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Qualitative noise-disturbance relation for quantum measurements
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The inherent connection between noise and disturbance is one of the most fundamental features of quantum
measurements. In the two well-known extreme cases a measurement either makes no disturbance but then has to
be totally noisy or is as accurate as possible but then has to disturb so much that all subsequent measurements
become redundant. Most of the measurements are, however, somewhere between these two extremes. We derive
a structural connection between certain order relations defined on observables and channels, and we explain
how this connection properly explains the trade-off between noise and disturbance. A link to a quantitative
noise-disturbance relation is demonstrated.
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I. INTRODUCTION

The inherent connection between noise and disturbance
is one of the most fundamental features of quantum mea-
surements. On the one hand, a measurement cannot give
any information without disturbing the object system. On
the other hand, a noisier (less informative) measurement
can be implemented with less disturbance than a sharper
measurement. Roughly speaking, more noise means that
measurement outcome distributions become broader, while
disturbance is reflected in the measurement outcome statistics
of subsequent measurements. In the most extreme case, the
disturbance inherent in a measurement makes all subsequent
measurements useless as far as the original input state is
concerned.

Various trade-off inequalities between noise (or informa-
tion) and disturbance are known, all depending on different
quantification of these notions (see, e.g., [1–6]). All these
trade-off inequalities are revealing different aspects of the
interplay between noise and disturbance in quantum measure-
ments. In this work we present a relation between certain
important forms of noise and disturbance which is qualitative
in nature and not based on any specific quantifications of
noise and disturbance. Our result is a structural connection
between observables and channels. More precisely, we show
that a certain partial order in the set of equivalence classes
of quantum observables (positive operator-valued measures)
corresponds to an inclusion of the related subsets of quantum
channels (trace-preserving completely positive maps). As we
will explain, this correspondence has a clear interpretation
as a noise-disturbance relationship since it shows how the
possible state transformations are limited to more noisy ones
if the measurement is required to be more accurate. Due to
its simplicity and generality, we believe that our qualitative
noise-disturbance relation can be seen as a common origin of
many quantitative noise-disturbance inequalities.

*teiko.heinosaari@utu.fi
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To give a preliminary idea on the coming developments,
we recall two well-known special situations. (See, e.g., [7,8]
for general results that cover these cases.) First, let us consider
a measurement in an orthonormal basis {ϕj }dj=1. If � is an
input state, then the measurement outcome probabilities are
〈ϕj |�ϕj 〉. The output state is a mixture

∑
j 〈ϕj |�ϕj 〉ξj , where

ξ1,ξ2, . . . are states that depend on the measurement device but
not on the input state. Hence, a measurement in an orthonormal
basis is sharp but disturbs a lot. A completely different kind
of measurement is such that we do nothing on the input state
but we just throw a die to produce measurement outcome
probabilities. This measurement has the maximum amount of
noise, but it can be implemented without disturbing the input
state at all.

Most measurements belong to the intermediate area be-
tween the two previously described extreme cases. Namely,
they contain some additional noise and can be measured in a
way that implies some disturbance. More noise should allow
for a less disturbing measurement and vice versa. It is exactly
this kind of intuitive trade-off that we will turn into an exact
theorem.

In the rest of this paper H is a fixed Hilbert space related to
the input system. The dimension of H can be either finite
or countably infinite. We denote by L(H) the set of all
bounded operators on H. A quantum measurement produces
measurement outcomes and conditional output states. The
mapping from input states to measurement outcome statistics
is called an observable, while the mapping from input states
to unconditional output states (i.e., average over conditional
output states) is called a channel [9]. We will briefly recall
some of the basic properties of observables and channels before
proving our main results, Theorems 1 and 2.

