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Quantum state tomography from a sequential measurement of two variables in a single setup
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We demonstrate that the task of determining an unknown quantum state can be accomplished efficiently by
making a sequential measurement of two observables, Â and B̂, the eigenstates of which form bases connected by
a discrete Fourier transform. The state can be pure or mixed, the dimension of the Hilbert space and the coupling
strength are arbitrary, and the experimental setup is fixed. The concept of Moyal quasicharacteristic function is
introduced for finite-dimensional Hilbert spaces.
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I. INTRODUCTION

A colleague has challenged you: she has built a black box
from which, upon the pressing of a button, a quantum system is
released. What is the state of the system? You are not allowed
to open the box or to measure any of its properties. You can
only measure the quantum system and repeat as many times
as you want. This is the essence of quantum state tomography.

The preparation of a quantum system is characterized by
a quantum state, which is given by the density operator, a
positive-definite operator of trace 1 in a Hilbert space. Often,
some information about the system is missing, but it could be
recovered, in principle, from the environment and from the
preparing apparatus. When all this information is retrieved,
which can be done without disturbing the system in any way,
the quantum system is described by a pure state, i.e., a density
operator of rank 1, which can be written as ρsys = |ψ〉〈ψ |
in terms of a vector |ψ〉 of the Hilbert space. However, in
general, this information is lost for all practical purposes, and
the system is to be described by a density operator of higher
rank. A fundamental question is, then, How do we determine
the unknown state ρsys of a quantum system?

Reconstructing the unknown quantum state ρsys is believed
to be a difficult task, requiring the separate measurement
of several observables. The usual approach is to take the
system in the unknown state and measure the statistics of
an observable Â1, then, with a distinct ensemble of identically
prepared systems, measure another observable Â2, etc. The
observables Â1,Â2, . . . ,Ân needed to reconstruct the quantum
state are known as the quorum, and they usually number as d2,
with d the dimension of the Hilbert space, even though some
improvement over this number can be achieved [1]. Usually,
from each measurement, only the average value is extracted.
For instance, to reconstruct the state of a spin-1/2 system,
the average values nj = 〈σj 〉, j = x,y,z, are calculated, and
the state ρsys = (1 + n · σ )/2 is reconstructed. The noise
introduced by the detectors is then a hindrance. However, it
is important to note that the full probability distribution of
the output is a function (typically, a convolution) both of the
initial state of the detector and of ρsys. Thus, extracting only one
number, the average, of the many repetitions of a measurement
is extremely limitative and a waste of useful information.
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Furthermore, the most commonly used statistical tool for
the reconstruction of the state is the maximum likelihood
estimation, which does not take into account the positive
definiteness of the density operator and may give rise to rank-
deficient estimates. Ad hoc corrections are often devised to
overcome this difficulty. The recently introduced Bayesian [2]
approach has solved the latter issue, but its adoption is slow. We
remark that in the Bayesian approach, the maximum likelihood
estimate is justified when uniform priors are assumed and
a particular cost function is postulated [3]. In any case,
the number of different setups needed for quantum state
tomography increases with the dimension of the Hilbert space,
making the process time-consuming.

Recently, many schemes based on weak measurement
[4–7] have been proposed for quantum state tomography.
Experimental realizations have also been demonstrated [8,9].
However, a distinct disadvantage of such schemes is that,
on one hand, the formulas for the weak measurement are
approximated, introducing a further uncertainty in the recon-
struction, and, on the other hand, the weak measurement relies
on postselection, which requires that only a fraction of the data
be retained, yielding a reduced efficiency.

Haapasalo et al. [10] have also pointed out the superiority
of phase-space methods over weak measurement methods in
order to reconstruct the wave function. This suggests looking
for an extension of phase-space methods to finite-dimensional
Hilbert spaces. In doing so, we propose a generalization of
the Moyal function [11]. The justification for this choice is
that the Moyal function has revealed itself to be an extremely
useful tool for describing the statistics of joint and sequential
measurements of momentum and position [12,13].

A promising avenue for efficient quantum state tomography
was opened by considering measurements in mutually unbi-
ased bases [14–16]. All the proposals of which we are aware,
however, require many different setups, at least as many as the
dimension of the Hilbert space.

