the (2,3)- and (3,5)-CQ protocol
is plotted in Fig. 5 for different σ . As in the CC case, secure
key can be distilled if the squeezing parameter is smaller than
a threshold limit, except in the {2,3} collaboration in (2,3)
protocol that the entanglement of the adversary structure is
completely removed. The threshold values are about σ ≈ 1
in the examples we consider. Disparity of secure key rate in
different collaborations is also observed in CQ protocols. The
secret-sharing rate is nonzero in some cases even when σ � 1.
As we have discussed in the CC case, a two-mode cluster state
is still entangled even if the initial state is not squeezed. The
entanglement between the dealer and party h imposes strong
quantum correlations that can distill secure keys.

F. Simplification

In the above analysis of CQ protocols, we assume an
(n + 1)-mode cluster state has to be created and quantum
memory is available to store the delivered modes until all of the
states are received as well as an ideal quantum channel being
available between the access structure parties. Here we show
that these requirements can be relaxed without compromising
the security.

1. Mixed-state approach

Because the distributed modes are unaffected by any local
operation of the dealer, the state obtained by the parties is
the same regardless of whether mode D has been measured.
Therefore, instead of preparing an (n + 1)-mode cluster state
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|�〉 and measuring mode D afterwards, the dealer can simulate
the consequence of the measurement by distributing an n-
mode state that is the same as the measured |�〉. Consider
that if the dealer intends to measure in the q̂ basis, then the
dealer can instead prepare the pure state (〈s|qD

)|�〉, where
|s〉qD

is a q̂D eigenstate with the eigenvalue s. Similarly in
the p̂ measurement rounds, the dealer can prepare (〈s|pD

)|�〉,
where |s〉pD

is the p̂D eigenstate with the eigenvalue s. Other
parties cannot distinguish the mixed state from |�〉 if s is
picked according to the probability distributions of dealer’s
measurement results on |�〉. The probability distributions are
imposed by the Wigner function in Eq. (45) as

PqD
(s) =

∫
WD(s,pD)dpD = σD√

π
e−σ 2

Ds2
; (80)

PpD
(s) =

∫
WD(qD,s)dqD = e

− s2

σ2
D

+N/σ2

√
π

√
σ 2

D + N/σ 2
. (81)

In the simulated q̂ measurement rounds, the infinitely
squeezed (〈s|qD

)|�〉 is characterized by the nullifiers

N̂
q

i = p̂i −
∑
j∈N

Aij q̂j − AiDs, (82)

where i = 1, . . . ,n; AiD = 0 if the mode i is not a neighbor of
mode D. The nullifier N̂

q

i is the same as N̂i except the operator
q̂D is replaced with the simulated measurement outcome s. In
the finitely squeezed case, the state can be characterized by the
Wigner function WqD

(q1,p1, . . . ,qn,pn), which is obtained by
tracing out pD and replacing all qD with s in the Wigner
function of |�〉. Because WqD

is the same as Wc in Eq. (7)
with the nullifiers N̂

q

i , (〈s|qD
)|�〉 is a cluster-class state that

can be formed by displacing a finitely squeezed cluster state.
In the simulated p̂ measurement rounds, the infinitely

squeezed (〈s|pD
)|�〉 is characterized by the nullifiers

N̂
p

1 =
∑
j∈N

AjDq̂j − s; N̂p

i = N̂i − N̂i−1, (83)

where j = 2, . . . ,n. In the finitely squeezed case, the
state can be characterized by the Wigner function
WpD

(q1,p1, . . . ,qn,pn), which is obtained by tracing out qD

and replacing all pD by s in the Wigner function of |�〉.
However, unlike WqD

, WpD
is not necessarily representable by

the form of Wc with the nullifiers N̂
p

1 ; therefore, (〈s|pD
)|�〉

is generally not a cluster-class state. Nevertheless, (〈s|pD
)|�〉

is a Gaussian state that can be efficiently prepared by offline
squeezed states and linear optical elements [20].