II. ORDER STRUCTURE OF OBSERVABLES

A quantum observable with a finite or countably infinite
number of outcomes is described by a mapping x �→ A(x)
such that each A(x) ∈ L(H) is a positive operator [i.e.,
〈ψ |A(x)ψ〉 � 0 for all ψ ∈ H] and

∑
x A(x) = 1, where 1

is the identity operator on H. The labeling of measurement
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FIG. 1. (Color online) If A � B, then a measurement of A can be
simulated by a measurement of B and a classical channel M applied
to the measurement outcome distribution.

outcomes is not important for the questions that we will
investigate; hence we assume that the outcome set of all our
observables is N = {1,2, . . .}. We denote by O the set of
all observables on H. Let us remark that it is possible that
A(x) = 0 for some outcomes x; hence, e.g., observables with
only a finite number of outcomes are included in O by adding
zero operators. For each observable A, we denote by �A ⊆ N
the set of all outcomes x with A(x) 	= 0.

By a stochastic matrix we mean a real matrix [Mxy],
x,y ∈ N, such that Mxy � 0 and

∑
x Mxy = 1. Given two

observables A and B, we denote A � B if there exists a
stochastic matrix M such that

A(x) =
∑

y

MxyB(y) (1)

for all x ∈ N. The relation � is a preordering in O, i.e.,
A � A for every observable A, and if A � B and B � C,
then A � C. This preordering structure has been called by
different names in the literature; nonideality [10], smearing
[11], and postprocessing [12]. The physical meaning of the
relation is that if A � B, then (in the level of measurement
outcome statistics) a measurement of A can be simulated by
a measurement of B and a classical channel applied to the
measurement outcome distribution; see Fig. 1. In this sense,
B is superior to A. The physical mechanism of the additional
noise of A compared to B is typically related to a weaker
measurement coupling or impurities in the ancilla state. We
refer to [11] for some realistic examples.

Let us note that it is possible to have A � B and B � A
even if A 	= B [13]. For this reason, it is often appropriate to
study equivalence classes of observables rather than single
observables. We denote A 
 B if and only if both A � B
and B � A hold. Then 
 is an equivalence relation, and the
equivalence class of A is denoted by [A]. Physically speaking,
the equivalence class [A] contains all observables B that are
like A in all relevant ways but may differ by the ordering of
measurement outcomes or some other irrelevant detail. We
introduce the set of equivalence classes O∼ := O/ 
, and the
preorder � then induces a partial order � on O∼ by [A] � [B]
if and only if A � B. (We use the same symbol � for these
two different relations, but this should not cause confusion.) It
is easy to see that in the partially ordered set O∼, there exists
the least element, but there is no greatest element. Namely,
an observable C defined by C(1) = 1, C(j ) = 0 for j 	= 1 is
a representative of the least element since for every A ∈ O,
the equality 1 = ∑

x A(x) holds. The equivalence class [C]
consists of all “coin-tossing observables”, i.e.,

[C] =
{

Cp|Cp(x) = p(x)1,0 � p(x) � 1,
∑

x

p(x) = 1

}
.

The measurement outcome of an observable Cp is determined
by a fixed probability distribution p and does not depend on
the input state at all.

To see that there is no greatest element in O∼, suppose,
on the contrary, that B is such. Let {ϕx} be an orthonormal
basis and define an observable A by A(x) = |ϕx〉〈ϕx |. Then the
condition |ϕx〉〈ϕx | = ∑

y MxyB(y) implies that every B(y) is
proportional to some |ϕx〉〈ϕx |. But since this should hold for
the arbitrary orthonormal basis {ϕx}, we must have B(y) = 0.
This contradicts the fact that

∑
y B(y) = 1.

III. ORDER STRUCTURE OF CHANNELS

A measurement process yields a probability distribution
of measurement outcomes, but it also causes a change of the
input state. This state transformation is described by a quantum
channel. In the Schrödinger picture a channel is a completely
positive (CP) map that maps an input state to an output state.
We allow the output state to belong to a different operator
space L(K) than the input state. For instance, a mapping � �→
� ⊗ ξ , where ξ ∈ L(K) is a fixed state, is a valid channel. This
particular channel adds an ancilla system in a state ξ to the
original system.

