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Perfect cloning of an unknown quantum state is impossible. Approximate cloning, which is optimal in various
senses, has been found in many cases. Paradigmatic examples are Wootters-Zurek cloning and universal cloning.
These cloning machines aim at optimal cloning of the full quantum states. However, in practice, what is important
and relevant may only involve partial information in quantum states, rather than quantum states themselves. For
example, signals are often encoded as parameters in quantum states, whose information content is well synthesized
by quantum Fisher information. This raises the basic issue of evaluating the information transferring capability
(e.g., distributing quantum Fisher information) of quantum cloning. We assess and compare Wootters-Zurek
cloning and universal cloning from this perspective and show that, on average, Wootters-Zurek cloning performs
better than universal cloning for the phase (as well as amplitude) parameter, although they are incomparable
individually, and universal cloning has many advantages over Wootters-Zurek cloning in other contexts. Physical

insights and related issues are further discussed.
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I. INTRODUCTION

One of the fundamental features of quantum information
radically different from those of classical information is no
cloning of quantum information [1]. Various extensions and
implications of the quantum no-cloning theorem are widely
investigated in recent years [2-21]. Specifically, due to the
superposition principle of quantum mechanics, nonorthog-
onal quantum states cannot be cloned perfectly, in stark
contrast to the cloning of classical states. Consequently, one
has to make some compromise in cloning quantum states,
and various approximate or probabilistic cloning schemes
have been proposed, with each possessing particular merits
in its own context. Paradigmatic examples are Wootters-
Zurek cloning [1], universal cloning [2,4], state-dependent
cloning [5], phase-covariant cloning [9,10], etc. These cloning
machines are important tools for studying a wide spectrum of
foundational issues and practical tasks, e.g., the uncertainty
principle, quantum state estimation, and eavesdropping in
quantum cryptography.

While, theoretically, quantum states encapsulate the com-
plete information of a system, in practice the relevant infor-
mation is usually encoded in some parameters of the involved
quantum states. Thus for the purpose of information process-
ing, it is usually not necessary to clone whole quantum states
themselves, but rather the relevant parameter information. In
this work, motivated by distributing the information about
certain parameters which are encoded in quantum states,
rather than distributing the quantum state themselves, to
several parties, we study the cloning of partial information
in quantum states. More specifically, we consider the scenario
of cloning a family of quantum states py parameterized by
6 (which encodes the signal of interest), such that as much
information as possible about parameter 6, rather than the
quantum states themselves, is distributed to two parties. We
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will quantify the information content of 6 by virtue of the
celebrated quantum Fisher information. Although, due to
the subtle noncommutative nature of quantum theory, there
are many different (actually infinitely many) useful versions
of quantum Fisher information [22-29], here we adopt the
most important and significant version, the one based on
the symmetric logarithmic derivative [23-25]. This quantum
Fisher information is the maximum of the measurement-
induced classical Fisher information [25]. By comparing the
effects of various quantum cloning machines on transferring
and distributing the parameter information synthesized by
quantum Fisher information, we will assess their performance
and make a comparative study.

Recall that quantum Fisher information of parameterized
quantum states pp (in general, mixed states) is defined as
[23-25]

F(pg) = trpg L,

where Ly, the symmetric logarithmic derivative, is determined
by po = 3(Lope + poLg), with pg = <L py. With the help of
the spectral decomposition pg = Y jAjl7)(jl, the quantum
Fisher information can be evaluated as

2
F(pp) =) muﬂmw. (1)
Jjk

Quantum Fisher information quantifies the statistical distin-
guishability about the parameter encoded in quantum states
and is a central concept in quantum detection, estimation, and
metrology [30-35].

By evaluating the performance of different quantum cloning
machines with respect to quantum Fisher information, we get
more insights into the nature of information transferring. In
particular, we find that, on average, Wootters-Zurek cloning
performs better than universal cloning in distributing quan-
tum Fisher information for both the phase and amplitude
parameters.

©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.88.042121

HONGTING SONG, SHUNLONG LUO, NAN LI, AND LINA CHANG

The cloning of quantum Fisher information interpolates
between the cloning of classical information (which is always
possible) and the no cloning of quantum information and is
of independent intrinsic interest. Cloning and broadcasting of
quantum Fisher information have been recently explored from
a general viewpoint in Ref. [36]. Some people distinguish
between cloning and broadcasting by assuming that the output
copies in a cloning process are uncorrelated, while those for
broadcasting may be correlated [3]. In this paper we do not
make such a distinction and identify cloning as broadcasting.

