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Coping with qubit leakage in topological codes
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Many physical systems considered promising qubit candidates are not, in fact, two-level systems. Such systems
can leak out of the preferred computational states, leading to errors on any qubits that interact with leaked qubits.
Without specific methods of dealing with leakage, long-lived leakage can lead to time-correlated errors. We study
the impact of such time-correlated errors on topological quantum error correction codes, which are considered
highly practical codes, using the repetition code as a representative case study. We show that, under physically
reasonable assumptions, a threshold error rate still exists; however, performance is significantly degraded. We
then describe simple additional quantum circuitry that, when included in the error detection cycle, restores
performance to acceptable levels.

DOI: 10.1103/PhysRevA.88.042308 PACS number(s): 03.67.Lx

I. INTRODUCTION

The threshold theorem of quantum computation states
that a finite quantum gate error rate exists below which
arbitrarily reliable quantum computation can be performed
with only polylogarithmic overhead. The theoretical viability
of quantum computation rests on this theorem [1–3]. Many
different assumptions can be made, and different versions
of the theorem proved; however, typically it is assumed that
qubits do not leak to noncomputational states. Leakage has
only been formally considered [4] in a threshold theorem
for concatenated quantum error correction (QEC) codes
[5–9].

It is increasingly thought that topological QEC (TQEC)
[10–20] is more experimentally feasible than concatenated
QEC. However, even recent TQEC threshold theorem proofs
[21–23] assume leakage does not occur. It is therefore
important to demonstrate that leakage, which is suffered by
trapped ions [24], quantum dots [25,26], superconducting
qubits [27–32], anyons [33,34], and many other systems,
does not void the threshold theorem of TQEC and that there
are low-overhead and effective methods of handling leakage
within TQEC.

Note that leakage is quite distinct from permanently faulty
qubits [35] and loss, which implies qubits that can disappear,
but this disappearance is deterministically detectable [36].
Leakage specifically refers to effects associated with using
multilevel quantum systems as qubits, namely, what happens
when the quantum state is not confined to the chosen two
computational states. Leakage is assumed to not be determinis-
tically detectable. If leakage were deterministically detectable,
it could be handled with the existing techniques for handling
loss.

The discussion is organized as follows. In Sec. II, we show
how the repetition code can be viewed as a special case of
the surface code [20] and present baseline repetition code
simulations without leakage. In Sec. III, we describe our
stochastic model of leakage and present and discuss repetition
code simulations with leakage. In Sec. IV, we describe a simple
circuit removing leakage and present and discuss simulations
with this circuitry included. Section V concludes.

II. THE REPETITION CODE

Figure 1 shows a standard surface code. The two-
dimensional structure of the surface code enables it to suppress
both logical X and logical Z errors; however, for most purposes
it is sufficient to study the suppression of only logical X

or logical Z errors due to the symmetry of the code. When
studying the generic properties of a single type of logical
error, it is sufficient to consider just a single vertical strip of
qubits, as additional width just introduces additional logical
error pathways but does not fundamentally change the need
for a significant number of errors affecting at least half of a
line of qubits from the top boundary to the bottom boundary.
In this work, we shall therefore focus on the repetition code,
which is precisely a code with ZZ stabilizer generators on
neighboring pairs of qubits in a line. This will enable us
to focus the discussion on the unique properties of leakage,
without unnecessarily getting bogged down in the details of
the surface code.

Figure 2 shows the quantum circuit required to perform
repetition code error detection. In the absence of errors, each
measurement reports zero if the neighboring data qubits are in
the + 1 eigenstate of ZZ and 1 if they are in the −1 eigenstate.
Referring to Fig. 2, a location 1 error will lead to the top
measurement differing from its previous value. This change is
called a detection event [37]. A location 2 error will lead to two
simultaneous detection events. A location 3 error will lead to a
single detection event associated with the lower measurement
qubit. Location 4 errors are more complex, with an immediate
detection event associated with the top measurement qubit but
the detection event associated with the lower measurement
qubit not occurring until the next round of error detection. An
erroneous measurement, location 5, will lead to two sequential
measurement value changes, namely, 010 or 101, meaning a
pair of sequential detection events. All possible errors fall into
one of these five geometric classes.

Each geometric class of potential error can be represented
as a line connecting a pair of dots at the space-time locations
of potential detection events, as shown in Fig. 3(a). Each line is
given a weight proportional to −ln p, where p is the total prob-
ability of all errors leading to detection events at the end points
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FIG. 1. Distance 4 surface code. The rectangle indicates a vertical
slice of the surface code that has the structure of a repetition code.
Repetition code failure is thus a good and simple model of failure
within the surface code.

of that line. This means that all line weights are strictly positive,
and low probability lines are associated with high weights.