2. Classical memory

When estimating the secret-sharing rate, we need the
delivered modes to be rectified so the covariance matrix is in
the standard form. The modes are stored in quantum memories
until the covariance matrix is constructed from parameter
estimation. Here we show that the measurement probability
distribution of the transformed state ρ̂ ′′ can be obtained by
first measuring the original state ρ̂ and then subjecting the
measurement results to classical manipulations. Therefore,
the delivered modes can be measured before the parameter-
estimation stage; quantum memory is thus not necessary.

The rectifying process involves two stages: local squeezing
and state averaging. After state averaging, ρ̂ ′′ becomes a mix-
ture of F̂D(−π/2)ρ̂ ′F̂ †

D(−π/2) and F̂h(−π/2)ρ̂ ′F̂ †
h (−π/2).

By definition, the Wigner function of ρ̂ ′′, W ′′ can be written
as the sum of the Wigner function of ρ̂ ′, W ′ as

W ′′(qD,pD,qh,ph) = 1
2W ′(pD, − qD,qh,ph)

+ 1
2W ′(qD,pD,ph, − qh). (84)

Consider that the dealer measures ρ̂ ′′ in q̂D and party h

measures in q̂h; the probability of obtaining measurement
outcomes y1 and y2, P ′′

qD,qh
(y1,y2), is given by

P ′′
qD,qh

(y1,y2) =
∫

W ′′(y1,pD,y2,ph)dpDdph

= 1

2

∫
W ′(pD, − y1,y2,ph)dpDdph

+1

2

∫
W ′(y1,pD,ph, − y2)dpDdph

= 1

2
P ′

pD,qh
(−y1,y2) + 1

2
P ′

qD,ph
(y1, − y2),

(85)

where the last equality involves renaming of variables; P ′
xD,xh

is the joint {x̂D,x̂h} measurement probability of ρ̂ ′. Similarly,
the probability of another strongly correlated measurement,
{p̂D,p̂h}, can be expressed as

P ′′
pD,ph

(y1,y2) = 1
2P

′
qD,ph

(y1,y2) + 1
2P

′
pD,qh

(y1,y2). (86)

These two relations indicate that the measurement proba-
bility distributions after state averaging are not different from
mixing some measurement probability distributions before
state averaging. Consider that the dealer and party h randomly
measure ρ̂ ′ in x̂ and p̂ bases. Half of the {q̂D,p̂h} outcomes and
half of the {p̂D,q̂h} outcomes are picked to mimic the {q̂D,q̂h}
measurement of ρ̂ ′′. For the {q̂D,p̂h} half, all the p̂h outcomes
are multiplied by −1 and then regarded as q̂h outcomes; for
the {p̂D,q̂h} half, all the p̂D outcomes are multiplied by −1
and then regarded as q̂D outcomes. After mixing the two sets
of data, the probability Pm of getting y1,y2 is given by

Pm(y1,y2) = 1
2P

′
pD,qh

(−y1,y2) + 1
2P

′
qD,ph

(y1, − y2), (87)

which is the same as Eq. (85). The {p̂D,p̂h} measurement
probability of ρ̂ ′′ can be mimicked by similar procedures.

In the local-squeezing stage, the dealer and party h apply
local squeezing operations, ŜD(γD) and Ŝh(γh), to balance
the variance of mode D and the coherent terms. The Wigner
function of the state ρ̂ transforms as

W (qD,pD,qh,ph) → W ′(qD,pD,qh,ph)

= W

(
qD

γD

,γDpD,
qh

γh

,γhph

)
. (88)
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Consider that ρ̂ ′ is measured in q̂D and p̂h bases; the
probability of obtaining the outcomes y1,y2 is given by

PqD,ph
(y1,y2) → P ′

qD,ph
(y1,y2)

=
∫

W

(
y1

γD

,γDpD,
qh

γh

,γhy2

)
dpDdqh

= γh

γD

PqD,ph

(
y1

γD

,γhy2

)
, (89)

where P is the probability distribution when measuring ρ̂.
Similarly, the probability distribution of p̂D and q̂h measure-
ment transforms as

PpD,qh
(y1,y2) → γD

γh

PpD,qh

(
γDy1,

y2

γh

)
. (90)

Measurement results of {q̂D,q̂h} and {p̂D,p̂h} are sifted as they
are merely weakly correlated.