This paper is organized as follows. In Sec. II, we
briefly describe Wootters-Zurek cloning and universal cloning.
Section III is devoted to a generic scenario which illustrates
the performance of the two cloning machines in distributing
quantum Fisher information. The correlations and entangle-
ment in the output cloning states are also compared. We finish
the paper with a conclusion in Sec. IV. We will only consider
the 1 — 2 symmetric cloning and a single-parameter case; the
general cases for asymmetric multiple cloning and several
parameters can be studied similarly.

II. CLONING MACHINES

Wootters-Zurek cloning machine on a qubit system, which
arises from the first proof of the no-cloning theorem [1], is
determined by the following linear transformation:

10)al@)e = 100)anl0)c,  1)al @)e = [11)apl1)c,
where {|0),,1)s}, {|0)p,|1)5}, and {|0).,|1).} are bases of
orthonormal states for the system, the clone, and the ancilla,
respectively. This cloning machine induces the transforma-
tion W : H* — H* ® H” ® H¢ on a general input state
«[0)a + Bl1)a :

WP (@]0)y + Bl1)a) = @l00)4p]0)c + BI11)ap 1),

where H* H", and H¢ are the Hilbert spaces for the input sys-
tem, the clone, and the ancilla, respectively. This cloning ma-
chine is clearly input state dependent: The basis states |0), and
|1), are cloned perfectly, while any nontrivial superposition
state «|0), + B|1), is altered with the coherence information
lost. The various reduced states of Wootters-Zurek cloning
will be denoted by W4(|yr)) = e W (|y) WA (W) =
tp,W(Y)), and W (|$r)) = tr W (19).

Universal cloning machine on a qubit system, which arises
from considering approximate cloning in order to circumvent
the no-cloning theorem [2], is determined by the following
linear transformation:

2 1
|O>a|Q>c - \/;|Oo>ab|o>c + \/;|q’l>ab|1>c’
1 \/311 1 \/T\If 0
| >a|Q>C_> §| )ab| )c+ §| >ab| >C!

where |W),, = %(|Ol)ab + [10)45). This machine induces
the transformation /“* : H* — H* ® H” ® H® on a general
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2
U (@]0)q + BI1)a) = \/;(a|00>ab|0>c + Bl l1)c)

1
+ \/;NJ)ab(aH)c + B10)0).

Universal cloning is input state independent in the sense
that all pure states «|0), + B|1), are cloned equally well
with respect to fidelity [2]. The various reduced states of
universal cloning will be denoted by U/ (|1/)) = tr. U (|v/)),
U(lY)) = U (1), and UP(|9r)) = e ([9)).

These cloning machines are symmetric, act on pure states,
and yield, in general, correlated clones. They exhibit different
merits. It is shown that universal cloning has several advan-
tages over Wootters-Zurek cloning [3]. Here we reveal another
aspect of the comparison between these two cloning machines
and show that, on average, Wootters-Zurek cloning performs
better than universal cloning in distributing quantum Fisher
information. For notational simplicity and without loss of
clarity, we will omit the subscripts in the states for the system,
clone, and ancilla hereafter, without causing any confusion.
Thus we will write |0) instead of |0),, |00) instead of |00),;,
etc.

III. COMPARING CLONING IN TERMS OF QUANTUM
FISHER INFORMATION

In this section, we make a comparative study of Wootters-
Zurek cloning and universal cloning, and illustrate their char-
acteristics in distributing quantum Fisher information through
a representative scenario in which the parameter is encoded
in phase (as well as in amplitude). It should be emphasized
that, in general, quantum Fisher information cannot be cloned
when the output states are not correlated [36], just as unknown
quantum states cannot be cloned. However, the output states
of these two cloning machines are correlated in general.

Suppose the parameter 6 is encoded in the phase of state
09 = |Zg)(Xe| with

L
V2

where U € SU(2), which in the computational basis {|0),|1)}
can be represented as

|Zg) = —=(U0) + €°U|1Y)), 6 €[0,2n),

U = u|0)(0] — 9]0)(1] + v[1){0] + | 1) (1] = (Z _ﬁv)

2

with |u|?> 4+ |[v|*> = 1. The encoding basis, i.e., the unitary U,
has to be revealed at some point in order to extract some
information on 6 from the cloned states.

The present scenario for information encoding is reminis-
cent of the Bennett-Brassard 1984 (BB84) encoding scheme in
which two different orthonormal bases are used for encoding
a bit [37]. Here we are using the whole family of orthonormal
bases {U]0),U|1)} to encode a continuous parameter 6. We
will consider the average effects when we do not have
any information about U by assuming that U is uniformly
distributed on SU(2). We will derive several informational
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quantities for any U. If we know more precise information
about U, that is, a nontrivial prior distribution of U, then we
can integrate with this distribution to yield the corresponding
average quantities. A more precise correspondence between
the present encoding and the BB84 encoding arises when
we take U to be either the identity or the Hadamard matrix
(corresponding to the two bases in BB84) with equal a priori
probability. In BB84, one wants to extract a bit; here one
wants to estimate . The fundamental information about 6
is synthesized by quantum Fisher information, and thus the
distribution of quantum Fisher information is of relevance here.

