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Non-self-adjoint model of a two-dimensional noncommutative space with an unbound metric
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We demonstrate that a non-self-adjoint Hamiltonian of harmonic-oscillator type defined on a two-dimensional
noncommutative space can be diagonalized exactly by making use of pseudobosonic operators. The model
admits an antilinear symmetry and is of the type studied in the context of PT -symmetric quantum mechanics.
Its eigenvalues are computed to be real for the entire range of the coupling constants and the biorthogonal sets of
eigenstates for the Hamiltonian and its adjoint are explicitly constructed. We show that despite the fact that these
sets are complete and biorthogonal, they involve an unbounded metric operator and therefore do not constitute
(Riesz) bases for the Hilbert space L2(R2), but instead only D quasibases. As recently proved by one of us, this
is sufficient to deduce several interesting consequences.
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I. INTRODUCTION

In the past 15 years more and more physicists and
mathematicians have developed an interest in non-Hermitian
and non-self-adjoint operators possessing real eigenvalues.
Such type of models have been investigated before, but the
more recent interest has been initiated by the seminal paper [1]
in which the complex cubic potential and its close relatives
have been studied. The original considerations, focusing
mainly on the aspect of the possibility to formulate consistent
quantum-mechanical systems, have broadened quickly and
are partly replaced by a more general analysis of related
aspects. Many experiments [2–5] have now been carried
out, mainly for optical analogues to the quantum-mechanical
systems, exploiting PT -symmetric phase transitions where
real eigenvalues merge into two complex-conjugate pairs, to
obtain gain and loss structures. We refer the reader to [6–8] for
some reviews on what is commonly named quasi-Hermitian
[9,10], pseudo-Hermitian [11,12], or PT -symmetric [1,13]
quantum mechanics. However, it was recently pointed out by
Krejcirik and Siegl [14] that more mathematically oriented
treatments of these type of Hamiltonians are required, as for
instance the complex cubic potential lacks possessing a Riesz
basis of eigenstates. Therefore, we can still not associate a
standard quantum-mechanical interpretation to this model. The
purpose of this paper is to shed more light on these issues.

Modifying recent ideas [15], one of us has recently
introduced the notion of D pseudobosons (D-PBs), [16], and
used them in connection with several physical systems, whose
Hamiltonians are non-self-adjoint operators [17]. Among other
aspects, it was shown thatD-PBs could be useful in the analysis
of a two-dimensional harmonic oscillator described by the
Hamiltonian

Ĥ = 1
2

(
p̂2

1 + x̂2
1

) + 1
2

(
p̂2

2 + x̂2
2

)
+ i[A(x̂1 + x̂2) + B(p̂1 + p̂2)], (1.1)
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where (x̂j ,p̂j ) are noncommutative operators satisfying
[x̂j ,p̂k] = iδj,k1, [x̂j ,x̂k] = iθεj,k1, and [p̂j ,p̂k] = iθ̃εj,k1,
where θ and θ̃ are two real small parameters, measuring
the noncommutativity of the system. In [17] a perturbative
expansion in θ and θ̃ was set up and it was shown, in particular,
that if one neglects all the terms which are at least quadratic
in θ and θ̃ we can construct explicitly the eigenvectors of
(the approximated version of) Ĥ and deduce the related
eigenvalues.

In this paper we show that, if the noncommutativity is
restricted to the spatial variables only, i.e., if θ̃ = 0, then
Ĥ , and a slightly generalized version of it, can be exactly
diagonalized in terms ofD-PBs. The corresponding eigenbases
are biorthonormal, but involve a metric operator that is
unbounded, together with its inverse. Thus we will draw a
similar conclusion as reached in [14] and, more recently,
in [18].

It is surely worth to underline that these results, all together,
suggest that several common beliefs usually taken for granted
in the physical literature on these topics require some more
care than usually adopted. For instance, in [19] (as well as in
many other papers [20]), the biorthogonal sets of eigenstates
of a rather general H , with H † �= H , are used to produce a
resolution of the identity. In other words, they are used as
bases in the Hilbert space. However, the results in [14,18], and
those given in this paper, show that this is not always possible,
even for extremely simple models. This, we believe, helps to
clarify the situation, showing that many claims need to be
analyzed in more detail.

