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It is known that the violation of Svetlichny’s inequality (SI), rather than the usual Mermin’s inequality (MI),
is a robust criterion to confirm the existence of genuine multipartite quantum nonlocality. In this paper, we
propose a feasible approach to test SI with three two-level atoms (TLAs) dispersively coupled to a driven
cavity. The proposal is based on the joint measurements of the states of three TLAs by probing the steady-state
transmission spectra of the driven cavity: each peak marks one of the computational basis states and its relative
height corresponds to the probability superposed in the detected three-TLA state. With these kinds of joint
measurements, the correlation functions in SI can be directly calculated, and thus the SI can be efficiently
tested for typical tripartite entanglement, i.e., genuine tripartite entanglement [e.g., Greenberger-Horne-Zeilinger
(GHZ) and W states] and biseparable three-qubit entangled states (e.g., |χ〉12|ξ〉3). Our numerical experiments
show that the SI is violated only by three-qubit GHZ and W states, not by biseparable three-qubit entangled state
|χ〉12|ξ〉3, while the MI can still be violated by biseparable three-qubit entangled states. Thus the violation of SI
can be regarded as a robust criterion for the existence of genuine tripartite entanglement.
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I. INTRODUCTION

Quantum entanglement [1] and quantum nonlocality [2]
are two fundamental features of quantum systems. They are
in fact two different concepts in quantum theory, even if
they are indeed intimately related. Mathematically, quantum
entanglement means that the state of a quantum system
cannot be expressed as the form of product state or the
convex sum of product states. Quantum nonlocality refers
to the correlations, among the results of measurements on
all the constituent subsystems, which cannot be reproduced
by any local hidden-variable model. This nonlocal character
of quantum system can be revealed through the violation of
certain appropriate Bell-type inequalities. As a consequence,
the magnitude of the quantum-mechanical violation of such
an inequality could be regarded as a measure of the quantum
nonlocality. However, for certain entangled quantum systems,
Bell’s inequality can still be satisfied. For example, two-qubit
Werner states, typical entangled quantum states, cannot violate
the Bell-type inequality for certain parameters [3]. Therefore,
quantum entanglement does not necessarily imply quantum
nonlocality. Actually, it is just a necessary condition for a state
to be nonlocal.

Based on the Einstein, Podolsky, and Rosen (EPR) paradox
[4], Bell proposed a quantitative inequality [5] (i.e., Bell’s
inequality) to test the contraction between the bipartite
quantum nonlocality and the local hidden variable (LHV)
models. Physically, if the Bell’s inequality is violated, then the
quantum nonlocal correlation (i.e., entanglement) is sustained.
During the past decades, many experiments had been made
to test the Clauser-Horner-Shimony-Holt (CHSH) version [6]
of Bell inequality with various bipartite entanglement, e.g.,
photons [7], trapped ions [8], an atom and a photon [9],
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superconducting qubits [10], and neutrons [11], etc. Note that
all these experiments agree well with quantum-mechanical
predictions and thus rule out the LHV theories.

For testing tripartite quantum nonlocality, two kinds of Bell-
type inequalities are proposed. One is Mermin’s inequality
(MI) [12]

M � 2, (1)

satisfied by all LHV theories, and another is Svetlichny’s
inequality (SI) [13]

S � 4, (2)

satisfied by all hybrid local-nonlocal hidden-variable
theories. Above, M = |E(θ1,θ2,θ

′
3) + E(θ1,θ

′
2,θ3) +

E(θ ′
1,θ2,θ3) − E(θ ′

1,θ
′
2,θ

′
3)| and S = |E(θ1,θ2,θ3) +

E(θ1,θ2,θ
′
3) + E(θ1,θ

′
2,θ3) − E(θ1,θ

′
2,θ

′
3) + E(θ ′

1,θ2,θ3) −
E(θ ′

1,θ2,θ
′
3) − E(θ ′

1,θ
′
2,θ3) − E(θ ′

1,θ
′
2,θ

′
3)| are the Mermin

(M) and Svetlichny (S) functions, respectively. Certainly,
θj and θ ′

j are the controllable local variables of three
independent qubits and E(θ1,θ2,θ3) is the correlation
function of these three qubits regarding the local variables
θ1, θ2, and θ3. Presently, the maximal violation of MI has
been experimentally demonstrated with tripartite GHZ
states [14] shared by photons [15,16] and superconducting
qubits [17,18], respectively. However, it has been shown that
all the biseparable three-qubit entangled states (i.e., two of
the qubits are separable from the third, e.g.,|χ〉12|ξ 〉3) can still
violate MI [19,20]. This is because the MI for any of these
states is reduced to the relevant CHSH-Bell inequality [6].
This indicates that the violation of MI cannot unambiguously
identify genuine tripartite quantum nonlocality. Instead, it
has been shown theoretically that the SI can be violated
only by genuine tripartite entanglement, not by biseparable
states [13,19–21]. Recently, the violation of SI has been
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experimentally demonstrated only with the photonic GHZ
states (genuine tripartite entanglement) [22,23].

