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Epistemic restrictions in Hilbert space quantum mechanics
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A resolution of the quantum measurement problem(s) using the consistent histories interpretation yields in a
rather natural way a restriction on what an observer can know about a quantum system, one that is also consistent
with some results in quantum information theory. This analysis provides a quantum mechanical understanding
of some recent work that shows that certain kinds of quantum behavior are exhibited by a fully classical model
if by hypothesis an observer’s knowledge of its state is appropriately limited.
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I. INTRODUCTION

The problem of understanding the quantum world continues
to give rise to numerous debates. While the tools of textbook
quantum theory allow us to calculate probabilities of measure-
ment outcomes in agreement with experiment, the problem
of understanding these in terms of microscopic quantum
phenomena continues to perplex beginning students as well
as their teachers. There are (at least) two distinct strategies for
exploring these questions. One starts with classical physics,
which is reasonably well understood, both its mathematical
structure and its physical or intuitive interpretation, and tries
to see how far classical ideas can be pushed into the quantum
domain before they fail. This helps locate the classical-
quantum boundary, and identify which classical concepts
remain useful once it has been crossed, and which must be
abandoned or radically modified. A second strategy starts
from a consistent formulation of microscopic quantum theory,
and seeks to apply it to larger systems to see how classical
physics emerges as a suitable, and sometimes extremely
good, approximation to quantum theory at the macroscopic
level.

Much current research on hidden variable models repre-
sents the first strategy. In a version pioneered by Bell, one starts
with hypotheses which seem plausible in classical physics
and uses them to deduce consequences, typically inequalities,
whose violation by quantum theory and experiment shows
that one or more of the assumptions made in the derivation
do not apply to the real quantum world. While some of the
resulting claims, such as that the quantum world is nonlocal
or contextual, do not stand up under scrutiny [1–3], this
research should nonetheless help us better understand quantum
mysteries provided the classical ideas and assumptions under-
lying the hidden variables approach are clearly and properly
identified.

Classical ideas are made quite explicit in Spekkens “toy
theory” approach [4], where by hypothesis an observer can
have only a limited knowledge of the actual (ontic) state
represented by some collection of classical variables. This
idea has recently been extended in a very careful study [5]
of coupled classical harmonic oscillators, by assuming that an
observer’s knowledge, in the form of a probability distribution,
is limited by an epistemic restriction that resembles a quantum
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uncertainty principle. This restriction allows the authors to
reproduce in an explicitly classical model a number of “weird”
effects previously thought to lie wholly in the domain of
quantum physics. To be sure, this approach does not reproduce
the entire gamut of quantum phenomena, but the results
encourage the authors to believe, as stated in their Introduction,
that there might be an axiomatization of quantum theory in
which the first axiom states a fundamental restriction on how
much observers can know about a system, and the second
embodies some novel principle about quantum reality (rather
than knowledge thereof). They then add, “Ultimately, the first
axiom ought to be derivable from the second because what
one physical system can know about another ought to be a
consequence of the nature of the dynamical laws.”

We shall show that this is not a vain hope. The “novel princi-
ple” has already appeared in the physics literature as part of an
approach embodying the second strategy mentioned above, the
effort to understand how classical physics is an approximation
to a more exact underlying quantum theory when the latter
is properly understood and interpreted. What is known as the
“consistent” or “decoherent” histories—hereafter referred to
simply as “histories”—program, introduced in [6–8], provides,
on the one hand, a fully consistent and paradox free (so far
as is known at present) approach to microscopic quantum
phenomena, and on the other a means for showing that the
laws of classical mechanics are in appropriate circumstances a
good approximation to the underlying and more exact quantum
physics. In particular the single framework rule of Hilbert
space quantum mechanics is a novel principle (relative to
classical physics) that leads in a rather natural way to an
epistemic restriction of a quite fundamental sort: what an
observer can know is limited by the nature of quantum reality,
since that which does not exist also cannot be known.

The remainder of this paper is organized as follows. The
literature pertaining to the histories approach is not discussed
in [4,5]; therefore, Sec. II contains a brief summary of the
relevant principles of the histories approach, including the
single framework rule. For additional details we refer the
reader to other summaries as well as more extensive treatments
of the basic ideas; the following are listed in order of increasing
length: [9–13]. In Sec. III we show how these principles resolve
the measurement problem(s) of quantum foundations, leading
in a rather natural way to restrictions on what can be learned
using measurements. Section IV argues that the results of
Sec. III are consistent with quantum information theory. The
results are summarized in the concluding Sec. V.
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II. HILBERT SPACE QUANTUM MECHANICS

A. Quantum properties

A key idea that goes back to von Neumann, Ch. III of [14],
is that a physical property—something which can be true
or false, such as “the energy is between 2 and 3 J”—is
represented in quantum mechanics by a (closed) subspace of
the quantum Hilbert space or, equivalently, by the projector
(orthogonal projection operator) onto this subspace. (Here and
later we assume a finite-dimensional Hilbert space; infinite
dimensions complicates the mathematics without resolving
any of the quantum conceptual difficulties.) A physical
variable or observable, such as energy or angular momentum,
is represented by a Hermitian operator which can be written
in the form

A =
∑

ajPj , Pj = P
†
j = P 2

j ,
∑

j

Pj = I. (1)

Here the {Pj } are a collection of projectors that form a
(projective) decomposition of the identity operator I , and the
{aj }, each of which occurs but once in the sum, so j �= k

means aj �= ak , are the eigenvalues of A. The property that the
physical variable A takes on or possesses the value aj , thus
A = aj , corresponds to the projector Pj or, equivalently, the
subspace Pj onto which Pj projects.