Here, instead, we propose a quantum state tomography
scheme consisting in a single sequential measurement of
arbitrary strength and relying on an exact relation between
the initial state of the system and the final output of the
measurement. The whole statistics of the measurement is used,
and the nonsharpness of the detector is turned into a resource,
rather than an obstacle. Our scheme uses a particular pair of
mutually unbiased bases, the Fourier conjugated bases. We
demonstrate that there are infinitely many pairs of observables
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Â,B̂ that allow the reconstruction of an unknown quantum
state ρsys, be this pure or mixed. Furthermore, by suitably
choosing the first measured observable Â, it is possible to
obtain the representation of the state, 〈m|ρsys|m′〉, in any basis
of choice. We recover the results of Ref. [13] in the limit
d → ∞. Furthermore, a sequential measurement of position
and momentum may lead to a violation of the Heisenberg
noise-disturbance principle [17] if the detectors are initially in
a correlated state. The result provided here applies whether or
not the detectors are initially correlated.

A related proposal was made by Leonhardt [18,19], who
introduced a different quantum characteristic function for
discrete systems (see Appendix A for a discussion) and
proposed using Ramsey techniques to transform the quadrature
observables into energy eigenstates. Furthermore, recently
Carmeli et al. [20] have demonstrated that sequential measure-
ments of conjugated observables are informationally complete,
i.e., for any two density matrices of the system ρ1 �= ρ2,
the probabilities differ, P (A,B|ρ1) �= P (A,B|ρ2). Thus, in
principle, there is a one-to-one correspondence between the
density matrices and the probabilities P (A,B|ρ). The present
article provides this correspondence.

II. PRELIMINARY DEFINITIONS

We report the conventions used throughout this paper:
(i) d integer, dimension of the Hilbert space;

(ii) S = (d − 1)/2 integer or half-odd “spin”;
(iii) m,m′ integer or half-odd numbers spaced by 1 in the

range [−S,S];
(iv) μ = m − m′ integer in the range [1 − d,d − 1];
(v) M̄ = m+m′

2 integer or half-odd in the range [−S +
|μ|/2,S − |μ|/2] for fixed μ; and

(vi) I integers or half-odd numbers in the range [−S,S].
Our scheme is based on the quantum version of the

characteristic function, the Moyal quasicharacteristic function,
or quantum characteristic function. Recall that for a classical
probability distribution P(ξ ), one can define its characteristic
function as the Fourier transform

Z(χ ) =
∫

dξeiχξP(ξ ). (1)

The derivatives of Z at χ = 0 give the moments of the
distribution; its logarithmic derivatives give the cumulants
[21]. For a classical pointlike particle in one dimension,
ξ = (p,q), momentum and position. In quantum mechanics,
however, the momentum and position operators p̂ and q̂,
do not commute, hence it is not possible, in general, to
characterize a quantum pointlike particle in one dimension
through a non-negative probability P . Instead, we must use
the Wigner function W(p,q), which can take negative values.
The quantum characteristic function M is then defined as
the Fourier transform of the Wigner function, M(χp,χq) =∫

dpdq exp [iχpp + iχqq]W(p,q). After some straightfor-
ward algebra,

M(χp,χq) = 〈exp[iχpp̂ + iχq q̂]〉, (2)

where the quantum mechanical average is defined as

〈Ô〉 = Tr[Ôρ], (3)

with ρ the density operator and Tr the trace. The quantum char-
acteristic function is thus obtained by the inverse Weyl-Wigner
transform [22,23]. It solves the question, Given the classical
moments pmqn, what is their equivalent expression in terms of
quantum mechanical averages (3)? In the simple case pq we
know that the prescription is to take the symmetric combination
〈p̂q̂ + q̂p̂〉/2, but for higher powers there are several possible
combinations. As it turns out, the correct combination of
〈p̂ . . . q̂ . . . 〉 is obtained by differentiating the Moyal function
at χp = 0,χq = 0. This is equivalent to taking the average with
the Wigner function pmqn → ∫

dpdqpmqnW(p,q).
Now, for a finite-dimensional system, two questions arise:
(i) How do we define two complementary operators Â and