As another possible demonstration to experimentally verify
the genuine tripartite quantum nonlocality in cavity-QED
systems, in this paper we discuss how to test SI with three
two-level atoms (TLAs) in a driven cavity. The basic idea is
the tripartite correlations required for testing SI are calculated
by jointly probing the qubits in the computational basis
via the spectra of the driven cavity. Indeed [24,25], beyond
the usual mean-field approximation each of the detected
transmission peaks marks one of the computational basis
states and their superposed probabilities in the detected state.
As a consequence, the required correlation functions can be
directly calculated by the spectral information. With such a
spectral technique we demonstrate the tests of the SI for typical
tripartite entanglement, i.e., genuine tripartite entanglement
(e.g., GHZ and W states [26]) and biseparable three-qubit
entangled states (e.g., |χ〉12|ξ 〉3). We can find that the SI could
be violated only by three-qubit GHZ and W states, not by
biseparable three-qubit entangled state |χ〉12|ξ 〉3. This also
confirms the existence of the genuine multipartite nonlocal
correlations. Compared with the previous schemes for testing
SI with photons [22,23], a potential advantage of our proposal
is that the required tripartite correlations can be obtained by
relatively-simple joint spectral measurements, rather than the
photonic coincidence measurements used previously.

The remainder of this paper is organized as follows. In
Sec. II, we briefly review how to realize joint measurements
of three TLAs in a driven cavity. Then, with this kind of joint
measurement, the tests of the SI for tripartite entanglement
(GHZ states, W states, and biseparable three-qubit entangled
state |χ〉12|ξ 〉3) are demonstrated in Sec. III. Finally, discus-
sions and conclusions are given in Sec. IV.

II. JOINT MEASUREMENTS OF THREE TLAs
IN A DRIVEN CAVITY

We consider a driven cavity-TLAs system shown in Fig. 1,
wherein three separated-spatially TLAs couple to a common
cavity. Under the standard rotating-wave approximation the
system can be described by a Tavis-Cummings Hamiltonian

FIG. 1. (Color online) Schematics of three TLAs (with transition
frequency ω1, ω2, ω3, respectively) dispersively coupled to a cavity.
An external driving with the frequency ωd is applied to the cavity.
κ denotes the cavity decay rate. The joint measurements of three TLAs
can be realized by probing the steady-state transmission spectra Tss

of the driven cavity.

(h̄ = 1; hereafter the same) [27]

H = ωra
†a +

∑
j=1,2,3

[
ωj

2
σzj + gj (a†σ−j + aσ+j )

]
. (3)

Here, ωr is the cavity frequency, a†(a) its creation (anni-
hilation) operator of the cavity photon; ωj is the transition
frequency of j th TLA with the Pauli operators: σ+j = |1〉j 〈0|,
σ−j = |0〉j 〈1|, and σzj = |0〉j 〈0| − |1〉j 〈1|. And gj is the
coupling strength between the j th TLA and the cavity. For
the reliable readout of qubits by probing the transmission of
the cavity, we assume that the dispersive condition,

0 <

∣∣∣∣ gj

�j

,
gjgj ′

�j�jj ′
,

gjgj ′

�j ′�jj ′

∣∣∣∣ � 1, j �= j ′ = 1,2,3, (4)

is satisfied to eliminate the influence of the effective interatom
interactions. Here, �j = ωj − ωr is the detuning between the
j th TLA and the cavity, and �jj ′ = ωj − ωj ′ the detuning
between the j th TLA and the j ′th TLA.