Figure 3(b) shows a possible sequence of measurement
values and the associated inferred pattern of detection events.
Given dots, lines, and detection events, the minimum weight
perfect matching algorithm [38–41] can be used to find a set of
paths of lines that connects all detection events in pairs or indi-
vidually with a boundary such that the total weight of all lines
in the set is minimal. This corresponds to a high probability
pattern of errors leading to the observed detection events.

Figure 3(c) shows a minimum weight perfect matching of
Fig. 3(b). The two class 5 matched lines result in a classical
bit-flip each. The class 4 matched line results in the belief that
an X error must now be present on the central data qubit. If all
data qubits were now measured and the measurement string
010 returned, our belief that an X error is present on the central
qubit would mean that we interpret this string as 000. If we
had initially prepared our data qubits in 000, this would imply
successful storage.

In simulations, we can perform many rounds of error
detection and regularly check whether logical errors have
occurred, thus calculating the probability of logical error per
round of error detection. In this work we assume all gates,
namely, initialization, measurement, identity, Hadamard, and
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FIG. 2. A single round of repetition code error detection. The
circuit is for a distance 3 code, corresponding to three data qubits
(the three horizontal lines). The code distance can be increased by
repeating the vertical pattern, adding additional data qubits. Rounds
of error detection repeat indefinitely.
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FIG. 3. Time runs from left to right. (a) Geometric structure of
classes (lines) of single errors with the potential to lead to detection
events at their end points. Each layer of the periodic structure
corresponds to a round of error detection. (b) Specific sequence
of measurement results leading to specific detection events (filled
circles). (c) Minimum weight perfect matching of the detection events
and correction of two classical measurement results and insertion of
a Pauli frame X operator.

controlled Z (CZ), have equal depolarizing error rate p. Our
open source simulation software Autotune [37] can also handle
arbitrary asymmetric Pauli error models for each gate. Figure 4
shows the probability of logical X error pL as a function of
p for a range of code distances d. The code distance d of a
repetition code is simply the number of data qubits used. In
theory, a distance d code should only fail if at least �d/2� errors
occur. This can be observed with the low p asymptotic forms
of the d = 3,5,7,9 curves being quadratic, cubic, quartic, and
quintic, respectively.

III. SIMULATING LEAKAGE

The simulations of the previous section included only the
qubit error states I , X, Y , and Z. We now wish to extend
our simulations to include leakage L. We shall model leakage
as only potentially occurring after Hadamard and CZ as in
many quantum technologies initialization, measurement, and
identity do not have the potential to cause leakage. It would
be straightforward to associate leakage with other gates, if
deemed appropriate. We shall set the probability of leakage
per Hadamard and CZ to be 0.1p, which we consider a
high probability of leakage. Any other the value would be
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FIG. 4. (Color online) Probability of logical X error pL as
a function of the depolarizing error probability p for distances
d = 3,5,7,9. Referring to the left of the figure, the distance d =
3,5,7,9 curves are ordered top to bottom. Quadratic, cubic, quartic,
and quintic curves have been fit through the lowest data points,
respectively.

straightforward to choose and would not qualitatively change
the behavior observed in our simulations. We feel the 0.1p

choice is well justified, as, generally speaking, when searching
for control pulses to implement gates in multilevel systems,
leakage to higher states is heavily penalized in the success
metric. The two qubits involved in a CZ gate shall each have
independent probability 0.1p of leakage.

After a qubit leaks, further errors X, Y , Z, and L will be
modeled as leaving the qubit in L. We model the decay of
leaked states back to computational states with a fixed 1%
probability per identity, Hadamard, and CZ gate of decaying
from L to a randomly chosen I , X, Y , and Z error state.
Measurement of a qubit in L shall give a random classical
result with no indication that leakage had occurred.

When CZ occurs between a qubit in L and a qubit not in L,
the latter will be scrambled to a randomly chosen I , X, Y , or
Z error state. This severe model of leakage can be made more
severe by decreasing the decay probability, making leakage
longer lived. Note that it is important that leakage errors do not
propagate to other qubits, as this would lead to a catastrophic
cascade of leakage errors ending only when all qubits in the
computer had leaked. Figure 5 shows the performance of the
repetition code with finite lifetime leakage as described above.