For the purposes of this paper, it is more convenient to
use the Heisenberg picture description for channels. In the
Heisenberg picture a channel is defined as a normal com-
pletely positive map � : L(K) → L(H) satisfying �(1K) =
1H, where K is the output Hilbert space. The Schrödinger
picture description �S of a channel � can be obtained from
the relation

tr[�S(�)C] = tr[��(C)], (2)

true for all states � ∈ L(H) and operators C ∈ L(K).
We denote by C the set of all channels from an arbitrary

output space L(K) to the fixed input space L(H). For two
channels �1,�2 ∈ C, we denote �1 � �2 if there exists a
channel E such that �1 = �2 ◦ E . This relation is analogous
to the one defined for observables, and the physical meaning
of �1 � �2 is that �1 can be simulated by using �2 and E
sequentially. It is easy to see that this relation is a preorder but
not a partial order.

As in the case of observables, it is often convenient to work
on the level of equivalence classes of channels. If �1 � �2

and �2 � �1 hold, then we denote �1 ∼ �2. The relation ∼
is an equivalence relation, which allows us to introduce the
set of equivalence classes C∼ := C/ ∼. The equivalence class
of a channel � is denoted by [�] ∈ C∼, and a natural partial
order � is introduced by [�1] � [�2] if and only if �1 � �2.

In the partially order set C∼, there exist the greatest element
and the least element. Namely, for a state � ∈ L(H), we define

�� : L(H) → L(H), ��(C) = tr[�C]1H. (3)

Then for any � : L(K) → L(H), the equation �� = � ◦ �′
�

holds, where �′
� : L(H) → L(K) is defined as �′

�(C) =
tr[�C]1K. Thus [��] is the least element in C∼. On the
other hand, the identity channel id : L(H) → L(H) defined
by id(C) = C for all C ∈ L(H) belongs to the greatest
equivalence class since any channel � satisfies � = id ◦ �.
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IV. COMPATIBLE OBSERVABLES AND CHANNELS

A unifying description of the measurement outcome statis-
tics and the state change under a measurement process is
given by the notion of an instrument [14]. In the Schrödinger
picture an instrument is a mapping (x,�) �→ IS

x (�) such that
tr[IS

x (�)] is the probability of obtaining an outcome x and
the operator �̃x = IS

x (�)/tr[IS
x (�)] is the conditional output

state under the condition that a measurement outcome x

is obtained. The unconditional output state is thus given
by �̃ ≡ ∑

x IS
x (�). The map � �→ �̃ is a channel in the

Schrödinger picture. We recall that every instrument has a
measurement model consisting of an ancillary system and
its initial state, a measurement interaction, and a pointer
observable on the ancillary system [15]. As in the case of
channels, the Heisenberg picture for instruments is convenient
for our purposes. An instrument in the Heisenberg picture
is defined by a family of normal completely positive maps
Ix : L(K) → L(H) whose sum

∑
x Ix is a channel.

We are interested in what pairs of observables and channels
can belong to the same measurement process. Therefore, the
following concept is useful.

Definition 1. Let A be an observable on H. A channel � :
L(K) → L(H) is an A channel if there exists an instrument I
such that

Ix(1K) = A(x),
∑

x

Ix(C) = �(C).

We denote by CA the set of all A channels.
In other words, � is an A channel if � and A are parts of

a single instrument I. Following [16], we call such devices �

and A compatible.
Let A be an observable on L(H). If � ∈ C is an A

channel, any �′ ∈ C satisfying �′ � � is also an A channel.
Namely, suppose there exists an instrument I such that � =∑

x Ix and Ix(1) = A(x). If �′ = � ◦ E for some channel
E , then we have �′ = ∑

x Ix ◦ E and (Ix ◦ E)(1) = A(x).
Consequently, if � is an A channel, any �′ ∈ [�] is also an
A channel. Thus, a subset C∼

A of C∼ is naturally introduced
as C∼

A = {[�]| � is an A channel}. It is easy to see that the
partially ordered set C∼

A contains the least element. Namely,
C∼

A contains the least element of C∼, the equivalence class
[��], introduced in (3). The fact that �� belongs to CA for
any observable A relates to the possibility of performing a
destructive measurement; we can always measure A, destroy
the system, and prepare a state �.