B̂? and
(ii) How do we define the quantum characteristic function?
Clearly, we place the restriction that in the limit d → ∞

of an infinite dimension, Â → q̂, B̂ → p̂, and definition (2)
is recovered. The answers to the questions above are not
unique, since the quantum characteristic function, (2), can be
written in several equivalent ways using the Baker-Campbell-
Hausdorff formula, making the extension to a finite dimension
ambiguous. The sense in which the operators Â and B̂ are
complementary cannot be that a relation [Â,B̂] = i is satisfied,
since, by taking the trace of this expression, we get the
contradiction 0 = id. The canonical commutation relation can
be obeyed only in an infinite-dimensional space, where the
domain of q̂ and p̂ is a proper subset of the full Hilbert
space. Question ii is strictly related to the generalization of
the Wigner function to a finite-dimensional system, a subject
of great interest that has spawned many proposals [24].

Here, instead of extolling the virtues of our pet proposal
based on aesthetic considerations, we take a pragmatic
attitude: we consider the sequential measurement of two
arbitrary operators, then define the pair of observables Â,B̂

as complementary when they simplify the expression for the
measurement and define the discrete characteristic function in
such a way that the final characteristic function of the outputs
has a simple expression in terms of it as well. The definitions
presented below, hence, were not chosen arbitrarily, but were
suggested by the physics, as explained in the Methods section.

We answer question 1 following Schwinger [25]: we
consider an orthonormal basis |m〉 labeled by an index m ∈
I = {−S, − S + 1, . . . ,S}, with d = 2S + 1 the dimension
of the Hilbert space. Thus m is either an integer (a half-even)
or a half-odd number, depending which of the two S is. We
define the conjugate basis as

|m̃〉 = 1√
d

∑
m′

exp[2πimm′/d]|m′〉. (4)

It is easy to check that |m̃〉 form an orthonormal basis when m

ranges in I. Notice that the tilde symbol is associated to the
basis, not to the index m.

We define an operator Â having ma0 as eigenvalues and |m〉
as eigenstates, and an operator B̂ having the eigenvalues mb0

but |m̃〉 as eigenstates; the scales are a0 = l0/
√

d and b0 =
2π/(l0

√
d) = 2π/(da0), with l0 some fundamental length

scale. The scaling factors guarantee that Â → q̂ and B̂ → p̂

for d → ∞. We consider a sequential measurement, with a
first probe measuring Â, and then a second probe measuring
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FIG. 1. Allowed values of M̄ (numbers) for fixed μ (color) in
d = 5. Elements of Msys with a given μ are combinations of the
elements of ρsys with the same μ, i.e., belonging to the same diagonal
parallel to the main diagonal of the density matrix.

B̂. Here and in the following, we consider the momentum p

in units of h̄, so that it has dimensions L−1. We remark that

exp[iza0B̂]|m〉 = (−1)(d−1)rm−z |f (m − z)〉 (5)

for any m ∈ I and any z ∈ Z, where f (m − z) is the difference
m − z reduced to the interval I by subtracting an appropriate
integer multiple of d, rm−zd. In particular, exp [ia0B̂]|−S〉 =
(−1)d−1|S〉 and exp [−ia0B̂]|S〉 = (−1)d−1|−S〉. Thus B̂ is
the generator of the modular translations for the basis |A〉. The
viceversa also holds true. As a matter of fact, our conventions
differ from the ones used by Schwinger [25], and coincide
with the ones introduced by de la Torre and Goyeneche [26].