In fact, physically squeezing the state is not necessary
because the transformations in Eqs. (89) and (90) can be
conducted by classically scaling the measurement results.
Consider that every q̂i measurement result is scaled by
1/γi , and every p̂i measurement result is scaled by γi . The
old probability, P , of a q̂ measurement result lying in the
range [y,y + dy] is equal to the new probability, P s , of a
scaled result in the range of [γy,γy + γ dy]. Thus, we have
the relation P(y)dy = P ′(γy)γ dy for q̂ measurement, and
similarly P(y)dy = P ′(y/γ )dy/γ for p̂ measurement. By
eliminating common factors and redefining variables, we get

Ps
qD,ph

(y1,y2) = γh

γD

PqD,ph

(
y1

γD

,γhy2

)
;

(91)

P s
pD,qh

(y1,y2) = γD

γh

PpD,qh

(
γDy1,

y2

γh

)
.

The above resultant probability distributions are the same as
in Eqs. (89) and (90).

3. Local measurement

We have assumed the access structure parties have for-
warded their modes to a single party for global operations.
Here we show that the measurement results of the dealer and
access structure remains strongly correlated even if the access
structure conducts local measurements only.

Recall that the strong correlation is represented by the
nullifiers p̂D − Q̂A and q̂D − P̂A. Because they are linear
combinations of standard nullifiers, both the operators Q̂A

and P̂A are sums of local operators; i.e.,

Q̂A =
n∑
j

k
q

j M̂
q

j ; P̂A =
n∑
j

k
p

j M̂
p

j , (92)

where k
q

j and k
p

j are real coefficients; M̂
q

j and M̂
p

j are rotated
quadrature operators of mode j . After discussing through
secure classical channels to decide the measurement basis to
be Q̂A or P̂A, the dealer and authorized parties homodyne
detect their modes according to the basis M̂

q

j or M̂
p

j . The
measurement results are then shared in the access structure
through secure classical channels.

Without loss of generality, we consider that the access
structure has chosen to measure Q̂A. The measurement result

QA is a linear combination of local measurement results
M

q

j , i.e., QA =∑n
j k

q

j M
q

j . The strong correlation is observed
from the joint probability distribution of pD and QA, which
we show is the same as the joint probability distribution of
pD and qh. Consider that the Wigner function of the state
of the dealer and the access structure, WDA(qD,pD,qA, pA),
where qA and pA are the quadrature variables of the access
structure, is obtained by tracing out the unauthorized parties’
contributions in Wc in Eq. (7). When rewritten in terms of the
new variables Mq = {Mq

j } and ∗Mq = {∗M
q

j }, the Wigner
function becomes

WDA(qD,pD,qA, pA) ≡ W ′
DA(qD,pD,Mq,∗Mq), (93)

where ∗M
q

j is the complementary variable of M
q

j ; i.e., the

corresponding operators satisfy [M̂q

j , ∗ M̂
q

j ] = i. The choice

of {∗M̂
q

j } is not unique, but we can pick the set of which P̂A is
a linear combination.