Quantum Fisher information of the original input state can
be readily evaluated, by Eq. (1), as

F(og) =1,

which turns out to be independent of the parameter 6.
For Wootters-Zurek cloning, the output clone states are

1-— 14+x
1)(1],
3 > 11)(1]

and quantum Fisher information can be evaluated as (see the
Appendix)

a b X
W (og) = W7(0p) = 10){0] +

2
FOV*(0p)) = FOV!(0y)) = ly—

27

where

x = 2Re(uve ) (real part),
y = 2Im(uve %) (imaginary part).

In particular, if u = 0,v = 1, then F(W*“(gy)) = 0. On the
other hand, if u =v = l/ﬁ, then F(WW“%(0y)) = 1. These
results are consistent with our intuition since Wootters-Zurek
cloning perfectly copies the basis states |0) and |1) but
completely destroys the coherence in the superposition state
(10) + €11))/+/2.

Noting that x? 4+ y? = 4|uv|> < (u)®> + [v]>)? =1, we
readily see that F(WW%(0y)) < F(0y), which means that quan-
tum Fisher information is always decreasing for the cloning
process.

For universal cloning, the output clone states are

U (05) = U (09)

1 1
=5 = 310001 = x[1){I] = [0} (1] = Z[1)(OD),

where 1 is the identity operator and

7= ule 0 — 210,
Quantum Fisher information can be evaluated as (see the
Appendix)

a b 4
F(U"(0p)) = F(U (09)) = 5’

which is not only independent of the choice of the input states
but also independent of the parameter 6.

In general, F(W%(0oy)) may be larger or smaller than
F(U“%(0y)), depending on the basis states U|0) and U|l).
For example, for u =0,uv =1, we have F(W%oy)) =
0 < F(U%0p)) = 4/9, while for u = v = 1/4/2, we have
FOW*(0p)) = 1 > F(U"(0p)) = 4/9.
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To remove the dependence on the input states and to
make a fair comparison between Wootters-Zurek cloning and
universal cloning, we calculate the average quantum Fisher
information (see the Appendix):

_ 1
FOV(00) = f FOV (@)U = 3,

SU@2)

_ 4
FU(oy)) = / FU (o)l = 5.
SUR)

The integration is with respect to the normalized Haar measure
on SU(2). Here we see that, on average, the performance
of Wootters-Zurek cloning is better than that of universal
cloning in distributing quantum Fisher information of the
phase parameter:

FW*(0p)) — F(U(0p)) = 1/18 = 5.56%.

It might be interesting to analyze the correlations in the
cloning, which are related to the distribution of information
among the two clones. When Wootters-Zurek cloning is per-
formed on the input state oy, the quantum mutual information
(amount of the total correlations) of the joint two-clone state

1— 1
W (g,) = Tx|00><00| + %umm
is

IW™(09)) = SOV“(09)) + SOV (05)) — SOV (0))

(5.

where S(p) = —trplogp is the von Neumann entropy, H(p) =
—plogp — (1 — p)log(1 — p) is the binary Shannon entropy
function, and the logarithm is with respect to the natural
base e. The correlations in W (o) are purely classical.

For universal cloning, the quantum mutual information of
the joint two-clone state

uab(o_e)
1—x 14+x 1
= 3 |OO)(OO|+T|11>(11|+§|‘~Il)(\l/|
1( [00) (W] + [W)(11] JFZI\I’)(OOIJrlll)(‘I’I)
3 V2 V2

is

U™ (o)) = 2H <é) - H (%) ~ 0.2646,
which turns out to be independent of 6. Furthermore, the output
two-clone state U (oy) is entangled and its concurrence and
entanglement of formation can be evaluated as 1/3 and 0.1298,
respectively [38].

The amounts of average quantum mutual information are

TV (0)) = / IOV ()dU = ~.

SUQ) 2

TU(0p)) = / LU (09))dU ~ 0.2646.

SUQ)

One may wonder what happens if the parameter 6 is
encoded in the amplitude of the basis states in the superposition
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Yo = |T'g)(Tgl, with

[Ty) =cos§U|0)+singU|1), 6 € [0,m),

where U € SU(2). It turns out that this case is completely sim-
ilar to the phase-parameter encoding because phase encoding
in the computational basis {|0),|1)} is equivalent to amplitude
encoding in a Hadamard-type basis. More precisely, if we
define the Hadamard-type basis {|+),|—)} as

10) +411) _ 10y —if1)

I+) = 75 7

|-)
then
, 1 .
ITg) = eﬂe”ﬁ(um +U|-)),

which has a similar structure to |Xy) if we ignore the global
phase e~%/2. Consequently, all average quantities will be the
same as the phase parameter case.