We answer question 2 defining the Moyal function as

Msys(φA; a) =
∑
M̄

eiφAM̄a0

〈
M̄ + μ

2

∣∣∣∣ρsys

∣∣∣∣M̄ − μ

2

〉
, (6)

where μ is an integer of the form m − m′, with m,m′ ∈ I, so
μ ∈ [1 − d,d − 1], and a = μa0. The sum over M̄ is restricted
by the condition that M̄ ± μ/2 belong to I. See Fig. 1 for an
example. This is a fundamental difference from the definition
proposed by Leonhardt [18,19]. For instance, if μ takes its
maximum value μ = 2S = d − 1, then M̄ can only be zero.
In general, the values of M̄ go from −S + |μ|/2 to S − |μ|/2,
and M̄ is integer or half-odd depending whether S − |μ|/2
is. While the Moyal function Eq. (6) is defined for any φA,
in order to invert it we need to evaluate only at the finite
discrete values φA = 2πM̄A/[a0(d − |μ|)], with M̄A ∈ [−S +
|μ|/2,S − |μ|/2],

〈m|ρsys|m′〉

=
∑
M̄A

e−2πiM̄AM̄/(d−|μ|)

d − |μ| Msys

(
2πM̄A

a0(d − |μ|) ; μa0

)
, (7)

with M̄ = (m + m′)/2 and μ = m − m′.
As an example, consider a spin-1/2 particle. Then we can

take Â = σz/2, and B̂ = −πσy/2 as complementary observ-
ables, with σj Pauli matrices, having chosen l0 = √

2 and
hence a0 = 1, b0 = π . The general state ρsys = (1 + n · σ )/2
has the characteristic function Msys(φA; 0) = cos (φA/2) +
i sin (φA/2)nz,Msys(φA; ±1) = (nx ∓ iny)/2. In this case, the
inversion formula (7) gives directly the off-diagonal elements
for μ = 1, while for μ = 0 the required values of φA are ±π/2.

Finally, we assume that the initial quantum state of the
probes is known, that the pointer variables ĴA,ĴB , have
a continuous spectrum and thus have conjugate variables,

	̂A,	̂B , respectively. Starting from the initial density operator
of the two probes ρpr, we infer their initial Moyal function

Mpr(φ; j ) = 〈exp(iφ · Ĵ + ij · 	̂)〉

=
∫

dJ eiφ·J
〈
J + j

2

∣∣∣∣ ρpr

∣∣∣∣J − j

2

〉
. (8)

For brevity, we indicate by J = (JA,JB), φ = (φA,φB), etc.,
vectors in an auxiliary two-dimensional Euclidean space.

III. METHODS

Let us consider the probability of observing a readout J =
(JA,JB ) from the two detectors after they have interacted with
the system through the von Neumann model,

Hint = −δ(t + τ )Â	̂A − δ(t − τ )B̂	̂B, (9)

with τ → 0+ an infinitesimal time. For now, no relation is
assumed between the observables of systems Â and B̂. The
variables 	̂ belong to the detectors, and they are conjugated
to the readout variables, [	̂,Ĵ ] = i. By Born’s rule,

P(J ) = Tr{[1 ⊗ �̂(J )]Uint[ρsys ⊗ ρpr]U
†
int}, (10)

with Uint = exp[iB̂	̂B] exp[iÂ	̂A] the time-evolution opera-
tor and �̂(J ) the projection operator over the eigenstates of Ĵ

with eigenvalues J .
Next, we consider the characteristic function, defined as the

Fourier transform of the observable probability:

Z(φ) =
∫

dJeiφ·JP(J )

= Tr{[1 ⊗ eiφ·Ĵ ]Uint[ρsys ⊗ ρpr]U
†
int}. (11)

We write the trace as

Tr[Ô] =
∑
B

∫
dJ 〈B,J |Ô|B,J 〉, (12)

obtaining

Z(φ) =
∑

B,A,A′

∫
dJeiφ·J 〈J − C|ρpr|J − C ′〉

× 〈B|A〉〈A|ρsys|A′〉〈A′|B〉, (13)

where we have written the initial state of the system in the
basis of eigenstates of Â, ρsys = ∑

A,A′ |A〉〈A|ρsys|A′〉〈A′|,
exploited the fact that 	̂ generates the translations in the
|J 〉 basis, exp[ix · 	̂]|J 〉 = |J + x〉, and defined the aux-
iliary vectors C = (A,B), C ′ = (A′,B). Now, let us define
Ā = (A + A′)/2 and a = A − A′ and change the integration
variables to JA − Ā and JB − B. Then