A less obvious and more interesting fact is that the partially
ordered set C∼

A contains the greatest element. To construct a
channel belonging to the greatest element of C∼

A , let (K,Â,K)
be a Naimark dilation of A; K is a Hilbert space, K : H → K
is an isometry, and Â is a projection-valued measure (PVM)
on K satisfying K∗Â(x)K = A(x) for all x ∈ N. We define a
channel �A : L(K) → L(H) by

�A(C) =
∑

x

K∗Â(x)CÂ(x)K. (4)

To see that �A is an A channel, we define an instrument I by

Ix(C) = K∗Â(x)CÂ(x)K. (5)

less disturbing

disturbing

FIG. 2. (Color online) The set of C∼ of all equivalence classes
of channels is here illustrated as a net of points. A downward
path between two points means that the lower equivalence class is
below the upper one in the partial order �. The set C∼

A [red (light
gray)] consists of all elements that are below a single element [�A]
(big dot).

Then
∑

x Ix = �A and Ix(1) = K∗Â(x)K = A(x). Although
the construction of �A relies on the choice of the Naimark
dilation (K,Â,K), the following arguments do not depend
on this choice. From now on, we will always assume that a
Naimark dilation (K,Â,K) has been fixed for each observable
A; hence �A is also defined for each A.

Theorem 1. Let A be an observable. The set CA of all A
channels consists of all channels that are below �A, i.e.,

CA = {� ∈ C|� � �A}. (6)

Thus C∼
A has the greatest element [�A] and

C∼
A = {[�] ∈ C∼|[�] � [�A]}. (7)

The result of Theorem 1 is illustrated in Fig. 2. From the
mathematical point of view, the set C∼

A generated by a single
element [�A] is called a principal ideal, which is the minimal
ideal containing [�A].

From the physical point of view, Theorem 1 indicates that
there is a specific channel �A among all A channels, and
all other A-channels can be obtained from �A by applying
a suitable channel after the measurement. It is even justified
to call �A the least disturbing A channel since an additional
channel after it cannot decrease the caused disturbance.

Proof of Theorem 1. We have already seen that CA ⊇ {� ∈
C|� � �A}; hence we need to show that the inclusion holds
in the other direction as well.

Let � : L(K′) → L(H) be an A channel. To prove that
� � �A, we first fix a minimal Stinespring dilation (K′′,V )
of � [17]. Thus, K′′ is a Hilbert space, V : H → K′ ⊗ K′′
is an isometry satisfying �(C) = V ∗(C ⊗ 1)V , and the set
[L(K′) ⊗ 1]VH is dense in K′ ⊗ K′′. Since � is an A channel,
we can apply the Radon-Nikodym theorem of CP maps [18,19]
to conclude that there exists a unique observable R on L(K′′)
satisfying

A(x) = V ∗[1 ⊗ R(x)]V

for all x ∈ N. For each x ∈ �A, we define an operator cx :
H → K′ ⊗ K′′ by cx := [1 ⊗ R(x)1/2]V . Then for any C ∈
L(K′), we have

�(C) =
∑

x

c∗
x(C ⊗ 1)cx. (8)
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Since cx satisfies c∗
xcx = A(x), by the polar decomposition the-

orem there exists an isometry Wx : H → K′ ⊗ K′′ satisfying

cx = Wx

√
A(x), (9)

and therefore

�(C) =
∑

x

√
A(x)W ∗

x (C ⊗ 1)Wx

√
A(x). (10)

We note that if dimH = ∞, then the polar decomposition
theorem states that Wx is a partial isometry (and not
necessarily isometry). However, in our setting it is possible
to extend the partial isometry to an isometric operator. This
additional argument is given in the Appendix.