This article is organized as follows: in the next section
we review the definition and a few central results on D-
PBs. In Sec. III we introduce the two-dimensional-harmonic
oscillator with linear term in the momenta and position on
a noncommutative flat space and we analyze it in terms of
D-PBs. We provide the computation of how it may be written
in terms of D-PB number operators and subsequently we
verify the underlying assumptions, which are needed to have
something more than just a formal theory. This will allow for
the construction of biorthonormal sets, which are, however,
shown not to be Riesz bases and not even bases, but just D
quasibases. Our conclusions are stated in Sec. IV.
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II. PSEUDOBOSONS, GENERALITIES

We briefly review here a few definitions and central
properties of D-PBs. More details can be found in [16].

Let H be a given Hilbert space with scalar product 〈.,.〉 and
related norm ‖.‖. Furthermore, let a and b be two operators
acting onH, with domains D(a) and D(b), respectively, a† and
b† their respective adjoints, and let D be a dense subspace of
H such that a�D ⊆ D and b�D ⊆ D, where x� is x or x†. It is
worth noticing that we are not requiring here that D coincides
with either D(a) or D(b). Nevertheless, for obvious reasons,
D ⊆ D(a�) and D ⊆ D(b�).

Definition. The operators (a,b) are D pseudobosonic if, for
all f ∈ D, we have

abf − baf = f. (2.1)

Sometimes, to simplify the notation, instead of (2.1) we will
simply write [a,b] = 11, having in mind that both sides of this
equation have to act on f ∈ D.

Our working assumptions are the following.
Assumption D-PB1. There exists a nonzero ϕ0 ∈ D such

that aϕ0 = 0.
Assumption D-PB2. There exists a nonzero �0 ∈ D such

that b†�0 = 0.
Then, if (a,b) satisfy the above definition, it is obvious that

ϕ0 ∈ D∞(b) and that �0 ∈ D∞(a†), with D∞(x) denoting the
common domain of all powers of x. Thus we can define the
following vectors, all belonging to D:

ϕn := 1√
n!

bnϕ0, �n := 1√
n!

a†n�0, (2.2)

for n � 0. As in [16] we introduce the sets F� = {�n, n � 0}
and Fϕ = {ϕn, n � 0}. Once again, since D is stable under
the action of a� and b�, we deduce that each ϕn and each �n

belongs to the domains of a�, b�, and N�, where N := ba.
It is now straightforward to deduce the following lowering

and raising relations:

aϕn = √
n ϕn−1, aϕ0 = 0,

b†�n = √
n �n−1, b†�0 = 0, for n � 1,

(2.3)
a†�n = √

n + 1�n+1,

bϕn = √
n + 1ϕn+1, for n � 0,

as well as the following eigenvalue equations: Nϕn = nϕn and
N †�n = n�n for n � 0. As a consequence of these equations,
choosing the normalization of ϕ0 and �0 in such a way that
〈ϕ0,�0〉 = 1, we deduce that

〈ϕn,�m〉 = δn,m, (2.4)

for all n,m � 0. The third assumption originally introduced
in [16] is the following.

Assumption D-PB3. Fϕ is a basis for H.
This is equivalent to the request that F� is a basis for H as

well [16]. In particular, if Fϕ and F� are Riesz bases for H,
the D-PBs were called regular.

In [16] also a weaker version of Assumption D-PB3 has
been introduced, useful for concrete physical applications: for
that, let G be a suitable dense subspace ofH. Two biorthogonal

sets Fη = {ηn ∈ G, g � 0} and F	 = {	n ∈ G, g � 0} were
called G quasibases if, for all f,g ∈ G, the following holds:

〈f,g〉 =
∑
n�0

〈f,ηn〉 〈	n,g〉 =
∑
n�0

〈f,	n〉 〈ηn,g〉. (2.5)

It is clear that, while Assumption D-PB3 implies (2.5), the
reverse is false. However, if Fη and F	 satisfy (2.5), we still
have some (weak) form of resolution of the identity. Now
Assumption D-PB3 is replaced by the following.