In classical mechanics a property corresponds to a set of
points P in a classical phase space �, as in Fig. 1(a), and
the classical counterpart of a projector is an indicator function
P (γ ) on the phase space, which takes the value 1 if γ lies inside
P and 0 if γ lies in the complementPc ofP , the points in � that
are not in P . Obviously the two descriptions, using the set P
or the indicator P , are equivalent, and set-theoretic operations
on sets correspond to arithmetic operations on indicators. Thus
the indicator of the intersection P ∩ Q, the property “P AND

Q” or P ∧ Q, is the product PQ, and the indicator for Pc, the
property “NOT P ” or ¬P , is given by I − P , where I is the
function on � everywhere equal to 1.

In quantum mechanics, again following von Neumann,
the negation ¬P of a property P is given not by the set-
theoretic complement Pc of the subspace P , but instead by its
orthogonal complement P⊥, the collection of all kets (vectors)
which are orthogonal to those in P . Indeed, Pc is not a
subspace, whereas P⊥ is a subspace with projector I − P .
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Q
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x
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FIG. 1. (a) Phase space �. Properties are indicated by collections
of points such as P and Q. (b) Hilbert space with properties
represented by rays such as P , P⊥, and Q.

The situation is shown schematically for a two-dimensional
Hilbert space in Fig. 1(b), where the subspace or ray consisting
of all multiples of some nonzero |ψ〉 is labeled P and its
orthogonal complement is the ray P⊥. In the classical case
any point that is outside P is inside Pc, corresponding to
the two possibilities that this property is either true or false.
By contrast, in the quantum case there are rays, such as Q
in Fig. 1(b), which are different from both P and P⊥. Thus
once one accepts von Neumann’s prescription for quantum
properties and their negations, a prescription which lies behind
but is seldom clearly explained in textbook discussions, it is
clear that the move from classical to quantum mechanics must
include some changes in ideas about logical reasoning and
truth.

This becomes even clearer when considering the conjunc-
tion, “P AND Q” or P ∧ Q, of two distinct physical properties.
In the classical case this corresponds to the intersection P ∩ Q
of the two sets, or the product PQ of their indicators. For the
quantum case Birkhoff and von Neumann [15] proposed using
the intersection of two subspaces, which is itself a subspace,
to represent the conjunction of quantum properties, with the
disjunction, “P or Q or both,” P ∨ Q, defined as the span of the
set-theoretic union of P and Q, consistent with the usual rule
that ¬(P ∨ Q) = (¬P ) ∧ (¬Q). While this seems plausible,
the resulting logical structure promptly leads to paradoxes—
see Sec. 4.6 of [13] for a simple example—if one employs the
usual rules for reasoning about properties. Birkhoff and von
Neumann were aware of this, and their remedy was to abandon
the distributive law P ∧ (Q ∨ R) = (P ∨ Q) ∧ (P ∨ R) as
a rule of reasoning in the scheme of quantum logic they
proposed. Despite a great deal of effort, quantum logic has
not turned out to be a useful tool for understanding quantum
mechanics and resolving its conceptual difficulties [16,17].1

The problematic nature of quantum conjunctions is also
evident when one uses projectors. The product PQ of two
projectors, corresponding to P ∧ Q, is itself a projector if
and only if PQ = QP , in which case it projects onto the
intersection P ∩ Q of the corresponding subspaces. But if the
two projectors do not commute, neither PQ nor QP is a
projector, and there is no simple relationship between either of
them and the projector onto P ∩ Q. In the histories approach,
unlike quantum logic, this is dealt with by introducing a
syntactical rule, an instance of the single framework rule,
that says that the conjunction P ∧ Q is defined only if
the projectors commute; otherwise, when PQ �= QP , the
conjunction of these properties is undefined or meaningless (in
the sense that this interpretation of quantum mechanics assigns
it no meaning). Note the distinction between a false statement
and a meaningless statement, such as P ∧ ∨Q in ordinary
logic. The negation of a false but meaningful statement is a true
statement, whereas the negation of a meaningless statement is
equally meaningless.

1This may simply reflect the fact that physicists are not smart
enough. I tell my students that perhaps superintelligent robots, when
they make their appearance, may be able to solve the quantum
mysteries using quantum logic. But if they do, will they be able
(or even want) to explain it to us?
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To better understand what is and is not implied by the single
framework rule and its relation to textbook quantum mechan-
ics, consider the Hilbert space of a spin-1/2 particle, with the
orthonormal basis {|z+〉,|z−〉} corresponding to Sz = +1/2
and −1/2 in units of h̄, and the projectors—we use [ψ] for
|ψ〉〈ψ | if |ψ〉 is normalized—[z+] and [z−]. These projectors
commute; in fact [z+][z−] = [z−][z+] = 0, the zero operator,
which in quantum mechanics represents the proposition that
is always false. On the other hand, Sx = +1/2 and −1/2
correspond to the projectors [x+] and [x−], projecting on
the rays containing |x±〉 = (|z+〉 ± |z−〉/√2, neither of which
commutes with either [z+] or [z−]. The single framework rule
says that it is meaningless to simultaneously assign values to Sx

and Sz, e.g., “Sz = +1/2 AND Sx = −1/2” makes no sense.
Note that the single framework rule does not at all forbid a
quantum discussion or description using either Sx or Sz, both
of which could be individually meaningful or useful; what it
says is that the combination lacks physical meaning.