To summarize, for both the phase and amplitude parameters,
Wootters-Zurek cloning performs better than universal cloning
in distributing quantum Fisher information. The amount of
total correlations (quantum mutual information) in the output
two-clone state for Wootters-Zurek cloning is larger than that
of universal cloning, although the former is purely classical
and the latter is entangled.

Now we provide a physical insight into why Wootters-
Zurek cloning outperforms universal cloning in the present
context. On the one hand, it seems that the best way to
extract information about parameter 0 from a single copy
of state |Xy) is to perform a projective measurement in a
suitable basis. If the encoding basis is completely random,
i.e., U is uniformly distributed on SU(2), then a projective
measurement in any basis is optimal and equally suitable.
This is precisely what Wootters-Zurek cloning does and can
be interpreted as a measure-and-prepare protocol, where the
state to be cloned is measured in the computational basis
and the measurement outcomes are broadcast as the two
clones prepared either in |0) or |1). The recipients of the
clones can recover the measurement outcome by performing
a measurement in the computational basis. On the other hand,
universal cloning, which maximizes the average fidelity of the
two clones, adds some noise to the cloned state. Therefore
any projective measurement on a clone produced by universal
cloning machine will be equivalent to a noisy measurement
on the input state and thus yields less information than the
noiseless one does.

IV. CONCLUSION

We have investigated and compared the performance of two
cloning machines in distributing quantum Fisher information.
For the input states considered in this paper, Wootters-Zurek
cloning is still state dependent, and universal cloning remains
“universal” in the sense that the performance with respect
to distributing quantum Fisher information for the phase and
amplitude parameters does not depend on the choice of the
basis. While, in general, both of them lose some quantum
Fisher information of the parameter during the cloning process,
Wootters-Zurek cloning performs better than universal cloning
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on average for both the phase and the amplitude parameters.
These results shed light onto a new aspect of quantum
cloning.

We remark that we have only considered cloning machines
on pure states; the situation will be more complicated and
interesting for mixed states. Finally, the important and natural
issue arises as which cloning machines can distribute and
transfer quantum Fisher information optimally. Such cloning
machines apparently depend strongly on the encoding struc-
ture of the parameters and are worthy of further investigations.
In particular, if the a priori distribution of U would differ
from the uniform distribution, then there is no reason to
consider only Wootters-Zurek cloning or universal cloning,
but rather a cloning which is optimal for a given a priori
distribution.
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APPENDIX

Here we present detailed calculations of some quantities in
the main text.

For Wootters-Zurek cloning, the quantities F(op) and
F(W?(0y)) can be readily derived from Eq. (1) since oy and
W4 (0y) are already in their spectral decomposition forms.

For universal cloning, the spectral decompositions of the
clones are

1 5
U (05) = U (03) = g|k1><k1| + g|k2)<k2|,
with

1 2z
= =5 (e 21):

k) = 1 (1—x>
YT nRd=0\ z )

from which we readily obtain the quantum Fisher information
F(U“(0p)) from Eq. (1).

Next, we evaluate the average quantum Fisher information
F(W%(0y)). For our purpose, without loss of generality and
up to the local phase degree of basis states, we may simply
parametrize U € SU(2) defined by Eq. (2) via

U= cos%, v = ei‘ssing, ¢ €10,m), §€l0,2r);

then the Haar integration here can be equivalently performed
on [0,7) x [0,27) with respect to the measure ﬁsinqbdq&dé.
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Noting the periodicity of trigonometric functions, we have

FOV(04)) = /

SUQ)
sin? 8

T 2T : T ainld 2
FOV(04))dU = / / F(W“(ae))sf—d’dadqs: / sin” ¢
o Jo T 0
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sin?(8 — 6)
1 — sin? ¢ cos?(8 — 0)

déd
4 0 ¢

Z/” sin ¢ [T ' degb:/ﬂ sind:_sind)coszd:/'” . 1 a5 do.
o 2m Jo 1—sin2¢cos?s 0 2 2 o 1—sinZ¢cos?s

From the indefinite integral (s > —1)

—sgna

/‘ dt . a+b .
= arctan |,/ —— cot? |,
a+bcos’t  Ja(a + b) a

we obtain

T 1
———d$
/0 1 — sin? ¢ cos? §

which yields

i
"~ |coso|’

FOV'(0y) = / ﬂ (Sigd) St
0

1
2 |cos¢>|>d¢:§'
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