Assumption D-PBW3. Fϕ and F� are G quasibases.
Let now assume that Assumption D-PB1, D-PB2, and D-

PBW3 are satisfied, with G = D, and let us consider a self-
adjoint, invertible, operator 
, which leaves, together with

−1, D invariant: 
D ⊆ D, 
−1D ⊆ D. Then, as in [16],
we say that (a,b†) are 
 conjugate if af = 
−1b†
f , for
all f ∈ D. Moreover, we can check that, for instance, (a,b†)
are 
 conjugate if and only if (b,a†) are 
 conjugate and
that, assuming that 〈ϕ0,
ϕ0〉 = 1, (a,b†) are 
 conjugate if
and only if �n = 
ϕn, for all n � 0. Finally, if (a,b†) are

 conjugate, then 〈f,
f 〉 > 0 for all nonzero f ∈ D. The
details of these proofs can be found in [18]. Notice also that,
not surprisingly, we also deduce that Nf = 
−1N †
f , for all
f ∈ D.

III. NONCOMMUTATIVE TWO-DIMENSIONAL
HARMONIC OSCILLATOR WITH LINEAR TERMS

Let us now consider the non-self-adjoint two-dimensional
harmonic oscillator with linear terms in the momenta and
positions

H̃ = 1

2m

(
p̃2

1 + p̃2
2

) + mω2

2

(
x̃2

1 + x̃2
2

) + iα1x̃1

+α2x̃2 + α3p̃1 + iα4p̃2, (3.1)

on the noncommutative flat space with the nonvanishing
commutators [x̃1,x̃2] = iθ , [x̃j ,p̃j ] = ih̄ for j = 1,2. Here θ

and αi for i = 1,2,3,4 are real dimensionful parameters. Note
that this Hamiltonian is non-self-adjoint even when viewed on
a standard space. However, H̃ is constructed in such a way
that it is left invariant with respect to the antilinear symmetry
PT −: x̃1 → −x̃1, x̃2 → x̃2, p̃1 → p̃1, p̃2 → −p̃2, and i →
−i [21]. Thus in the general spirit of PT -symmetric quantum
mechanics [1,13] the Hamiltonian is guaranteed to have real
eigenvalues provided that its eigenfunctions are eigenstates of
PT −. Evidently, in atomic units, m = ω = h̄ = 1, H̃ reduces
to Ĥ for α1 → A, α2 → −iA, α3 → iB, and α4 → B. We
also notice that PT − is no longer a symmetry of Ĥ , i.e.,
[PT −,Ĥ ] �= 0.

Our aim here is to employ D-PBs to diagonalize H̃ exactly,
instead of using a perturbative approach as in [17,22] and
to determine its spectrum. For this purpose we convert the
Hamiltonian first from a flat noncommutative space to one
in terms of standard canonical variables xi and pi for i =
1,2 satisfying the canonical commutation relations [xj ,pj ] =
ih̄ and [xi,xj ] = [pi,pj ] = 0. This is achieved by a standard
Bopp shift x̃1 → x1 − θ

2h̄p2, x̃2 → x2 + θ
2h̄p1, p1 → p1, and
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p2 → p2. The Hamiltonian in (3.1) then acquires the form

H̃ =
(

1

2m
+ mω2θ2

8h̄2

) (
p2

1 + p2
2

) + mω2

2

(
x2

1 + x2
2

)

+ mω2θ

2h̄
(x2p1 − x1p2) + iα1x1 + α2x2

+
(

α3 + α2θ

2h̄

)
p1 + i

(
α4 − α1θ

2h̄

)
p2. (3.2)

We now attempt to reexpress this Hamiltonian in terms of
pseudobosonic number operators Ni = biai as

H̃ = γ1N1 + γ2N2 + γ0 for γ0,γ1,γ2 ∈ R, (3.3)

where the operators ai and bi obey the two-dimensional
pseudobosonic commutation relations
[aj ,bk] = iδjk, [aj ,ak] = [bj ,bk] = 0, for j,k = 1,2.