One way to see that the combination “Sz = +1/2 AND

Sx = −1/2” cannot be defined is to note that every ray in
a (complex) two-dimensional Hilbert space can be interpreted
to mean that the some component of spin angular momentum,
corresponding to some direction in space, has the value
+1/2. There are no rays left over, and thus no room in the
Hilbert space, for a property representing such a (supposed)
conjunction.2 That it does not make sense is also implicit
in the assertion found in textbooks that there is no way to
simultaneously measure Sx and Sz. This is correct, and we shall
say more about measurements in Sec. III. However, students
would be less confused were they given the fundamental reason
behind this: it is impossible to measure what is not there.

In histories quantum mechanics the single framework rule
is a basic tool for resolving all manner of quantum paradoxes,
or at least taming them in the sense of changing them from
unresolved conceptual difficulties into interesting examples
of how the quantum world differs from that of everyday
experience. The reader will find numerous examples in Chaps.
19 to 25 of [13].

B. Probabilities

The standard (Kolmogorov) probability theory used in the
histories approach requires three things: a sample space S
of mutually exclusive possibilities, an event algebra E , and
a probability measure M that assigns probabilities to the
elements of E . Classical statistical mechanics employs the
phase space � as the sample space. However, a more useful
analogy for discussing the quantum case is that of a coarse
graining of � formed by dividing it up into a finite number
of nonoverlapping cells which together cover the entire space.
With cell j is associated an indicator function Pj (γ ) equal to 1
if the point γ lies in cell j , and 0 otherwise. Since the cells do
not overlap, the product PjPk of two indicators is 0 if j �= k.
This corresponds to the fact that the different cells which form
the sample space represent mutually exclusive possibilities. In

2Quantum logic gets around this by assigning to (Sz = +1/2) ∧
(Sx = −1/2) the 0 projector, the property that is always false. The
difficulties this leads to are discussed in Sec. 4.6 of [13].

addition,
∑

j Pj = I corresponds to the fact that at any given
time the phase point γ representing the system must be in one
of the cells; thus one and only one of these mutually exclusive
possibilities is true. The simplest choice for the event algebra
E is the collection of all subsets of � formed by unions of some
of the cells which make up the sample space, with the indicator
function of the union equal to the sum of the indicators of the
cells of which it is composed. Including the empty set, whose
indicator 0 is the function everywhere equal to zero, results
in a Boolean algebra in that the negation I − P of any P ∈ E
and the conjunction PQ of any two of its elements are also
members of E .

By analogy, in the quantum case a sample space S is
obtained by choosing a collection of projectors {Pj } which
sum to the identity I—which implies that the projectors are
orthogonal to each other, PjPk = 0 = PkPj for j �= k—as a
quantum sample space S. The set of all projectors formed
by taking sums of some of the projectors in {Pj }, plus the
0 operator, is the corresponding quantum event algebra E .
The event algebra is called a framework, a term also used for
the projective decomposition that generates it. (As there is a
one-to-one correspondence betweenS andE , this double usage
should not cause confusion.) The same physical interpretation
can be used as in the classical case: the {Pj } constitute a
collection of mutually exclusive properties, one and only one of
which is true at a particular time. Thus in the sample space em-
ployed in (1), the observable A will possess one and only one of
its eigenvalues. The event algebra allows more general things;
e.g., “A has either the value a2 or a3” is represented by P2 + P3.

An important difference between the classical and the
quantum case is that in the former if one uses two different
coarse grainings, two different collections of cells, each
of which covers the entire phase space, there is always a
common refinement, a coarse graining using cells made up
of intersections of cells from the two collections. Its event
algebra includes among its members all the members of the
event algebras of the two coarse grainings from which it is
derived. Exactly the same is possible in the quantum case
if and only if each of the projectors in one decomposition
commutes with every projector in the other; that is, if the
two decompositions are compatible. Otherwise there is no
common refinement, and the single framework rule prevents
putting the frameworks together in a common probabilistic
model. For example, with specific reference to the observable
A in (1), let Q be a projector that does not commute with one of
the Pj . Then the framework {Q,I − Q} is incompatible with
{Pj }, and according to the single framework rule the question
“What is the value of A given that the quantum system has the
property Q?” has no meaning. [The situation is different if Q

is understood as a preprobability; e.g., the role played by [�2]
in (12) in Sec. III C.]

Since the single framework rule lacks any exact clas-
sical analog, it is easily misunderstood. The following
principles of Liberty, Equality, Incompatibility, and Utility
may help prevent such misunderstanding. First, the single
framework rule allows the physicist perfect Liberty to
construct different, perhaps incompatible, frameworks when
analyzing and describing a quantum system. No law of nature
singles out a particular quantum framework as the “correct”
description of a quantum system; there is, from a fundamental
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point of view, perfect Equality among different possibilities.
The key principle of Incompatibility prohibits combining in-
compatible frameworks into a single description, or employing
them for a single logical argument leading from premisses to
conclusions. Finally comes Utility: not every framework is use-
ful for understanding a particular physical situation. It is also
important to avoid the mistake of thinking that the physicist’s
choice of framework somehow influences reality. Instead,
quantum reality allows a variety of alternative descriptions,
useful for different purposes, which when they are incompati-
ble cannot be combined. Different coarse grainings of a classi-
cal phase space, or different views of a mountain from the north
and from the south, are classical analogies which may help in
understanding Liberty, Equality, and Utility. But Incompatibil-
ity requires a quantum example, as provided by the Sx and Sz

descriptions of a spin-1/2 particle discussed in Sec. II A above.
The probability measure M in standard probability theory

is a non-negative function μ on the event algebra E . It is
additive over disjoint sets, and normalized, μ(I ) = 1. For our
purposes it suffices to assume that a non-negative number μj

is attached to each indicator Pj in the sample space in such a
way that

∑
j μj = 1. From this the probability of elements of

the event algebra is determined in the usual way, e.g., Pr(P2 +
P3) = μ2 + μ3. The same procedure works in the quantum
case: to each projector Pj in the decomposition of the identity
(quantum sample space) under consideration one assigns a
probability μj � 0 satisfying