Let (K,Â,K) be the Naimark dilation of A. The relationship
K∗Â(x)K = A(x) implies that there exists an isometry Jx :
H → K satisfying

Â(x)K = Jx

√
A(x). (11)

Again, the argument why Jx is an isometry and not just a
partial isometry is given in the Appendix. Inserting (11) into
(10) gives

�(C) =
∑

x

K∗Â(x)JxW
∗
x (C ⊗ 1)WxJ

∗
x Â(x)K.

Finally, fix an arbitrary state ρ on K′. We define

E(C) :=
∑

x

Â(x)JxW
∗
x (C ⊗ 1K′ )WxJ

∗
x Â(x)

+ tr[ρC]

[
1 −

∑
x

Â(x)JxJ
∗
x Â(x)

]
.

Then E is a channel and

�A ◦ E(C) = �(C) + tr[ρC]

×
(∑

x

K∗Â(x)K −
∑

x

K∗Â(x)JxJ
∗
x Â(x)K

)

= �(C) + tr[ρC]

(
1 −

∑
x

√
A(x)

√
A(x)

)
= �(C).

Thus we obtain � = �A ◦ E , implying that � � �A. �
Let us emphasize that the existence of a least disturbing

channel is generally guaranteed only if the output space K
is not fixed. This is a noteworthy difference to the analogous
result on instruments. In that case, a least disturbing instrument
(in the sense of conditional postprocessing) exists even if we
fix K = H (see, e.g., Theorem 7.2 in [20]).

V. NOISE-DISTURBANCE RELATION

Suppose that A and B are two observables satisfying CB ⊆
CA. This means that every B channel is also an A channel,
so even without any quantification of noise we can conclude
that it is possible to measure A with less or equal disturbance
than generated in any measurement of B. In other words, the
unavoidable disturbance related to A is smaller than or equal
to the unavoidable disturbance related to B. This qualitative
description of disturbance will be the basis of the forthcoming
noise-disturbance relation.

A

B
informa�ve

gnibrutsidysion

less disturbing

FIG. 3. (Color online) Illustration of Theorem 2: The smearing
relation A � B of two observables (left) holds if and only if the
associated sets of channels are ordered by inclusion CA ⊇ CB (right).

The following preliminary observation is easily extracted
from our earlier discussion and Theorem 1.

Lemma 1. Let A and B be two observables. Then CB ⊆ CA
if and only if �B ∈ CA.

We are now ready to proceed to our second main result.
Theorem 2. Qualitative noise-disturbance relation. Let A

and B be two observables. Then A � B if and only if CB ⊆ CA.
This result is illustrated in Fig. 3. It is already intuitively

clear that if an observable A is noisier than B, then it should be
possible to measure A in a less disturbing way. The purpose
of Theorem 2 is to sharpen and clarify certain aspects of
this intuitive idea. First of all, Theorem 2 shows that the
fundamental trade-off between noise and disturbance is a
structural feature of quantum theory that can be expressed
even without any quantifications of these notions.

Perhaps the more surprising part of Theorem 2 is that the
inclusion CB ⊆ CA implies the smearing relation A � B. In
particular, if two observables A and B are compatible with
exactly the same set of channels, i.e., CA = CB, then A and B
are equivalent and can thus differ only by some physically
irrelevant ways. Therefore, the set CA of all A channels
characterizes the observable A essentially.

In some situations, the smearing relation A � B can be
seen as a too restrictive characterization of noise. For instance,
we may try to use A as an approximate version of B even
if A � B does not hold. Theorem 2 then implies that the
associated sets of channels are no longer in an inclusion
relation. This should not be understood in the sense that
the smearing relation A � B is the only reasonable way to
characterize noise but that it determines the setting where the
related disturbances are indisputably ordered, no matter the
quantification. A consideration on some more specific class of
measurements may well justify another kind of comparison of
observables and channels.

Proof of Theorem 2. For the only if part, suppose that A � B;
hence there exists a stochastic matrix M such that A(x) =∑

y MxyB(y). Let � : L(K) → L(H) be a B channel, meaning
that there exists an instrument I such that

Iy(1K) = B(y),
∑

y

Iy(C) = �(C).