(3.4)

For this purpose we represent the pseudobosonic operators ai

and bi in terms of standard bosonic creation and annihilation
operators A

†
i and Ai , respectively,

a1 = 1√
2

(A1 + iA2) + iβ1, b1 = 1√
2

(A†
1 − iA

†
2) + iβ3,

(3.5)

a2 = − 1√
2

(iA1 + A2) + β2, b2 = 1√
2

(iA†
1 − A

†
2) + β4,

(3.6)

with [Aj,A
†
k] = iδjk , [Aj ,Ak] = [A†

j ,A
†
k] = 0 for j,k = 1,2

and βi ∈ C for i = 1,2,3,4. Furthermore, we represent the A
†
i

and Ai in terms of the standard canonical variables

A1 =
√

Mω

2h̄
x1 + i

√
1

2h̄Mω
p1,

(3.7)

A2 =
√

Mω

2h̄
x2 + i

√
1

2h̄Mω
p2,

A
†
1 =

√
Mω

2h̄
x1 − i

√
1

2h̄Mω
p1,

(3.8)

A
†
2 =

√
Mω

2h̄
x2 − i

√
1

2h̄Mω
p2.

We note that the pseudobosonic operators reduce to standard
boson operators with bi = a

†
i if and only if for β1 = −β̄3 and

β2 = β̄4. Upon substitution we compare now (3.3) and (3.2),
which become identical subject to the constraints

β1 = �(α1 + α2) + 2h̄mω(α3 − α4)

(� + θmω)
√

2m�ω3
,

(3.9)

β2 = �(α1 − α2) + 2h̄mω(α3 + α4)

(� − θmω)
√

2m�ω3
,

β3 = �(α1 − α2) − 2h̄mω(α3 + α4)

(� + θmω)
√

2m�ω3
,

(3.10)

β4 = −�(α1 + α2) + 2h̄mω(α3 − α4)

(� − θmω)
√

2m�ω3
,

γ0 = 1

2
ω [� (1 + β1β3 − β2β4) + θmω (β1β3 + β2β4)] ,

(3.11)

γ1 = 1

2
ω (� + θmω) , γ2 = 1

2
ω (� − θmω) , M = 2mh̄

�
,

(3.12)

where � :=
√

4h̄2 + θ2m2ω2. If we are now able to construct
eigenstates �n for the pseudobosonic number operators such
that Niϕn = h̄ωniϕn, the eigenvalues for H̃ are immediately
computed from (3.3) to

En1,n2 = γ1h̄ωn1 + γ2h̄ωn2 + γ0. (3.13)

We observe from (3.9) to (3.12) that the constants γi ∈ R
for i = 0,1,2 are real and consequently the energy En1,n2 is
also real. Furthermore, we observe that the presence of the
linear terms in (3.1), that is αi �= 0 for i = 1,2,3,4, prevents
us from using a standard bosonic oscillator algebra and we
are forced to employ pseudobosons. This is seen from the fact
that the pseudobosonic operators reduce to standard boson
operators if and only if for β1 = −β̄3 and β2 = β̄4. However,
our constraints (3.9) and (3.10) imply that in this boson case
some linear terms in our Hamiltonian have to vanish, that is
α1 = α4 = 0.

Furthermore, we notice that for the reduction of H̃ to Ĥ for
α1 → A, α2 → iA, α3 → iB,α4 → B we obtain β1 = β̄3 and
β2 = −β̄4, such that γ0 and therefore En1,n2 remain real. In
this case the PT − symmetry is broken and it remains unclear
which antilinear symmetry, if any, is responsible for keeping
the spectrum real.