∑
j μj = 1 and then sums of

these to the projectors making up the corresponding event
algebra. It is important to note that, aside from positivity,
additivity, and normalization, mathematical probability theory
imposes no restrictions on the μj . The same is true for quantum
theory, except that under certain conditions one can use the
Born rule and its extensions in order to generate probabilities
for a closed system, as discussed below.

Probability theory can be understood as an extension of
propositional logic, where probability 1 corresponds to a
proposition that is true, and probability 0 to one that is
false. In order to maintain the same connection in quantum
theory, it follows that “true” and “false” must, like probabili-
ties, be framework-dependent concepts. This dependence has
sometimes been thought to imply that the histories approach
leads to contradictions, propositions which are both true and
false [18–20]. However, the single framework rule prevents
contradictions from arising [21–26], and one can show [see
Chap. 16 of [13]] that the histories approach provides a
consistent scheme for probabilistic inference.

C. Time development

In textbook quantum mechanics Schrödinger’s equation
provides a deterministic unitary time development of “the wave
function” until an external measurement causes a mysterious
wave function collapse. This approach, found in [14], is widely
(and properly) regarded as unsatisfactory. In the histories
approach quantum dynamics is always a stochastic process,
whether or not a measurement occurs, and solutions to
Schrödinger’s equation are used to compute probabilities by
means of the Born rule and its extensions. Here we summarize
the essentials needed for the discussion of measurements
in Sec. III.

Quantum stochastic time development can be described
using a history Hilbert space H̆, which for a sequence of
events at times t0 < t1 < · · · < tf is a tensor product

H̆ = H � H � · · · � H, (2)

of f + 1 copies of the Hilbert space H used for the system at
a single time, where the customary tensor product symbol ⊗
has been replaced by � as a matter of convenience, to have
a distinctive symbol separating events at different times. An
individual quantum history of the simplest sort is a tensor
product of projectors

Y = F0 � F1 � · · · � Ff , (3)

and thus itself a projector on the history Hilbert space. Its
physical interpretation is “property F0 at time t0, then property
F1 at time t1, then...”, where “then” could be replaced by “and.”
In general, successive events are not connected with each other
in any way related to Schrödinger’s equation.

Rather than the most general case we restrict ourselves
to the situation in which at time t0 the projector F0 = [�0]
projects onto a specific initial state |�0〉, and at each later
time tm, Fm belongs to the event algebra generated by a
specific decomposition {P αm

m } of the identity,
∑

αm
P αm

m = I .
Here the αm are labels, not exponents, the subscript m

indicates the time, and different decompositions may be used
at different times. The sample space of histories corresponds to
a collection {Yα}, where α = (α1, . . . ,αf ) is a vector of labels,
and

Yα = [�0] � P
α1
1 � P

α2
2 � · · · � P

αf

f . (4)

If in addition one includes the special history (I − [�0]) � I �
I � · · · � I , which is assigned a probability of 0 and hence
plays no role in the following discussion, the history projectors
in the sample space sum to the history space identity Ĭ = I �
I � · · · � I , and thus constitute a set of mutually exclusive
possibilities, one and only one of which can be said to occur.
The collection of all projectors which are sums of some of the
Yα forms the event algebra.

For a closed system that does not interact with an external
environment, solving Schrödinger’s equation yields a unitary
time development operator T (t,t ′) for the time interval from
t ′ to t ; it is equal to exp[−i(t − t ′)H/h̄] in the case of a time-
independent Hamiltonian H . Using this time development
operator we define a chain ket

|α〉 = P
αf

f T (tf ,tf −1)P
αf −1

f −1 T (tf −1,tf −2) · · ·P α1
1 T (t1,t0)|�0〉

(5)

for every history Yα in the sample space. A family of histories
satisfies the consistency condition, and is called a consistent
family, provided the inner product of two chain kets for distinct
elements of the history sample space vanishes,

〈α|α′〉 = μαδ(α,α′), (6)

where δ(α,α′) is 1 if αm = α′
m for every m, and is 0

otherwise. When (6) is satisfied the μα are the (extended) Born
probabilities for histories in the sample space, and determine
the probabilities for histories in the event algebra in the usual
way. Condition (6) is needed to ensure that the probabilities
defined in this way satisfy the usual rules of probability theory;
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e.g., if one sums the joint distribution over all possibilities at
a particular time tj the result should be the joint distribution
for the events at the remaining times as calculated omitting all
mention of tj from the family of histories. For a more detailed
discussion of this point see Sec. 10.2 of [13].

In the case f = 1, histories involving only two times t0
and t1, the consistency condition is automatically satisfied,
since the projectors at time t1 are orthogonal to each other,
and the probabilities are exactly those given by the usual Born
rule. Note, however, that these probabilities refer to states of
affairs inside a closed quantum system, not to outcomes of
measurements carried out on that system by some external
apparatus. The overall consistency of this approach is shown
in Sec. III below, where measurements themselves are treated
as quantum mechanical processes occurring within a (large)
closed system.