Z(φ) =
∑

a

Mpr(φ; ja)Nsys(a|φ), (14)

Nsys(a|φ) =
∑
Ā∈Da

eiφAĀ

〈
Ā − a

2

∣∣∣∣eiφBB̂

∣∣∣∣Ā + a

2

〉

×
〈
Ā + a

2

∣∣∣∣ρsys

∣∣∣∣Ā − a

2

〉
, (15)

where ja = (−a,0) and we have introduced the Moyal qua-
sicharacteristic function for the probes, as defined in Eq. (8).
Note that the domain of summation in Ā depends on a. In

042114-3



ANTONIO DI LORENZO PHYSICAL REVIEW A 88, 042114 (2013)

FIG. 2. (Color online) Schematic of the tomography. A system in an unknown state couples sequentially to two detectors through the
interactions Â	̂A and B̂	̂B . The outputs JA and JB of the probes are read, the measurement repeated a large number of times, and the joint
probability P(J ) estimated. Then the characteristic function Z is extracted through a Fourier transform (FT), and the known state of the probes
undergoes a partial FT (PFT) to give their Moyal function Mpr. Simple algebraic operations (calculator icon) are then applied to Z and Mpr

in order to get the Moyal function of the system Msys. Finally, a PFT yields the target density matrix.

general, Eqs. (14) and (15) are too complicated to invert and
be useful in reconstructing the quantum state. For instance, if Â

and B̂ commute, only diagonal terms contribute to Nsys(a|φ),
so that no reconstruction of the quantum state is possible,
as one can only find the the diagonal elements of ρsys, as
expected. Furthermore, if Â and B̂ have mutually unbiased
eigenbases with a constant relative phase, such that 〈A|B〉 =
1/

√
d, then Nsys(a|φ) = g(φB)Msys(φA; a), with g(φB) =∑

B exp(iφBB)/d, and no actual simplification occurs.
On the other hand, it is clear from Eq. (15) that if, for some

φB , the operator exp (iφBB̂) translates the eigenstates of Â into
each other, then few terms (precisely, two) in a survive. Thus,
we exploit the freedom that we have in choosing the bases |A〉
and |B〉, and we assume that they are Fourier conjugated, i.e.,

〈A|B〉 = exp[iBA]√
d

, (16)

with the eigenvalues of Â being of the form A = ma0, and
those of B̂ being B = mb0, with m an integer or half-odd in
the range [−S,S].

We write exp[iφBB̂] in Eq. (15) as
∑

B |B〉〈B| exp[iφBB],
then substitute Eq. (16) in Eq. (15) so rewritten, obtaining

Nsys(a|φ) =
∑
m

∑
M

eiφAĀ+i(φB−a)B

d

〈
Ā + a

2

∣∣∣∣ρsys

∣∣∣∣Ā − a

2

〉

= sin [π (φB − a)
√

d]

d sin [π (φB − a)/
√

d]
Msys(φA; a), (17)

with B = mb0, m ∈ I, Ā = M̄a0, M̄ ∈ [−S + |μ|/2,S −
|μ|/2], a = μa0, and μ ∈ [1 − d,d − 1]. We have introduced
the Moyal quasicharacteristic function of the system, relative
to the |A〉 basis, defined in Eq. (6). Furthermore, for φB =
μ′a0, μ′ ∈ [1 − d,d − 1], Nsys(a|φ) in Eq. (17) simplifies to

Nsys(a|φ) = δa,φB
Msys(φA; φB) + δa,φ̄B

Msys(φA; φ̄B). (18)

For φB = 0, instead, only one term survives:

Nsys(a|(φA,0)) = δa,0Msys(φA; 0). (19)

Hence, after substituting Eq. (18) into Eq. (14) evaluated at the
discrete points φB = μ′a0, we get the main result, Eq. (20).