Let us now verify that eigenstates ϕn and those of the adjoint
of the Hamiltonian, �n are well defined, really exist, and most
crucially whether they constitute a Riesz basis, or even a basis.

A. Verification of the pseudobosonic assumptions

For simplicity let us now adopt atomic units. We commence
by introducing the operators

âi := lim
βi→0

ai, â
†
i := lim

βi→0
bi, (3.14)

which, from (3.5) and(3.6), satisfy the standard bosonic
canonical commutation relations, [âi ,â

†
j ] = δi,j 1, [âi ,âj ] = 0,

for i,j = 1,2. Then, introducing the unitary operators

Di(z) := exp{zâi − zâ
†
i }, D(z) := D1(z1)D2(z2), (3.15)

we compute

ai = âi + νi = D(ν)âiD
−1(ν),

(3.16)
bi = â

†
i + μi = D(μ)â†

i D
−1(μ),

for i = 1,2 with ν := {iβ1,β2}, μ := {−iβ̄3,β̄4}. An orthonor-
mal basis for H = L2(R2) is then constructed easily. Let
e0,0 = e0 be the vacuum of â1 and â2, that is âie0 = 0 for
i = 1,2. Then, as is common for the purely bosonic case, we
introduce

en1,n2 = en := 1√
n1!n2!

(â†
1)n1 (â†

2)n2e0, (3.17)

and the related orthonormal basis Fe = {en,n1,n2 � 0}. Of

course, for the bosonic number operator n̂i := â
†
i âi , we have

n̂ien = nien.
In order to verify the assumptions of Sec. II, we first seek to

construct ϕ0, i.e., the vacuum of ai satisfying a1ϕ0 = a2ϕ0 = 0.

042119-3



FABIO BAGARELLO AND ANDREAS FRING PHYSICAL REVIEW A 88, 042119 (2013)

Evidently, this holds if, and only if, âi[D−1(ν)ϕ0] = 0 for
i = 1,2. This implies that ϕ0 = D(ν)e0, up to a normalization
which will be fixed below. Notice that, due to the fact that
D(ν) is unitary, and therefore everywhere defined, ϕ0 is well
defined.

Similarly, we derive �0, the vacuum for b
†
j . We require

b
†
1�0 = b

†
2�0 = 0, which can be rewritten as âi[D−1(μ)�0] =

0 for i = 1,2. These equations are solved by �0 = N�D(μ)e0,
which, due to the unitarity of D(μ), is again well defined. Here
N� is a normalization needed to ensure the normalization
〈ϕ0,�0〉 = 1. It is computed to

N2
� = 〈ϕ0,ϕ0〉

〈�0,�0〉 = exp[|β1|2 + |β2|2 − |β3|2 − |β4|2

− 2 Re(β1β2) − 2 Re(β3β4)]. (3.18)

Evidently for β2 = −β3 and β1 = β4 this reduces to the
standard bosonic normalization, as is expected.

Remark. These results could have also been found quite
easily by solving the equations directly in the coordinate
representation. For instance, a1ϕ0 = a2ϕ0 = 0 are equivalent
to the differential equations(

x1 + ∂x1 + ix2 + i∂x2 + 2iβ1
)
ϕ0(x1,x2)

= (−ix1 − i∂x1 − x2 − ∂x2 + 2β2
)
ϕ0(x1,x2) = 0, (3.19)

solved by ϕ0(x1,x2) ∝ e− 1
2 (x2

1 +x2
2 )−i(β1+β2)x1−(β1−β2)x2 . Simi-

larly, we find �0(x1,x2) ∝ e− 1
2 (x2

1 +x2
2 )+i(β3−β4)x1+(β3+β4)x2 . We

see that both of these functions belong, for instance, to the set
S(R2) of C∞ functions which, together with their derivatives,
decrease faster to zero than any inverse power of x1 and x2.
However, this property might not be enough for our purposes,
since, as we have outlined in Sec. II, we need to identify a set
D, dense in H, which not only contains ϕ0 and �0, but which
is in addition also stable under the action of a

�

j , b
�

j , and other
relevant operators. It is convenient to introduce, therefore, the
following set:

D = {f (x1,x2) ∈ S(R2), such that

ek1x1+k2x2f (x1,x2) ∈ S(R2), ∀k1,k2 ∈ C}. (3.20)

D is dense in H, since it contains the set D(R2) of the C∞
functions with compact support.