When f = 2 or more, a family of histories involving
three or more times, the consistency condition (6) on the
orthogonality of chain kets for α �= α′ is quite restrictive.
Families of histories for which it is not satisfied cannot be
assigned probabilities in a consistent manner. It may be that
even when the history projectors of two different consistent
families commute with each other, so that there is a common
refinement, this refinement does not satisfy the consistency
conditions, and so cannot be assigned probabilities. It is
then natural to extend the single framework rule to include
a prohibition of such combinations.3

There are various extensions of the type of analysis given
above to more general situations. In place of an initial pure state
[�0] at t0 one can use a more general projector or a density
operator; in that case chain operators are employed in place of
chain kets. Sometimes the weaker requirement that the real part
of 〈α|α′〉 vanish for α �= α′, allowing the imaginary part to be
nonzero, is used in place of (6), though there are reasons [27]
for preferring the stronger condition.4 Rather than assuming an
initial state at t0 one can use a final state at tf , or indeed some
property at an intermediate time, as the “initial” condition.
In constructing a history family the choice of projectors at
a particular time can be made dependent on which event
occurred at an earlier (or at a later) time. Numerous examples
illustrating some of these points will be found in [13]. (Using
the Heisenberg representation for projectors that enter chain
kets or chain operators results in more compact expressions
that lead to the same consistency conditions and probabilities
as in the more intuitive Schrödinger picture employed here.)

III. MEASUREMENTS

A. Two measurement problems

It is clear that any claim to know something about a
microscopic quantum system must go beyond elementary
human sense impressions and make use of data provided by
suitable instruments that amplify quantum effects and, so to

3The three-box paradox discussed in Sec. 22.5 of [13] provides a
simple example.

4Whereas this weaker requirement is mentioned in Ch. 10 of [13],
all the examples in that book conform to the stronger condition,
i.e., (6).

speak, make them visible; in particular we need to understand
physical measurements as genuine quantum processes. But this
is the infamous measurement problem of quantum foundations,
which has two parts. The first measurement problem is that
of understanding the macroscopic outcome—we adopt the
picturesque though outdated language of the position of a
visible pointer—in proper quantum mechanical terms. The
second measurement problem is to relate the pointer position
to the prior microscopic property the instrument was designed
to measure. Here “prior” means earlier in time, since very often
the measurement either destroys or radically alters the system
being measured: think of the detection of a gamma ray, or the
scattering process by which it is inferred that a neutrino came
from the sun or from a supernova. We need a quantum theory of
retrodiction, inferring something about the past from present
data (not to be confused with retrocausation, the notion that
the future can influence the past.) Obviously, analyzing mea-
surements as physical processes cannot employ measurement
as some sort of primitive concept, as in textbooks. Hence the
need for a fully consistent description of microscopic quantum
properties, one constructed without using measurement as a
primitive concept or axiom, as summarized in Sec. II above.
We shall now show how these principles can be used to resolve
both measurement problems. The result will then be used
in Sec. IV to argue that Hilbert space quantum mechanics
itself gives rise, in a rather natural way, to an epistemic
restriction which does not need to be added as an extra
axiom.

B. Quasiclassical frameworks

Describing ordinary macroscopic objects in a consistent,
fully quantum-mechanical fashion is a nontrivial problem, and
it would be premature to claim that every detail has been
worked out. Nevertheless, the work of Omnès [28,29] and
Gell-Mann and Hartle [30–32] provides a general procedure
which seems adequate to the task. We will briefly describe the
strategy used by Gell-Mann and Hartle (also see Chap. 26
of [13]). The first idea is that classical properties can be
usefully described using a quasiclassical quantum framework
employing coarse-grained projectors that project onto Hilbert
subspaces of enormous, albeit finite, dimension, suitably
chosen so as to be counterparts of classical properties such
as those used in macroscopic hydrodynamics. Next one
argues that the stochastic quantum dynamics associated with
a family of histories constructed using these coarse-grained
projectors gives rise, in suitable circumstances, to individual
histories which occur with high probability and are quantum
counterparts of the trajectories in phase space predicted by
classical Hamiltonian mechanics. There are exceptions; for
example, in a system whose classical dynamics is chaotic
with sensitive dependence upon initial conditions one does
not expect the quantum histories to be close to deterministic,
but then in practice one also has to replace the deterministic
classical description with something probabilistic in order to
obtain useful results.

A quasiclassical family can hardly be unique given the
enormous size of the corresponding Hilbert subspaces, but
this is of no great concern provided classical mechanics
is reproduced to a good approximation, in the sense just
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discussed, by any of them. Therefore all discussions which
involve nothing but classical physics can, from the quantum
perspective, be carried out using only a single quasiclassical
framework. And as long as reasoning and descriptions are
restricted to this one framework there is no need for the single
framework rule, which explains why a central principle needed
to understand quantum mechanics is completely absent from
classical physics.

Sometimes the objection has been raised [33,34] that
quasiclassical frameworks are not the unique possibilities
allowed by the histories approach to quantum mechanics. In
particular, a consistent family can be constructed in which
the projectors are quasiclassical up to some time, and then
followed by a completely different type of projector at
later times, and there is no reason from the perspective of
fundamental quantum mechanics to disallow this. However,
there is also no reason to prefer it. The histories approach
does not deny that other incompatible consistent families can
be constructed; it simply insists that this possibility does not
invalidate a description employing a quasiclassical framework,
which is what is needed for thinking about pointer positions.
See the discussion of Liberty, etc. in Sec. II B. By analogy, the
possibility of using Sx to describe a spin-1/2 particle does not
invalidate a description based on Sz; what cannot be done is to
combine them.