In a frame rotating at the drive field (applying to the
cavity), the driven cavity-TLAs system can be described by
the following effective Hamiltonian:

H̃ =
⎛⎝−�r +

∑
j=1,2,3

	jσzj

⎞⎠ a†a +
∑

j=1,2,3

ω̃j

2
σzj

+ ε(a† + a). (5)

Here, the last term describes the driving of the cavity [28],
with ε being the time-independent real amplitude and ωd the
frequency of the driving field. Above, �r = ωd − ωr is the
detuning between the external driving frequency and the cavity
frequency, 	j = g2

j /�j and ω̃j = ωj + 	j . From Eq. (5), one
can see that the interaction between the cavity and three TLAs
takes the form of

∑3
j=1 	jσzja

†a. This indicates that these
three TLAs jointly cause the atomic state-dependent frequency
shift of the cavity. To be specific, if the register of three TLAs
is prepared at the computational basis state |111〉 (|110〉, |101〉,
|100〉, |011〉, |010〉, |001〉, or |000〉), then the frequency of the
cavity is shifted as −	1 − 	2 − 	3 (−	1 − 	2 + 	3, −	1 +
	2 − 	3, −	1 + 	2 + 	3, 	1 − 	2 − 	3, 	1 − 	2 + 	3, 	1 +
	2 − 	3, or 	1 + 	2 + 	3). Thus the frequency shifts of the
cavity can be used to mark all the possible computational basis
states of these TLAs. This argument can be verified by probing
the transmitted spectra of the driven cavity.

Neglecting the relatively small decays of the TLAs and
under the Born-Markov approximation, the dynamics of the
above driven system can be described by the following master
equation [29]:

dρ

dt
= −i[H̃ ,ρ] + κ(aρa† − a†aρ/2 − ρa†a/2), (6)

with ρ being the density matrix of the system and κ the
photon decay rate of the cavity. The steady-state transmission
spectra of the driven cavity is defined as the driving-frequency-
dependent expectable value

Tss = 〈a†a〉ss
ε2

(7)
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of the intercavity photons. Specifically, this expectable value
is determined by the following differential equation:

d〈a†a〉
dt

= −κ〈a†a〉 − 2ε Im〈a〉, (8)

with

d〈a〉
dt

=
(

i�r − κ

2

)
〈a〉 − iε − i	1〈aσz1〉

− i	2〈aσz2〉 − i	3〈aσz3〉. (9)

Consequently, the differential equations for the higher-order
correlations (e.g., 〈aσzj 〉) can also be obtained, and the equa-
tion chains are naturally cut up to the four-partite correlations.
Physically, only the incident photon whose frequency is
equivalent to one of the state-dependent frequencies of the
cavity can transmit the cavity and then be detected. This means
that the detected probability is the superposed probability of
the computational basis state of the TLAs. Therefore, the
relative height of the peak corresponds to the superposed
probability of the computational basis state in the detected
state. Experimentally, the steady-state transmission spectra can
be statistically observed by performing the measurement on
an ensemble of the identically detected state. In this way, the
joint measurement of the TLAs can be realized by probing
steady-state transmission spectra of the driven cavity.

III. SI TESTS BY JOINT MEASUREMENTS

With the above joint measurements of three TLAs, we now
discuss how to test the SI with typical tripartite entanglement,
i.e., genuine tripartite entangled states (e.g., well-known GHZ
and W states) and biseparable three-qubit entangled states
(e.g., |χ〉12|ξ 〉3), in a relatively simple way.

A. SI test with tripartite GHZ states

First, we assume that the TLAs are initially prepared in one
of the GHZ states [14],

|ψ〉123 = 1√
2

(|000〉 + |111〉)123. (10)

Then the desirable local variables θj (j = 1,2,3) can be
encoded into the above GHZ state by performing the single-
qubit operations,

Uj (θj ) = Rz(−θj /2)Ry(π/4)Rz(θj /2)

= 1√
2

(
1 e−iθj

−eiθj 1

)
, (11)

on each TLA. It has been shown that the above single-qubit
operations, Ry(π/4) = eiσyπ/4 and Rz(θ/2) = eiσzθ/2, can be
easily realized [30]. After the encoding operations, the GHZ
state |ψ〉123 is changed into

|�〉123 = U1(θ1)U2(θ2)U3(θ3)|ψ〉123. (12)

Now, let us perform the joint measurements to determine
the required correlation functions for various combinations of
the local variables. Theoretically, the correlation function in
the SI can be calculated as

E(θ1,θ2,θ3) = 〈�|P |�〉 = − cos(θ1 + θ2 + θ3), (13)

with the projective operator P = σz1 ⊗ σz2 ⊗ σz3. For one set
of local variables {θ1,θ2,θ3,θ

′
1,θ

′
2,θ

′
3}, the S function in Eq. (2)

can be calculated as

S1 = | cos(θ1 + θ2 + θ3) + cos(θ1 + θ2 + θ ′
3)

+ cos(θ1 + θ ′
2 + θ3) − cos(θ1 + θ ′

2 + θ ′
3)