IV. RESULTS

After repeating the measurement of Â and B̂ many times,
we can estimate P(JA,JB ), the joint probability of observing
the outputs JA and JB in two probes that make a nondemolition
measurement of the system. Then we calculate Z(φA,φB),
the final characteristic function, i.e., the Fourier transform
of P(JA,JB). The following relation holds between the final
characteristic function and the initial Moyal functions,

Z(φ) = Mpr(φ; −φσ+)Msys(φA; φB)

+Mpr(φ; −φ̄σ+)Msys(φA; φ̄B), (20)

for any φA and for φB = μa0, with μ an integer in the

range [1 − d,d − 1], excluding μ = 0; here, σ+ = (
0 1
0 0 ),

φ̄ = (φA,φ̄B), and φ̄B = [μ − sgn(μ)d]a0. Equation (20) is
the central result of this paper.

Note that ¯̄φB = φB . Thus, if we take Eq. (20) at φ =
(φA,φ̄B), we have a closed system of two linear equations in
the two unknowns x = Msys(φA; φB) and y = Msys(φA; φ̄B).
Therefore, we have to solve several decoupled linear equations
in two unknowns for different values of φA. This allows us
to finally reconstruct the density matrix in the basis of the
eigenstates of Â by using Eq. (7). Figure 2 illustrates the above
procedure. In the limit d → ∞, the second addend in Eq. (20)
goes to 0, and the result of Ref. [13] is then recovered.

V. DISCUSSION

An issue to consider is whether assuming the state of the
detectors to be known introduces some circularity into the
argument. On one hand, we could consider self-consistent
calibration and bootstrapping, and on the other hand, the
state of the detectors could be determined by means of a
standard quantum state tomography scheme for a continuous
variable [27]. Then one would know that the detectors prepared
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in a certain way are in a state ρpr and could use them to apply
the tomographic scheme presented herein to determine the
state of any quantum system that couples appropriately to the
detectors, leading to an overall increased efficiency.

For simplicity of exposition, we have used the von
Neumann model of measurement and assumed that the readout
of the detectors had infinite precision. However, the results are
valid for any nondemolition sequential measurement, and it
can be shown that, under some hypotheses, a finite resolution in
the readout introduces a factor z0(φ) in front of the right-hand
side of Eq. (20).
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APPENDIX A: COMPARISON WITH LEONHARDT’S
DEFINITION OF THE MOYAL FUNCTION

Leonhardt [18,19] proposed a tomographic scheme based
on a definition of quantum characteristic function for finite-
dimensional Hilbert spaces. While Leonhardt’s definition
differs from ours, the two definitions are related, and in
the following we discuss them. We base our discussion on
Ref. [19].

First, a remark about the notation is in order. Leonhardt uses
an index m that ranges from −S to S = (d − 1)/2 for odd d

and from 1 − d/2 to d/2 for even d. We use the letter l, instead
of m, for this index, while we keep m to denote an integer or
half-odd in the range [−S,S], as in the text. Furthermore, the
states |l〉 coincide with our states |m〉 for odd d, but for even
d there is a difference between our notation and Leonhardt’s.
Here, we indicate as customary with |m〉 the states of the
tomographic basis, with the proviso that for even d, Leonhardt
uses the notation |m + 1/2〉L. To keep the notation compact,
we introduce the number f = 1 for even d and f = 0 for odd
d, representing the fermionic character of the Hilbert space.

Leonhardt defines the characteristic function as

W̃ (ν,n) =
S+f/2∑

l=−S+f/2

exp

[
−4πi

d
n(l − ν)

]
L〈l|ρ|l − 2ν〉L

=
S∑

m=−S

exp

[
−4πi

d
n(m + f/2 − ν)

]
〈m|ρ|m − 2ν〉,

(A1)

with the convention that whenever m − 2ν is outside the range
[−S,S], it is reduced back to it by adding or subtracting an
appropriate multiple of d. Note that 2ν is limited to integer
values, but n can be arbitrary. Thus, for ease of comparison,
we put −4πn/d = φ and 2ν = μ, substitute φ for n as the
first argument, and substitute μ for ν as the second argument,
so that W̃(φ; μ) ≡ W̃ (μ/2, − φd/(4π )). Furthermore, noting
that W̃(φ; μ + d) = exp[−iφd/2]W̃(φ; μ), the values of μ

can be restricted to the range [0,d − 1].