Following Sec. II, we are now interested in deducing
the properties of the vectors ϕn = 1√

n1!n2!
b

n1
1 b

n2
2 ϕ0 and �n =

1√
n1!n2!

(a†
1)n1 (a†

2)n2�0. We notice that both ϕn and �n neces-
sarily belong to D for all n, because of the stability of D under
the action of bi and a

†
i , and the previously established fact that

ϕ0,�0 ∈ D. The formulas (3.16) state how the pseudobosonic

operators (ai,bi) are related to the bosonic operators (âi ,â
†
i ) by

means of the in general two different unitary operators D(ν)
and D(μ).

A single operator could be used if we introduce the
operators:

Vi(z,w) := exp{w̄âi − zâ
†
i },

V (ν,μ) := V1(ν1,μ1)V2(ν2,μ2). (3.21)

Now we compute

ai = V (ν,μ)âiV
−1(ν,μ), bi = V (ν,μ)â†

i V
−1(ν,μ), (3.22)

which, in contrast to (3.16), only involve a single, albeit in
general unbounded, operator to relate the (ai,bi) to the (âi ,â

†
i ).

We also check directly

a
†
i = V (μ,ν)âiV

−1(μ,ν), b
†
i = V (μ,ν)âiV

−1(μ,ν).

(3.23)

An immediate consequence of these formulas are the follow-
ing relations between the various number operators: n̂i =
V −1(ν,μ)NiV (ν,μ) = V −1(μ,ν)N †

i V (μ,ν), which in turn
implies that

Ni = T (ν,μ)N †
i T

−1(ν,μ), (3.24)

where T (ν,μ) := V (ν,μ)V −1(μ,ν). Needless to say, all these
equalities and definitions are well defined on D, but not on
the whole H.1 Incidentally, we observe that T (γ ,γ ) = 1. This
is in agreement with the fact that, when μ = ν, the operator
V (ν,μ) is bounded with bounded inverse; see below.

By a similar reasoning as above applied for the construction
of the vacuum state we now deduce that

ϕn = V (ν,μ)en, �n = N�V (μ,ν)en. (3.25)

In analogy with [18], we see that, while V (ν,ν) = D(ν) is a
unitary operator and as a consequence bounded, the operator
V (ν,μ), as well as its inverse, is unbounded for ν �= μ . The
crucial conclusion from this is that the two sets Fϕ = {ϕn}
and F� = {�n} cannot be Riesz bases. In fact, they are both
related to the orthonormal basis Fe by unbounded operators.
Moreover, they are not even a basis, while they are both
complete in H. The proofs of these claims do not differ much
from those given in [18] and therefore will not be repeated
here. We will comment further on the physical meaning of
these results in the next subsection.

Similarly as in [18], we can prove that Fϕ and F� are D
quasibases. In fact, repeating almost the same steps, we deduce
that, for instance, ∀ f,g ∈ D,

〈f,g〉 =
∑

n

〈f,ϕn〉〈�n,g〉, (3.26)

so that the results listed at the end of Sec. II hold true. In
particular, let us introduce the operator 
(ν,μ) := T (μ,ν). It
is possible to show that 
(ν,μ) is self-adjoint, invertible, and
leaves D invariant. Moreover, 
(ν,ν) = 1, and


(ν,μ) = N�

2∏
i=1

e(νi−μi )â
†
i e(ν̄i−μ̄i )âi , (3.27)

which implies that 〈f,
(ν,μ)f 〉 > 0 for all nonzero vectors
f ∈ D. This is in agreement with the facts that (i) �n =