+ cos(θ ′
1 + θ2 + θ3) − cos(θ ′

1 + θ2 + θ ′
3)

− cos(θ ′
1 + θ ′

2 + θ3) − cos(θ ′
1 + θ ′

2 + θ ′
3)|. (14)

For the typical set of local variables, {θ1,θ2,θ3,θ
′
1,θ

′
2,θ

′
3} =

{π
4 , π

2 ,0, 3π
4 ,π,π

2 }, we have

S1 = 4
√

2 > 4. (15)

This means that SI [13], namely S � 4, is maximally violated.
Experimentally, the above encoding and measurement can be
repeated many times for the same local variables. Conse-
quently, the correlation function E(θ1,θ2,θ3) can be determined
by

E(θ1,θ2,θ3) = P000 + P011 + P101 + P110

− P001 − P010 − P100 − P111. (16)

Here
∑

i,j,k=0,1 Pijk = 1 with Pijk being the superposed prob-
ability of the computational basis state |ijk〉 in the encoded
state |�〉, while all the required superposed probability Pijk

required for calculating the correlation function in Eq. (16)
can be determined by the joint measurements of the
TLAs. Specifically, for one set of local variables chosen as
{θ1,θ2,θ3,θ

′
1,θ

′
2,θ

′
3} = {π

4 , π
2 ,0, 3π

4 ,π,π
2 }, Fig. 2 shows the rele-

vant steady-state transmission spectra Tss of the driven cavity
as a function of the detuning �r = ωd − ωr for the encoded
state |�〉. Here the steady-state transmission spectra Tss of the
driven cavity is calculated with Eq. (7), and the parameters
are chosen as (	1,	2,	3,κ) = 2π × (20,12,5,1)MHz. Panels
(a)–(h) correspond to the local variables {θ1,θ2,θ3}, {θ1,θ2,θ

′
3},{θ1,θ

′
2,θ3}, {θ1,θ

′
2,θ

′
3}, {θ ′

1,θ2,θ3}, {θ ′
1,θ2,θ

′
3}, {θ ′

1,θ
′
2,θ3}, and

{θ ′
1,θ

′
2,θ

′
3}. From each subfigure in Fig. 2, we can read out

all the correlation functions in SI. For example, in Fig. 2(a), it
can be seen that eight peaks mark the computational basis
states |000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, and
|111〉, respectively. And, the relative heights of these peaks
read P000 = P011 = P101 = P110 = 0.213 and P001 = P010 =
P100 = P111 = 0.037. According to Eq. (16), the correlation
function E(θ1,θ2,θ3) is calculated as

E(θ1,θ2,θ3) = 0.704. (17)

Similarly, from Figs. 2(b)–2(h) and according to Eq. (16), we
can also get the correlation functions

E(θ1,θ2,θ
′
3) = 0.704,

E(θ1,θ
′
2,θ3) = 0.704,

E(θ1,θ
′
2,θ

′
3) = −0.704,

E(θ ′
1,θ2,θ3) = 0.704,

E(θ ′
1,θ2,θ

′
3) = −0.704,

E(θ ′
1,θ

′
2,θ3) = −0.704,

E(θ ′
1,θ

′
2,θ

′
3) = −0.704.

(18)

Substituting these correlation functions in (17) and (18) into
Eq. (2), we get

S ′
1 = 5.632 > 4. (19)
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FIG. 2. Steady-state transmission spectra of the driven cavity Tss vs the detuning �r = ωd − ωr for the encoded state |�〉 with one set
of local variables chosen as {θ1,θ2,θ3,θ

′
1,θ

′
2,θ

′
3} = { π

4 , π

2 ,0, 3π

4 ,π, π

2 }. Panels (a)–(h) correspond to the local variables {θ1,θ2,θ3}, {θ1,θ2,θ
′
3},

{θ1,θ
′
2,θ3}, {θ1,θ

′
2,θ

′
3}, {θ ′

1,θ2,θ3}, {θ ′
1,θ2,θ

′
3}, {θ ′

1,θ
′
2,θ3}, and {θ ′

1,θ
′
2,θ

′
3}. Here, the parameters are chosen as (	1,	2,	3,κ) = 2π × (20,12,5,1)

MHz. |0〉 = |000〉, |1〉 = |001〉, |2〉 = |010〉, |3〉 = |011〉, |4〉 = |100〉, |5〉 = |101〉, |6〉 = |110〉, and |7〉 = |111〉.