We define an instrument I ′ by the formula I ′
x := ∑

y MxyIy .
Then it is easy to see

∑
x I ′

x = � and I ′
x(1K) = A(x).

Therefore, � is an A channel. Since � was an arbitrary B
channel, we conclude that CB ⊆ CA.
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For the if part, by Lemma 1 we have �B ∈ CA. A
Stinespring representation of �B is given by an isometry
V : H → K ⊗ K′,

V ψ =
∑
x∈�B

B̂(x)Kψ ⊗ ex,

where K′ is a Hilbert space with the dimension equal to
the cardinality of �B and {ex} is an orthonormal basis of
K′. Since �B is compatible with A, then it follows from the
Radon-Nikodym theorem of CP maps [18,19] that there exists
an observable Y acting on K′ such that

A(y) = V ∗[1 ⊗ Y(y)]V

for all y ∈ N. (When the Stinespring representation is not
minimal, the uniqueness of Y drops.) Thus we obtain for any
ψ ∈ H,

〈ψ |A(y)ψ〉 =
∑

x

∑
x ′

〈B̂(x)Kψ |B̂(x ′)Kψ〉〈ex |Y(y)ex ′ 〉

= 〈ψ |
∑

x

B(x)〈ex |Y(y)ex〉ψ〉,

where we used B̂(x)B̂(x ′) = δxx ′B̂(x). As Myx := 〈ex |Y(y)ex〉
is a stochastic matrix, we conclude that A � B. �

As a direct consequence of Theorems 1 and 2, we record
the following link between the preorderings on observables
and channels. This is, again, one manifestation of the trade-off
between noise and disturbance.

Corollary 1. Let A and B be two observables. Then A � B
if and only if their respective least disturbing channels �A and
�B satisfy �B � �A.

Finally, we note that our results can be applied to any
measure of disturbance D on the set of channels that satisfies
the natural requirement D(� ◦ E) � D(�) for all channels
� and E . Namely, Theorem 1 implies that any A channel �

satisfies D(�) � D(�A). This enables us to derive a lower
bound for the disturbance D(�) since �A has a quite simple
form. For instance, a very natural disturbance measure DKSW

was defined in [6] as

DKSW (�) = inf
R

‖� ◦ R − id‖cb,

where the infimum is taken over all channels R : L(H) →
L(K) and ‖ · ‖cb is the completely bounded norm. The function
DKSW quantifies the quality of the best available decoding
channelR for � and is easily shown to satisfy DKSW (� ◦ E) �
DKSW (�).

It was proved in [6] that DKSW (�) is bounded by the
distance between the conjugate channel and completely de-
polarizing channels. By using this result, we can show the
following.

Theorem 3. Let A and B be two observables.
(a) If A � B, then there exists an A channel �0 that can be

decoded with better or equal quality than any B channel in the
sense that DKSW (�) � DKSW (�0) for all B channels �.

(b) Every A channel � satisfies

DKSW (�) � 1
16 sup

x∈�A

[‖A(x)‖ + ‖1 − A(x)‖ − 1]2, (12)

where ‖ · ‖ is the operator norm on L(H).
The right-hand side of (12) is related to one of the functions

characterizing sharpness and bias of quantum effects; namely,

the quantity ‖A(x)‖ + ‖1 − A(x)‖ − 1 is the width of the
spectrum of A(x) [21]. It follows that the right-hand side of
(12) is zero if and only if A is a coin-tossing observable,
expressing the fact that no disturbance implies no information.

In the other extreme case, the quantity ‖A(x)‖ + ‖1 −
A(x)‖ − 1 takes the maximal value 1 if and only if the spectrum
of A(x) contains both 0 and 1 [21, Proposition 2]. For instance,
if A contains a nontrivial projection A(x) [i.e., A(x)2 = A(x)
and 0 	= A(x) 	= 1], then Theorem 3 gives DKSW (�) � 1

16 for
all A channels �. This is a lower bound on the quality of the
best available decoding channel for any A channel.