It is immediately apparent from Fig. 5 that leakage has
severely degraded the performance of the repetition code.
The reason for this is simple—a single leakage event has
the potential to cause a logical error. Consider leakage of
the central data qubit in Fig. 2. Each time the neighboring
measurement qubits interact with this data qubit, they will be
randomized, leading to random measurement values. Suppose
after a period of time the leaked data qubit decays to an error
state X. Figure 6 shows how randomized measurement values
can lead to a logical error in a distance 3 code from a single
leakage event. Note critically that this pattern of detection
events could just have easily have been generated by two data
qubit errors, and there is no way to distinguish between these
two cases with the available information.
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FIG. 5. (Color online) Probability of logical X error pL as a
function of the depolarizing error probability p and leakage error
probability 0.1p for a range of distances d = 3 . . . 25. Referring to
the left of the figure, the distance increases top to bottom.

Similar random patterns of measurement values can lead to
logical errors in higher distance codes; however, longer and
longer chains of specific measurement values are required and
these chains become increasingly unlikely, resulting in logical
error suppression with increasing code distance, preserving
the existence of a threshold error rate. The specific pattern
of random measurements shown in Fig. 6 could be made
correctable by inserting some longer range lines, enabling the
detection events to be matched with low weight; however, this
would lead to a logical error if these two detection events
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FIG. 6. (a) Example of a leakage event that decays to an X error.
During the lifetime of the leakage event, neighboring measurement
qubit results are random, with the indicated results perfectly possible.
This pattern of measurement results leads to two detection events
separated by a significant amount of time. (b) Minimum weight
perfect matching infers that two individual X errors are likely, leading
to a logical error.
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FIG. 7. Circuit teleporting the top qubit to the bottom qubit,
converting leakage errors on the top qubit to Pauli errors on the
bottom qubit.

were in fact generated by two data qubit errors. Furthermore,
no matter how the matching problem is restructured, there
will always be random patterns of measurements arising from
single leakage events that lead to logical failure, resulting in
poor performance unless specific hardware steps are taken to
regularly remove leakage from the system.

IV. SUPPRESSING LEAKAGE

Given leakage of the form described in the previous section,
the simple circuitry shown in Fig. 7 can be used to convert
leakage errors L into standard Pauli errors I , X, Y , and Z,
which can then be handled with regular error correction. In a
distance 3 code, which typically has three data qubits q1q3q5

and two measurement qubits q2q4, we can add an additional
qubit q6 and after the standard error detection circuit of Fig. 2
teleport each data qubit to the qubit below, removing leakage
errors. The next round of error detection proceeds with data
qubits q2q4q6 and measurement qubits q3q5 followed by data
qubit teleportation to the qubit above, after which the entire
cycle repeats.

The performance of this alternating error detection and
teleportation cycle is shown in Fig. 8. It can be seen that
while a high power of p suppression of logical error is
observed for high distances, a significant improvement on
Fig. 5, the suppression is only linear at distance 3 and
quadratic at distance 5. This is due to leakage errors on
measurement qubits, which can corrupt both neighboring data
qubits, creating a two-qubit error chain out of a single leakage
error. This means that the logical error rate will be proportional
to �d/4� at low p, not proportional to �d/2� as was observed
in Fig. 4 without loss.

V. CONCLUSION

Long-lived leakage is highly detrimental to the performance
of topological codes, making logical error rates linear in p at
arbitrary code distances; however, this does not prevent the
arbitrary suppression of logical error, as even a very long-lived
leakage event is still a local error in time and hence correctable
using topological techniques. It is highly advisable to use
hardware techniques to periodically remove leakage from the
system rather than rely on the weak natural suppression of
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FIG. 8. (Color online) Probability of logical X error pL as a
function of the depolarizing error probability p and leakage error
probability 0.1p for a range of distances d = 3 . . . 95. Referring to
the left of the figure, the distance increases top to bottom. The circuit
of Fig. 7 has been used on each data qubit after each round of error
detection to remove leakage errors.

leakage errors inherent in a topological code, as even very low
probability leakage, if long lived, will lead to logical errors
with high probability unless an excessive number of qubits are
used.

The teleportation circuit of Fig. 7, used once per data qubit
per error detection cycle, improves logical error suppression to
O(p�d/4�). One could in principle insert a teleportation step in
the middle of the stabilizer measurement procedure to remove
spatially correlated errors arising from leakage; however, it
is possible, and desirable, that a deeper understanding of
the physical leakage process in specific systems could lead
to better and simpler techniques restoring the theoretical
maximum O(p�d/2�) suppression. We shall search for such
techniques for superconducting qubits in future work.
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