In the text, we defined the Moyal function as

M(φ; μ) =
S−|μ|/2∑

M̄=−S+|μ|/2

eiφM̄

〈
M̄ + μ

2

∣∣∣∣ρ
∣∣∣∣M̄ − μ

2

〉
. (A2)

With the position m → m − μ/2, we can rewrite Eq. (A1) as

W̃(φ; μ) =
S−μ/2∑

m=−S−μ/2

exp[iφ(m + f )]

×〈m + μ/2|ρ|m − μ/2〉. (A3)

For μ = 0, we have that the two definitions coincide, apart
from a phase factor for the even-dimensional case:

W̃(φ; 0) = eiφf/2M(φ; 0). (A4)

For μ > 0, we can split the sum in Eq. (A3) as

W̃(φ; μ) =
⎡
⎣ S−μ/2∑

m=−S+μ/2

+
−S+μ/2−1∑
−S−μ/2

⎤
⎦ exp[iφ(m + f/2)]

×〈m + μ/2|ρ|m − μ/2〉. (A5)

The first sum yields exp[iφf/2]M(φ; μ). In the second sum,
we put μ = μ̃ + d (note that μ̃ < 0), m = m̃ − d/2, obtaining

S+μ̃/2∑
m̃=−S−μ̃/2

exp{iφ[m̃ + (f − d)/2]}

× 〈m̃ + μ̃/2 + d|ρ|m̃ − μ̃/2〉
= exp[iφ(f − d)/2]M(φ; μ̃), (A6)

where we have exploited the convention that |m̃ + μ̃/2 + d〉 =
|m̃ + μ̃/2〉. Thus, we find that, for μ > 0,

W̃(φ; μ) = exp[iφf/2]M(φ; μ)

+ exp[iφ(f − d)/2]M(φ; μ − d). (A7)

In particular, for the discrete values considered by Leonhardt,
φ = −4πn/d,

W̃ (ν,n) = exp[−2πinf/d][M(−4πn/d; 2ν)

+M(−4πn/d; 2ν − d)]. (A8)

APPENDIX B: FURTHER DISCUSSION

As both Â and B̂ have the same eigenvalues, except for
a trivial rescaling, we can write B̂ = (b0/a0)UÂU †, with
U a unitary operator. Precisely, U = ∑

m |m̃〉〈m|. Let us
say, for definiteness, that the Hilbert space represents an
angular momentum S and that Â = a0Ŝz is proportional to an
angular momentum operator, in the sense that, upon rotation, it
transforms accordingly. The natural question arises: Is B̂/b0 an
angular momentum operator as well? i.e., Is there a unit vector
n such that B̂ = b0n · Ŝ? The answer is no, unless d = 2, since
in the latter case any unitary operator corresponds to a rotation.
In general, however, the distinct unitary operators, modulo
a global phase, are characterized by d2 − 1 real parameters,
while there are only three independent rotations [28]. The
proof that, for d > 2, none of these rotations yields B̂/b0 = Ŝn
is as follows: since exp(−(i/

√
d)B̂)|S〉 = ±| − S〉, B̂ must be

B̂ = (2z + 1)π
√

dŜ⊥, with z ∈ Z and the ⊥ symbol indicating
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an appropriate direction in the plane orthogonal to Z. Thus,
Ŝn = [(2z + 1)d/2]Ŝ⊥. This equation implies necessarily that
⊥= ±n, d = 2, and either z = 0 or z = −1.

At any rate, Reck et al. [29] have proved that any unitary
operator U in a finite-dimensional Hilbert space can be realized
by a suitable combination of elementary unitary operators
that act nontrivially only in a two–dimensional subspace.
Furthermore, in quantum computation, it is well known that if
the Hilbert space is made up of N distinguishable qubits, any

unitary operator can be approximated at will by a sequence of
controlled nots and of elementary unitary operations on each
qubit.

The main problem consists, then, in constructing the
operator Â, in the worst-case scenario that this is not provided
to us by Nature. For a system composed of n distinguishable
qubits, the operator Â can be constructed, apart from a trivial
shift and rescaling as Â = ∑N

p=1 2p−1σz,p, with σz,p a spin
operator on the pth qubit.
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