Proof of Theorem 3. (a) We choose �0 = �A, and then the
claim is a direct consequence of Theorems 1 and 2.

(b) Let � be a channel compatible with A. As was explained
above, we have

DKSW (�) � DKSW (�A). (13)

Thus, in the following we estimate DKSW (�A), and this will
lead to a lower bound for DKSW (�). Channel �A has a
Stinespring representation (K′,V ), where K′ = C|�A| (|�A|
may be infinity) and V is defined by

V ψ =
∑

x

Â(x)Kψ ⊗ ex,

where {ex} is an orthonormal basis of K′. Its conjugate channel
�c : L(K′) → L(H) is

�c(C) =
∑

x

〈ex |Cex〉 A(x).

Let us denote the completely depolarizing channel with
respect to a state σ on K′ by Sσ , i.e., Sσ (C) = tr[σC]1.
According to [6, Theorem 3], there exists σ satisfying

‖�c − Sσ‖cb � 2D(�A)1/2.

Thus we have to estimate infσ ‖�c − Sσ‖cb. Let us denote by
‖ · ‖∞ the operator norm of channels. As we have

inf
σ

‖�c − Sσ ‖cb � inf
σ

‖�c − Sσ‖∞

� inf
σ

sup
E: projection

‖�c(E) − Sσ (E)‖,

it holds that for each x,

inf
σ

‖�c − Sσ‖cb � inf
σ

‖�c(|ex〉〈ex |) − Sσ (|ex〉〈ex |)‖
= inf

σ
‖A(x) − 〈ex |σex〉 1‖

= inf
0�p�1

‖A(x) − p1‖

= ‖A(x)‖ + ‖1 − A(x)‖ − 1

2
.

(For the last equality, see, e.g., [21].) We have thus proved that

1
4

(‖A(x)‖ + ‖1 − A(x)‖ − 1
)

� D(�A)1/2 (14)

for each x ∈ N. From (13) and (14) follows (12). �

VI. EXAMPLE: BINARY QUBIT MEASUREMENTS

The simplest kind of measurements are binary (i.e., two-
outcome) measurements on a qubit system. For each vector
�v ∈ R3 with ‖�v‖ � 1, we define a binary qubit observable

042117-5



TEIKO HEINOSAARI AND TAKAYUKI MIYADERA PHYSICAL REVIEW A 88, 042117 (2013)

A�v by A�v(±1) = 1
2 (1 ± �v · �σ ). It is easy to see that A �w � A�v

if and only if �w and �v are parallel vectors and ‖ �w‖ � ‖�v‖.
To demonstrate how this order structure of observables is
reflected in the measurement disturbance, let us consider the
Lüders measurements for the above type of qubit observables.
The Lüders instrument related to A�v is defined as I �v

x (C) =√
A�v(x)C

√
A�v(x), x = ±1. The corresponding channel is

��v = I �v
1 + I �v

−1 = λ id + (1 − λ) V , where

V(C) = 1/ ‖�v‖2 �v · �σC�v · �σ , λ =
1 +

√
1 − ‖�v‖2

2
. (15)

Let us note that the unitary channel V depends on the direction
of �v but not on its norm, while the weight λ depends on the
norm of �v but not on its direction. Applying Theorem 2 for
two observables A�v and A �w with parallel vectors �v and �w, we
conclude that for two parameters λ,μ ∈ [ 1

2 ,1] and a unitary
channel V defined in (15), there exists a channel E such that

[λ id + (1 − λ) V] ◦ E = [μ id + (1 − μ) V] (16)

if and only if λ � μ. This is in line what we would expect;
the sharper the measurement is, the smaller the weight of
the identity channel must be. In this example, it is not too
difficult to find the concrete form of a channel E satisfying
(16). Namely, for all λ,λ′ ∈ [ 1

2 ,1], we obtain

[λ id + (1 − λ) V] ◦ [λ′ id + (1 − λ′) V]

= [(1 − λ − λ′ + 2λλ′) id + (λ + λ′ − 2λλ′) V]. (17)

Hence, for every μ < λ we can choose λ′ = (μ + λ −
1)/(2λ − 1), and then (17) leads to (16).