C. A measurement model

To see how the histories approach resolves both measure-
ment problems we consider a simple model of the measuring
process that, apart from minor changes, goes back to Chap. VI
of [14]. Let HS be the Hilbert space of the system to be
measured, henceforth referred to as a particle, and HM that
of the measuring device. For example, HS could be the two-
dimensional Hilbert space of the spin of a spin-1/2 particle,
while the quantum description of its position might be among
the variables included in HM . Let {|sj 〉} be an orthonormal
basis for HS , with states labeled by a superscript so that the
subscript position can refer to time. At t0 let |M0〉 be the initial
(normalized) state of the apparatus, while

|ψ0〉 =
∑

j

cj |sj 〉, |�0〉 = |ψ0〉 ⊗ |M0〉 (7)

are the initial states of the particle and of the total closed
system that includes both particle and measuring device. The
cj are complex numbers satisfying

∑
j |cj |2 = 1, so both |ψ0〉

and |�0〉 are normalized.
Let T (t,t ′), as in Sec. II C, be the unitary time development

operator for the total system, and assume it is trivial, equal to
the identity operator I = IS ⊗ IM , for t and t ′ both less than
some t1 or both greater than t2, and that for the interval from
t1 to t2,

T (t2,t1)(|sj 〉 ⊗ |M0〉) = |ŝj 〉 ⊗ |Mj 〉. (8)

Here the {|Mj 〉} are orthonormal states of the apparatus,
〈Mj |Mk〉 = δjk , corresponding to different pointer positions,
and the {|ŝj 〉} on the right side of the equation—note they
are not assumed to be the same as the {|sj 〉} on the left
side—are normalized 〈ŝj |ŝj 〉 = 1, though (unlike in von
Neumann’s original model) not necessarily orthogonal. The

transformation (8) is unitary, or, to be more precise, it can be
extended to a unitary transformation onHS ⊗ HM , because the
orthogonality of the |Mj 〉 ensures that the states on the right
side of (8) are mutually orthogonal, even though this may not
be true of the {|ŝj 〉}. Noting that T (t2,t0) = T (t2,t1) · I and
applying (8) to (7), one sees that unitary time development
leads to states

|�1〉 = T (t1,t0)|�0〉 = |�0〉,
(9)

|�2〉 = T (t2,t0)|�0〉 =
∑

j

cj |ŝj 〉 ⊗ |Mj 〉

for the total system at times t1 and t2.
We now wish to consider various consistent families that

begin with [�0] = |�0〉〈�0| at time t0. One possibility is
unitary time development:

F0 : [�0] � {[�1],I − [�1]} � {[�2],I − [�2]} (10)

for times t0 < t1 < t2, where the different histories in the
sample space are made up by choosing one of the projectors
inside the curly brackets at each of the later times. Since the
events I − [�1] and I − [�2] occur with zero probability they
could actually be omitted without causing confusion; only
the history [�0] � [�1] � [�2] occurs, and it is assigned a
probability of 1. While F0 is perfectly acceptable as a family
of quantum histories, it cannot be used to discuss possible
outcomes of the measurement because it does not include
the projectors {[Mk]} for the pointer positions at time t2, and
it cannot be refined to include them because [�2] does not
commute with some of the [Mk], provided at least two of the
cj in (7) are nonzero. Thus the first measurement problem
cannot be solved if one insists that all time development is
unitary and not stochastic.

The histories approach can solve the first measurement
problem by using the family

F1 : [�0] � [�1] � {[Mk]} (11)

in place of F0. Here the alternative I − [�1] at t1, which
occurs with zero probability, has been omitted, and we employ
the usual physicist’s convention that [Mk] = |Mk〉〈Mk| means
IS ⊗ [Mk] on the full Hilbert space HS ⊗ HM . An additional
projector R′ = I − ∑

k[Mk] should be included at the final
time in (11) so that the total sum is the I , but again it is omitted
since its probability is zero. Note that there is no reference to
the later particle states |ŝk〉 in (8); they are in fact irrelevant
for discussing the macroscopic outcomes of the measurement.
While [�2] cannot be one of the properties at time t2 in family
F1 (see the discussion of F0 above), it can very well be used
as a mathematical device (a pre-probability in the terminology
of Sec. 9.4 of [13]) to calculate probabilities of the different
pointer positions:

Pr([Mk]2) = Tr([�2][Mk]) = 〈�2| [Mk] |�2〉. (12)

Note that this is a perfectly legitimate and consistent “epis-
temic” use of |�2〉, since it, like a probability distribution,
provides some information about the system, even when it
does not represent a physical property.