We construct another set of variables Q =
{QA,Q2, . . . ,Qm} and P = {PA,P2, . . . ,Pm}, where Q
(P) involves linear combinations of {Mq

j } ({∗M
q

j }) only;
and the corresponding operators obey the commutation
relations [Q̂j ,P̂l] = iδjl , [Q̂j ,Q̂l] = 0, and [P̂j ,P̂l] = 0.
Such a construction of variables is possible as there exists
unitary operators that transform M̂

q
to Q̂ and ˆ∗M

q
to P̂ ,

while preserving the commutation relations. In terms of Q
and P , the Wigner function can be further rewritten as

W ′
DA(qD,pD,Mq,∗Mq) ≡ W ′′

DA(qD,pD, Q,P). (94)

The local measurement results follow a classical probability
distribution P ′′

DA, which is obtained by tracing out the
complementary components, i.e.,

P ′′
DA(pD,Mq) =

∫
W ′

DAdqDdm
(∗Mq

1

)
=
∫

W ′′
DAdqDdm P, (95)

where the last equality is imposed because P is a linear
combination of ∗Mq

1 only. The probability distribution of QA

is obtained by tracing out the other independent variables in
P ′′

DA, i.e.,

PDA(pD,QA) =
∫

P ′′
DAdQ2dQ3 . . . . (96)

On the other hand, consider that the access structure
parties’ modes are transferred to party h. The strong quantum
correlation is transferred to mode h by applying a global
operation, ÛA, which transforms Q̂A → ÛAQ̂AÛ

†
A = q̂h and

P̂A → ÛAP̂AÛ
†
A = p̂h. Other operators are transformed as

Q̂j → ŷj and P̂j → ẑj . Using the definition in Eqs. (93)
and (94), the Wigner function becomes

WDA(qD,pD,q, p) → W ′′
DA(qD,pD,qh,ph, y,z), (97)

where y = (y2, . . . ,ym)T and z = (z2, . . . ,zm)T . Because Q̂j

and P̂j commute with both Q̂A and P̂A, the transformed
operators ŷj and ẑj do not contain any attributes of mode
h. The joint probability distribution of p̂D and q̂h is obtained
from the Wigner function after tracing out the modes other
than mode D and h, as well as the complementary variables
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qD and ph; i.e.,

PDA(pD,qh) =
∫

W ′′
DAdqDdphd

m−1 ydm−1 z. (98)

The probability distribution in Eqs. (96) and (98) are
deduced by different procedures. The former one is deduced by
first obtaining the classical probability distribution of all local
measurements and then extracting the probability distribution
of the classical variable QA; the latter one is deduced by first
achieving the Wigner function of the transformed quantum
state, and then obtaining the measurement probability of the
operator q̂h. However, Eqs. (96) and (98) are mathematically
equivalent because their overall derivations are the same:
tracing out all quadrature variables in the Wigner function
except those specifying the strong correlation. Similar analysis
can be applied to the correlation between qD and PA. As a
result, the access structure can obtain the same covariance
matrix as we have discussed previously. Hence, the secret-
sharing rate remains unchanged even if the access structure’s
modes are measured locally.

4. Simplified CQ protocol

Incorporating the above ideas, the CQ protocol can be
simplified as follows: An (n + 1) cluster state or an n-mode
mixed state is prepared by the dealer and delivered. Parties
in the access structure have agreed on the measurement basis
in each round; local measurements are conducted on each
received mode. The classical measurement results are shared
among the access structure through secure classical channels.
Both the dealer and the access structure announce half of the
results to estimate the covariance matrix, while the other half
is scaled and mixed so the covariance matrix is in the standard
form. The variance and the analogous channel parameters
are then recognized for calculating the secret-sharing rate.
Finally, a secure key is distilled from the strongly correlated
measurement results, the key is then used for sharing classical
secrets.

We end this section with two comments. First, although
the quantum channels for delivering cluster states are assumed
to be ideal, we believe a modified version of our protocol
would allow CQ QSS with realistic (lossy and noisy) channels.
The covariance matrix of the delivered modes can still be
obtained by parameter estimation, and subsequent classical
manipulations can always turn the measurement results to obey
the standard covariance matrix.

Second, in all the examples we have investigated, the
entanglement with the unauthorized parties’ modes only add
noise to the access structure parties’ modes, but the analogous
transmittance is retained as 1. This result is surprising in
the scenario of CV-QKD, because imperfection is always
simulated by adding noise into a beam splitter which reduces
transmittance. We believe this phenomenon originates from
the distinctive entanglement structure in the resource states
between CQ QSS (a cluster state) and CV-QKD (an EPR state).