VII. SUMMARY

Classical and quantum postprocessings yield physically
meaningful preorderings in the sets of observables and
channels, respectively. When lifted to the sets of equivalence
classes, these relations become partial orderings. The partial
orderings can be seen as abstract and general ways to describe
certain important forms of noise and disturbance. We have
proved that the fundamental trade-off between noise and
disturbance in quantum measurements takes a very natural
form in this framework. Namely, an observable A is more noisy
than another observable B if and only if the set of A channels
(the channels that possibly describe the state transformation in
some measurement of A) is larger than the set of B channels.
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APPENDIX: ISOMETRIES IN THE PROOF
OF THEOREM 1

If dimH = ∞, then the polar decomposition theorem states
that a bounded operator C can be written as C = W

√
C∗C,

where W is a partial isometry. Generally, W cannot be chosen
to be an isometry. In this appendix we show that in the two
cases treated in Theorem 1, partial isometries can be replaced
with isometries.

First, we prove that the operator Wx in (9) can be chosen
to be an isometry. Since cx satisfies c∗

xcx = A(x), there
exists a partial isometry W 0

x : H → K′ ⊗ K′′ satisfying cx =
W 0

x

√
A(x) and Ker[W 0

x ] = Ker[A(x)]. This latter condition
implies that W 0∗

x W 0
x = PKer[A(x)]⊥ holds, where for a subspace

V ⊆ H PV is the projection onto V and V⊥ represents the
orthogonal complement of V . Let us extend W 0

x to an isometry.
We have 1 − A(x) = V ∗{1K′ ⊗ [1K′′ − R(x)]}V . Thus there
exists a uniquely determined partial isometry W ′

x satisfying

dx := {1K′ ⊗ [1K′′ − R(x)]1/2}V = W ′
x

√
1H − A(x)

and Ker[W ′
x] = Ker[1H − A(x)]. Note that Ker[1H −

A(x)]⊥ ⊇ Ker[A(x)]. Thus we can restrict W ′
x to Ker[A(x)]

and write it as W 1
x . It satisfies W 1∗

x W 1
x = PKer[A(x)]. Now it can

be shown that W 0∗W 1 = 0. In fact, we have

c∗
xdxPKer[A(x)] =

√
A(x)W 0∗

x W 1
x

√
1H − A(x)PKer[A(x)]

=
√

A(x)W 0∗
x W 1

x .

The left-hand side of this equality can be written as

c∗
xdxPKer[A(x)]

= V ∗{1K′ ⊗ R(x)1/2[1K′′ − R(x)]1/2}V PKer[A(x)]

= V ∗{1K′ ⊗ [1K′′ − R(x)]1/2[1K′ ⊗ R(x)1/2]}V PKer[A(x)].

As [1K′ ⊗ R(x)1/2]V PKer[A(x)] = 0 holds, we have√
A(x)W 0∗

x W 1
x = 0 and W 0∗

x W 1
x = 0. Thus we can

define an isometry Wx = W 0
x ⊕ W 1

x on the whole
space H. Consequently, we have obtained an isometry
Wx : H → K′ ⊗ K′′ satisfying cx = Wx

√
A(x).

Second, we show that the operator Jx in (11) can be chosen
to be an isometry. The relationship K∗Â(x)K = A(x) implies
that there exists a partial isometry J 0

x : H → K satisfying
Â(x)K = J 0

x

√
A(x) and Ker[J 0

x ] = Ker[A(x)]. Since

K∗[1 − Â(x)]K = 1 − A(x) (A1)

holds, there exists a partial isometry J ′
x : H → K satisfying

1 − Â(x) = J ′
x

√
1 − A(x) (A2)

and Ker[J ′
x] = Ker[1 − A(x)]. We denote by J 1

x the restriction
of J ′

x to Ker[A(x)]. Then Jx := J 0
x ⊕ J 1

x is an isometry
satisfying Â(x)K = Jx

√
A(x).
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