In order to relate the measurement outcome to a prior
property of the measured particle and thus solve the second
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measurement problem, one needs still another family:

F2 : [�0] � {[sj ]} � {[Mk]}. (13)

Here the decomposition of the identity {[sj ]} at t1 refers
to properties of the particle ([sj ] means [sj ] ⊗ IM on the
full Hilbert space) without reference to the apparatus. It is
straightforward to show that the family F2 is consistent and
leads to a joint probability distribution, where the subscripts
on [sj ] and [Mk] refer to the time,

Pr( [sj ]1,[M
k]2) = |cj |2δjk, (14)

with marginals given by

Pr([sj ]1) = Pr([Mj ]2) = |cj |2. (15)

If |ck|2 > 0 the conditional probability for the earlier property
[sj ]1 given the later pointer position [Mk]2 is

Pr([sj ]1|[Mk]2) = δjk. (16)

That is to say, from the (macroscopic) measurement outcome
or pointer position k at time t2, standard statistical inference
allows one to infer, to retrodict, that the particle had the
property [sk] at the earlier time t1. Also note that, (15), the
probabilities for particle properties just before the measure-
ment are identical to those of the later pointer positions. This
is what one would expect for ideal measurements. It shows that
textbooks (which follow the lead of [14]) in which students are
taught to calculate |cj |2 for the particle alone and then ascribe
the resulting probability to the outcome of a measurement,
are not wrong, just confusing. It is worth remarking once
again that the later particle states, the |ŝj 〉 in (8), play no
role in the discussion. In von Neumann’s model these were
set equal to the |sj 〉, and while this is of course a perfectly
legitimate choice, it has given rise to considerable confusion
in that “measurements” are often interpreted as involving a
correlation between the pointer position and the later particle
state, something that should properly be called a preparation,
not a measurement.

The measurement model discussed above is in some ways
rather artificial. However, once one understands its basic
features it is possible to construct more realistic models in
which the particle states to be measured form a general
(projective) decomposition of IS not limited to pure states,
the pointer positions are represented not by pure states but by
quasiclassical projectors onto appropriate Hilbert spaces, the
initial state of the apparatus is a quasiclassical projector or a
density operator, and allowance is made for thermodynamic
irreversibility in the measurement process. See the relevant
sections of Chap. 17 in [13] for details. None of these
extensions alters the basic conclusions reached on the basis
of the simple model used above.

IV. INFORMATION

Given a system with a d-dimensional Hilbert space, a
projective decomposition of the identity can contain at most
d projectors, one for every element of some orthonormal
basis. And since a probabilistic quantum description must use
only a single framework, the maximum amount of Shannon
information that can be associated with a sample space of a
d-dimensional quantum system, the Shannon entropy H if a

probability 1/d is assigned to each possibility, is log d. Thus
a qudit of dimension d (using the terminology of quantum
information theory) cannot receive or contain or carry more
than log2 d bits of information. This is a fundamental epistemic
restriction arising directly from the Hilbert space structure of
quantum mechanics.

This restriction is confirmed by, or is at least consistent with,
various results in quantum information theory. A common
scenario is one in which Alice prepares a qudit of dimension
d in a known quantum state, chosen from a specified set of
possibilities according to some probability distribution, and
sends it to Bob, who is allowed to carry out a generalized
measurement [positive-operator valued measured or POVM],
or perhaps a collective measurement on several qudits at the
same time, with the aim of determining which states Alice
prepared. We assume the protocol is repeated N times, and
each time Alice records what she prepares. Similarly, Bob
records his measurement outcomes. As both of their records
belong to the quasiclassical world they can be analyzed using
classical (Shannon) information theory, and a well-known
bound due to Holevo (see, e.g., Sec. 12.1.1 of [35]) shows
that the Shannon mutual information H (A : B) cannot exceed
N log2 d. This upper bound is actually achieved if Alice ran-
domly (with equal probability) prepares states corresponding
to some orthonormal basis, and Bob measures in the same
basis. Thus the limitation implied by the analysis of properties
and measurements in Sec. III C can, with the help of some not
altogether trivial mathematics, be shown to be quite general.
Neither sophisticated encoding schemes nor the most general
of generalized measurements can do any better than what is
implied by the analysis in Secs. II and III: at most dN distinct
messages, corresponding to log2 dN = N log2 d bits, can be
constructed using N letters chosen from an alphabet of size d.

The reader could be concerned that this epistemic limit
might be violated by schemes for dense coding, or is somehow
inconsistent with teleportation, or maybe does not apply to
quantum, in contrast to classical, information. Let us briefly
discuss each of these, starting with the last. Both “quantum”
and “classical” information remain ill-defined terms in the
quantum information literature, despite (or perhaps because
of?) an enormous number of publications. However, one can
understand the basic issue by means of a simple example, a
d = 2 perfect quantum channel, constructed from a magnetic-
field-free pipe into which Alice sends a spin-1/2 particle,
which is measured by Bob when it emerges at the other end. If
Alice prepares the state Sw = +1/2, where w is some specific
direction in space: z or −z or x or whatever, and Bob measures
in the Sw basis, the result will always (probability 1) be
Sw = +1/2 and not Sw = −1/2. The basis must be specified,
as there is no way to prepare (or measure) a particle with,
say, Sz = +1/2 AND Sx = 1/2. Consequently this quantum
channel with capacity one (qu)bit cannot actually transmit
information at a rate greater than a perfect classical channel
that can only transmit quasiclassical states corresponding to a
bit which is either 0 or 1, and always yields the same output as
the input. More generally, the quantum capacity cannot exceed
the classical capacity (see Secs. 12.3 and 12.4 of [35] for
technical discussions), and talking about quantum information
(whatever it might be) does not alter the log d upper limit for
one qudit.
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One can be misled by the very useful but somewhat
dangerous visualization of a spin-1/2 particle as a little top
spinning about a particular axis. The direction w which Alice
uses to produce the state Sw = +1/2 might be specified very
precisely by some macroscopic setting on her apparatus, so
it is tempting to suppose that information about this precise
setting, which might amount to many bits (depending on
the precision), is then carried away by the particle. But,
as noted in Sec. II A, there is no room in the quantum
Hilbert space for this kind of information, the distinction one
might want to make between w and a direction w′ which is
nearby, or even between w and a w′ which is perpendicular
to it (e.g., x instead of z).5 A less misleading, albeit still
classical, visualization is to think of the Sw = +1/2 state as
a spinning top whose axis is oriented at random, but with the
constraint that the w component of its angular momentum be
positive.