V. QQ QUANTUM SECRET SHARING

In the QQ setting of QSS, the dealer shares a secret quantum
state among parties by delivering a multipartite entangled state.
The channels connecting the dealer and the parties can be

insecure, so the unauthorized parties can manipulate all the
delivered states. In an ideal QQ protocol, the access structure
can recover the secret state with perfect fidelity, while the
unauthorized parties cannot get any information about the state
due to the quantum no-cloning theorem [40].

Our QQ QSS scheme is a generalization of the CQ
protocol. The dealer prepares an (n + 1) mode cluster state,
of which n modes are distributed to the parties while one
is kept by the dealer. After forming the collaborations, the
access structure parties forward their modes to party h. We
assume the parties are connected by secure quantum channels,
so the access structure can combine their modes without
being eavesdropped. A global operation is applied to extract
a strongly entangled state between mode D and a single
mode h.

For an infinitely squeezed QQ cluster state, the strong
correlation between the dealer and the access structure is
represented by the nullifiers p̂D − Q̂A and q̂D − P̂A. After
all modes are gathered in party h, an operation ÛA is applied
to transfer the quantum correlation to mode h, i.e., Q̂A →
ÛAQ̂AÛ

†
A = q̂h and P̂A → ÛAP̂AÛ

†
A = p̂h. We note that both

the nullifiers, Q̂A and P̂A, and the operation ÛA are the same
as that in the corresponding CQ protocol in Sec. IV.

The transformed nullifiers, p̂D − q̂h and q̂D − p̂h, indicate
that the dealer and party h are sharing an infinitely squeezed
two-mode cluster state, which is a CV maximally entangled
state (for infinite energy). By jointly measuring the secret state
and the two-mode cluster, the dealer can teleport the secret
state to mode h. After appropriate error correction according
to the dealer’s measurement results, party h can revert the
secret state with perfect fidelity.

In the finitely squeezing case, party h conducts the same ÛA

to transform the strong correlation to mode h. However, mode
D and mode h are not maximally entangled, because their state
is finitely squeezed and is weakly entangled to other modes.
Conducting teleportation using the nonmaximal entanglement
will reduce the fidelity of the teleported state. The inaccurately
shared secret state may indicate a reduction of security of the
QQ QSS, because some information about the secret state
would be leaked through the measurement results announced
by the dealer, and through the states held by the adversary
structure that are weakly entangled with the teleported state.

Instead of conducting teleportation after each round of QQ
QSS, we consider that the extracted state is stored in quantum
memories. After rounds of the QQ protocol, a more entangled
state can be distilled from the stored extracted states through
CV entanglement distillation [41–45]. Although distilling a
maximally entangled CV state is impossible due to the infinite
required energy, the enrichment of entanglement can enhance
the fidelity of the teleportation.

The amount of entanglement of the distilled state is
determined by that of each extracted state, as well as the
number of extracted states accumulated in the quantum
memory. We quantify the amount of entanglement by the
logarithmic negativity E [46], which is the upper bound of
the distillable entanglement. The logarithmic negativity of a
state ρ̂ is defined as

E(ρ̂) = log ||ρ̂TA ||1, (99)
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where the superscript TA denotes a partial transpose of the
density matrix; || · ||1 is the trace norm. If ρ̂ is a two-mode
Gaussian state with a covariance matrix V , the logarithmic
negativity can be calculated as

E(ρ̂) =
∑

k

F (ν̃k), (100)

where F (x) = − log(2x) if x < 1/2, and F (x) = 0 if x � 1/2;
{ν̃k} is the symplectic spectrum of Ṽ , which is defined as [47]

Ṽ =
(

I 0

0 Z

)
· V ·

(
I 0

0 Z

)
. (101)

The covariance matrix V can be obtained by randomly
measuring some of the stored states in either q̂ or p̂.