(ν,μ)ϕn, ∀n and (ii) (aj ,b

†
j ) are 
 conjugate: ajf =


−1(ν,μ)b†j
(ν,μ)f , for all f ∈ D. We conclude also that,
again for all f ∈ D,

Nif = 
−1(ν,μ)N †
i 
(ν,μ)f, (3.28)

1This aspect is almost never stressed in the physical literature.
Unbounded operators never exist alone. They exist in connection
with some suitable dense subspace of H, their domains.
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which is the intertwining relation responsible for the fact that
H̃ and H̃ † have the same eigenvalues and related eigenvectors;
see below.

B. Back to the Hamiltonian

Let us now return to our original problem, i.e., the deduction
of the eigenvalues and the eigenvectors for H̃ in (3.2) and Ĥ

in (1.1). As we have shown, we may express them in terms of
pseudobosonic number operators. From the above construction
is clear that

H̃ϕn = Enϕn, (3.29)

with En ∈ R given by (3.13). From our results in Sec. II it
also follows directly that the eigensystem of the adjoint H̃ † =
γ̄1N

†
1 + γ̄2N

†
2 + γ̄0 is computed to

H̃ †�n = Ēn�n = En�n. (3.30)

The analysis in [18] showed that, as already deduced, two
biorthogonal sets of eigenstates of a Hamiltonian and of its
adjoint need not to be automatically a Riesz basis, even when
they are complete. This is exactly the case here: Fϕ and F�

are biorthogonal, complete, eigenstates of H̃ and H̃ † (Ĥ and
Ĥ †), respectively, but neither Fϕ nor F� are bases for H.
However, interestingly enough, they are D quasibases, and
this is reflected in the properties we have explicitly verified for
our model.

IV. CONCLUSIONS

We have investigated the properties of a non-self-adjoint
model on a noncommutative two-dimensional space. The
Hamiltonian H̃ was set up in the standard fashion followed
in the literature on PT -symmetric quantum mechanics, by
seeking an antilinear symmetry, i.e., PT − in this case.
From our explicit formulas we observe that PT −: ϕ0 → ϕ0,
ϕn → (−1)n1ϕn, �0 → �0, �n → (−1)n1�n such that by
the standard arguments of Wigner [13] it follows that the
eigenvalues of H̃ have to be real. This is confirmed by our

explicit computation. The symmetry for the Hamiltonian Ĥ

is not evident from the start, but as demonstrated the overall
conclusions are the same as for H̃ .

However, despite having well-defined real physical spec-
trum, we established further that H̃ cannot be considered as a
standard quantum-mechanical model, since the corresponding
biorthonormal system is not of Riesz type. As already
discussed, in many places in the literature, see [19] for
instance, it is incorrectly assumed that the eigenvectors of
a not self-adjoint Hamiltonian H and H † automatically form a
biorthogonal basis. In fact, this is a rather strong requirement
which is quite difficult to find satisfied in concrete models
existing in the literature, at least for infinite-dimensional
Hilbert spaces. We have shown that even for the simple
example presented here this is not the case. This only leaves
two of the following options: either this conclusion is wrong
for the cases treated, as it would be for the model presented
here, or at least some additional analysis is required to justify it.
Thus our example supports the suggestion [14,18] that many
models, thought to be very interesting quantum-mechanical
systems, need to be revisited for further scrutiny.

It is easy to see from our formulas that these conclusions
do not rely on the fact that the model is formulated on
a noncommutative space and also hold in the limit to the
commutative space when setting limθ→0 � = 2h̄, limθ→0 M =
m, etc. In reverse, this also means that the problem of not
having automatically a biorthonormal basis cannot be solved
by formulating the model on a noncommutative space, which
provides more freedom and often removes inconsistencies.

We end this section, and the paper, observing that, even
with all the problems we have put in evidence along the paper,
we may still make sense of the model presented here, simply
because of the role of the quasibases as described above and
in more detail in the quoted literature.
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