Dense coding is a process by which d2 messages can
be transmitted from Alice to Bob by sending a single d-
dimensional qudit through a quantum channel, provided a fully
entangled state of two qudits, one in Alice’s laboratory and
the other in Bob’s, is initially available. This might seem to
violate the epistemic limit, since log2 d2 = 2 log2 d is clearly
larger than log2 d. The solution to this apparent paradox is a
proper microscopic analysis of where information is located at
the intermediate time between Alice’s preparation and Bob’s
measurement [36], a type of analysis which is not easy to
do using the tools provided in typical textbooks (including
those devoted to quantum information), because they provide
no systematic way of thinking about microscopic quantum
properties during the time interval between the (quasi)classical
preparation and the (quasi)classical measurement. To discuss
the quantum state of the two qudits, which are initially in a
fully entangled state, one has to use the tensor product of their
Hilbert spaces, of dimension d2. There is then a projective
decomposition of its identity corresponding to an orthonormal
basis containing d2 fully entangled states, which are used
to encode the d2 messages. Thus there is no violation of
the epistemic limit, for two particles are involved. We refer
the reader to [36] for a similar discussion of teleportation;
once again, all information can be properly accounted for, and
the fact that two uses of a d-dimensional classical channel are
required to complete the protocol does not imply that a qudit
or the corresponding quantum channel has an information
capacity of 2 log2 d. (Also see the discussion in [37] for
further insight into the need for a double usage of a classical
channel.)

In addition, quantum information theory contains various
epistemic restrictions on the information that can be obtained
from a quantum system or transmitted from one place to
another in the form of inequalities, sometimes referred to
as epistemic uncertainty relations. Because some of them
are obtained using sophisticated mathematics, and tend to

5The claim sometimes made that the precise information about w

is “really” present in the particle but cannot be measured reminds
one of the student who, having just failed the examination, tells the
professor he understood the subject perfectly, but simply could not
recall it during the test.

be expressed in terms of (quasiclassical) preparations and
measurements, it is not always made clear that these, too,
arise from the fundamental Hilbert space structure of quantum
theory. So far as is known at present, information inequalities
derived in this way, such as in [38], are entirely consistent with
experiment, in contrast to Bell inequalities and the like, which
do not agree with experiment, and whose derivation is based
in a fundamental way upon classical physics (see, e.g., [1]).

V. CONCLUSION

If one assumes, following von Neumann, and consistent
with textbook quantum theory where the issue is not always
clearly discussed, that properties of a quantum system cor-
respond to subspaces of its Hilbert space, then there is a
very natural epistemic restriction on what an external observer
can know about a microscopic quantum system. The Hilbert
space does not contain, has no room for, combinations of
incompatible properties, such as Sx = +1/2 AND Sz = −1/2
for a spin-1/2 particle, and as a consequence these must be
excluded from a consistent quantum ontology, as discussed in
detail in [12]. And of course what does not exist cannot be
known; such an ontological restriction leads automatically to
an epistemic restriction.

Quantum textbooks already contain a version of this
epistemic restriction. Students are told that incompatible
quantum properties cannot be simultaneously measured. How-
ever, because textbooks treat measurements as a sort of
axiom which is incapable of further analysis, a black box
which cannot be pried open to see what is going on inside,
the nature of this restriction remains clouded in a dense
conceptual fog. One needs a consistent quantum analysis of
measurements, one capable of resolving both the first and
the second quantum measurement problems, to relate this
restriction on measurements to mathematical properties of the
Hilbert space used in quantum mechanics to represent physical
properties. And, as noted in Sec. IV, some of the rigorous
inequalities developed by quantum information theorists using
the quantum Hilbert space are also epistemic restrictions.

In addition to resolving the measurement problems, the
histories approach provides a foundation for understanding
all the other strange, i.e., nonclassical, quantum phenomena,
including those which cannot at present be obtained from
a classical model by adding an epistemic restriction (see
the discussion in Sec. V of [5]). This is because it has
a consistent formulation of the fundamental principles of
Hilbert space quantum mechanics, the principles that underlie
the generally accepted calculational techniques taught in
textbooks. It may be that applying still more restrictions, or
perhaps additions, to classical models will eventually yield
the correct quantum outcomes. But one can ask whether such
a circuitous route, somewhat analogous to tweaking Bohr’s
semiclassical quantization condition, would be worthwhile,
given the availability of a more direct path to understanding
the phenomena in question.

This is not to say that the study of classical models of
the sort considered in [4,5] is without value. It is surely of
interest to understand the limits of classical physics when it is
pushed as far as possible into the quantum domain. Not least
because in the domain where classical physics functions very
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well, the quasiclassical regime of macroscopic phenomena, it
provides a much simpler and easier calculational scheme than
any full-scale quantum counterpart. Who would ever want to
compute an earth satellite orbit starting with a wave function?
However, such studies of classical models will, we believe, be
most effective when combined with a consistent and complete
microscopic quantum theory, one that takes full account of
the noncommutation of quantum projectors, is not dependent
upon a vague concept of “measurement,” and does not require
any additional epistemic restrictions beyond those implied by

the formalism itself. It is hoped that the work presented here
will contribute to that end.
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