Because logarithmic negativity is additive [46], at least
E0/E extracted states with logarithmic negativityE is required
to distill a two-mode squeezed vacuum state with logarithmic
negativity E0. In this section, we demonstrate the procedure
of extraction, and calculate the logarithmic negativity of
the extracted state in each round of the (2,3) and the (3,5)
protocols.

We note that logarithmic negativity is additive but not
strongly superadditive [37], so the amount of entanglement
may be overestimated if the access structure’s modes in
different rounds are entangled [48], i.e., when the unauthorized
parties conduct coherent attacks on the delivered modes. In
that case, the amount of entanglement should be characterized
by other strongly superadditive entanglement measures, such
as distillable entanglement and squashed entanglement [37].
However, logarithmic negativity is applicable in the current
case because of our assumption of ideal quantum channels,
so the access structure is expected to get the same states as
prepared by the dealer. The adversary structure parties only
get information about the shared secret through their modes
obtained in each round, which is effectively a collective attack.

A. Example 1 of QQ quantum secret sharing: (2,3) protocol

In the (2,3)-QQ protocol, any two of the three participating
parties can recover the shared secret state with high fidelity,
while any one party achieves much less information about
the secret. This protocol can be implemented by the same
diamond-shaped CV cluster state as that for the (2,3)-CQ
protocol in Sec. IV C. In the infinitely squeezing case, the
nullifiers are given by Eq. (54), and these nullifiers with Eq. (7)
characterize the finitely squeezed cluster state.

Three different collaborations can be formed: parties 1 and
2, parties 1 and 3, and parties 2 and 3. The entanglement
structure of the state of {1,2} collaboration is the same as that
of {1,3} collaboration, as their states are equivalent up to a
local unitary. As a result, the entanglement extracted between
the dealer and parties {1,2} is the same as that between the
dealer and parties {1,3}.

For the {1,2} collaboration, the quantum correlation can
be transferred to mode 2 by the {1,2} decoding sequence in
Sec IV C1. In the infinitely squeezing case, the nullifiers in
Eq. (55), which specifies the strong correlation, is transformed
to p̂D − q̂2 and q̂D − p̂2. An infinitely squeezed two-mode
cluster is hence extracted for teleportation. In the finitely
squeezing case, the {1,2} decoding sequence also transfers

the strong correlation to party 2. The covariance matrix of
the extracted state between mode D and mode 2 is given by
V DA;{1,2} in Eq. (56).

For the {2,3} collaboration, the quantum correlation, which
is specified by the nullifiers in Eq. (64), can be transferred to
party 2 by applying a 50:50 beam splitter between modes 2 and
mode 3. An infinitely squeezed two-mode cluster state between
mode D and mode 2 is extracted in the infinitely squeezing
case. While in the finitely squeezing case, a strongly entangled
state is extracted with the covariance matrix V DA;{2,3} in
Eq. (56).

B. Example 2 of QQ quantum secret sharing: (3,5) protocol

In the (3,5)-QQ protocol, any three of the five participating
parties can recover the shared secret state with high fidelity,
while fewer than three parties achieve much less information
about the secret. This protocol can be implemented by the
same pentagonal CV cluster state as used for the (3,5)-CQ
protocol in Sec. IV D. In the infinitely squeezing case, the
nullifiers is given by Eq. (67), and these nullifiers with Eq. (7)
characterize the finitely squeezed cluster state. Two categories
of collaborations can be formed: three neighboring parties, and
two neighbors with one disjoint party. Within each category,
the procedure of decoding and the final entanglement extracted
are the same for each collaboration.

Take the parties {1,2,3} as an example of the three
neighboring parties collaboration. The quantum correlation
can be transferred to party 2 by the {1,2,3} decoding sequence
in Sec IV D1. In the infinitely squeezing case, the nullifiers in
Eq. (68) that specify the strong correlation are transformed
to p̂D − q̂2 and q̂D − p̂2. This indicates that an infinitely
squeezed two-mode cluster is extracted in mode D and mode 2.
While in the finitely squeezing case, the sequence of operations
extracts a strongly entangled state with the covariance matrix
V DA;{1,2,3} in Eq. (69).

On the other hand, parties {1,3,4} is an example of
collaboration that constitutes two neighbors and one disjoint
party. The quantum correlations can be transferred to party 1 by
the {1,3,4} decoding sequence in Sec IV D2. In the infinitely
squeezing case, an infinitely squeezed two-mode cluster is
extracted in mode D and mode 1, because the nullifiers in
Eq. (74) that specify the strong correlation is transformed to
p̂D − q̂1 and q̂D − p̂1. While in the finitely squeezing case, a
strongly entangled state is extracted, and its covariance matrix
is given by V DA;{1,3,4} in Eq. (75).

The logarithmic negativity of the extracted state for dif-
ferent collaborations in the (2,3) and the (3,5) protocols is
calculated using Eq. (100) with the corresponding covariance
matrices. The result is plotted in Fig. 6 against different
squeezing parameters.

VI. CONCLUSION

In this work, we extended the unified cluster-state quantum
secret-sharing framework proposed in [10,16] into the CV
regime. We proposed that all three tasks of quantum secret
sharing can be implemented by CV cluster states. Although a
QQ protocol can be used to conduct CC and CQ, simplifica-
tions in the later two scenarios can reduce the requirement of
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FIG. 6. Logarithmic negativity of the state extracted from a
CV cluster state in QQ QSS. (Left) (2,3) Protocol for {2,3}
collaboration (solid line) and {1,3} collaboration (dashed line).
(Right) (3,5) Protocol for {1,2,3} collaboration (solid line) and
{1,3,4} collaboration (dashed line).

resources. For a CC protocol involving n parties, only n-mode
cluster states are needed, and the states can be measured
once received. A CQ protocol requires either a mixture of
two n-mode Gaussian states or an (n + 1)-mode cluster state.
The states can be locally measured once it is received. A QQ
protocol requires (n + 1)-mode cluster states. The states have
to be transferred to one party and accumulated in quantum
memories for entanglement distillation.

Contrary to discrete-variable systems, where no known
physical principle hinders the creation of a maximally entan-
gled state, the creation of a maximally entangled CV state
requires infinite energy and is thus not practical. Finitely
squeezed states are realistic substitutes for the maximally
entangled resources, but the nonmaximal entanglement would
leak information about the shared secret to the unauthorized
parties. We proposed computable measures to account for the
security of each of the three tasks of quantum secret sharing.
The secret-sharing rate of a CC protocol is the difference

between the mutual information between the dealer and the
access structure, and the adversary structure’s information that
is capped by the Holevo bound. The secret-sharing rate of a
CQ protocol can be computed by the secure key rate of the
analogous QKD protocol. The performance of a QQ protocol
can be determined by the amount of extracted entanglement
between the dealer and the access structure.

Although we have analyzed only the (2,3) and the (3,5)
protocols that are both threshold protocols [4], our technique
is applicable to nonthreshold protocols because the security
analysis involves only the variance of measurement results of
the dealer and the access structure. The security of general
CV CQ and QQ protocols can also be analyzed using our
techniques, i.e., transferring the strong correlation to mode h

and then computing the covariance matrix between mode D

and mode h, even if the resource state is not a CV cluster state.
Our work shows that quantum secret sharing is feasible

with finitely squeezed CV resources. Since a finitely squeezed
cluster state can be deterministically constructed using only
offline squeezers and linear optics, which are practically
available resources in current technology, we believe CV
quantum secret sharing can be implemented in the near
future. An important remaining question is to determine if the
performance of quantum secret sharing is seriously worsened
under the presence of environmental and apparatus noise. As
we borrow the security analysis techniques from QKD, which
works well in noisy circumstances, it is likely that realistic
performance of quantum secret sharing can be analyzed using
the formalisms presented in this work.
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