As a consequence, the SI [13] is robustly violated. Also, with
the required correlation functions E(θ1,θ2,θ

′
3), E(θ1,θ

′
2,θ3),

E(θ ′
1,θ2,θ3), and E(θ ′

1,θ
′
2,θ

′
3) in Eq. (18) for the MI test [12],

we can calculate the M function (1) as

M1 = 2.816 > 2. (20)

This indicates that the MI [12] is also violated.
Similar to the case for the GHZ states discussed above, the

SI can also be tested for the W state and biseparable three-qubit
entangled state |χ〉12|ξ 〉3 as follows.

B. SI test with tripartite W states

With tripartite W states [26],

|φ〉123 = 1√
3

(|001〉 + |010〉 + |100〉)123, (21)

we can encode the local variables θj (j = 1,2,3) by performing
a single-qubit operation [30] on each TLA,

Vj (θj ) = Ry(θj /2) =
(

cos θj

2 sin θj

2

− sin θj

2 cos θj

2

)
. (22)

Afterwards, the original W state |φ〉123 is changed into

|�〉123 = V1(θ1)V2(θ2)V3(θ3)|φ〉123. (23)

Again, the correlation function for the present case can be
theoretically calculated as

E(θ1,θ2,θ3) = 〈�|P |�〉
= − 2

3 cos(θ1 + θ2 + θ3) − 1
3 cos θ1 cos θ2 cos θ3,

(24)

with P = σz1 ⊗ σz2 ⊗ σz3. Thus, for one set of local vari-
ables {θ1,θ2,θ3,θ

′
1,θ

′
2,θ

′
3}, the S function in Eq. (2) can be

calculated as

S2 = 1
3 |2 cos(θ1 + θ2 + θ3) + cos θ1 cos θ2 cos θ3

+ 2 cos(θ1 + θ2 + θ ′
3) + cos θ1 cos θ2 cos θ ′

3

+ 2 cos(θ1 + θ ′
2 + θ3) + cos θ1 cos θ ′

2 cos θ3

− 2 cos(θ1 + θ ′
2 + θ ′

3) − cos θ1 cos θ ′
2 cos θ ′

3

+ 2 cos(θ ′
1 + θ2 + θ3) + cos θ ′

1 cos θ2 cos θ3

− 2 cos(θ ′
1 + θ2 + θ ′

3) − cos θ ′
1 cos θ2 cos θ ′

3

− 2 cos(θ ′
1 + θ ′

2 + θ3) − cos θ ′
1 cos θ ′

2 cos θ3

− 2 cos(θ ′
1 + θ ′

2 + θ ′
3) − cos θ ′

1 cos θ ′
2 cos θ ′

3|. (25)

Therefore, for the local variables selected as θ1 = θ2 = θ3 =
35.264◦ and θ ′

1 = θ ′
2 = θ ′

3 = 144.736◦, we have

S2 = 4.354 > 4. (26)

This indicates that the SI [13] is violated.
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FIG. 3. Steady-state transmission spectra of the driven cavity Tss vs the detuning �r = ωd − ωr for the encoded state |�〉 with the local
variables chosen as θ1 = θ2 = θ3 = 35.264◦ and θ ′

1 = θ ′
2 = θ ′

3 = 144.736◦. Panels (a)–(h) correspond to the local variables {θ1,θ2,θ3}, {θ1,θ2,θ
′
3},

{θ1,θ
′
2,θ3}, {θ1,θ

′
2,θ

′
3}, {θ ′

1,θ2,θ3}, {θ ′
1,θ2,θ

′
3}, {θ ′

1,θ
′
2,θ3}, and {θ ′

1,θ
′
2,θ

′
3}. The parameters are the same as those in Fig. 2.

For the experimental test, all the correlation functions in the
SI can be read out from steady-state transmission spectra of
the driven cavity. For the local variables selected as θ1 = θ2 =
θ3 = 35.264◦ and θ ′

1 = θ ′
2 = θ ′

3 = 144.736◦, with the same pa-
rameters as those in Fig. 2, the steady-state transmission spec-
tra Tss of the driven cavity (as a function of the detuning �r =
ωd − ωr ) for the encoded state |�〉 is shown in Fig. 3. Panels
(a)–(h) correspond to local parameters {θ1,θ2,θ3}, {θ1,θ2,θ

′
3},{θ1,θ

′
2,θ3}, {θ1,θ

′
2,θ

′
3}, {θ ′

1,θ2,θ3}, {θ ′
1,θ2,θ

′
3}, {θ ′

1,θ
′
2,θ3}, and

{θ ′
1,θ

′
2,θ

′
3}. According to Eq. (16) and from Figs. 3(a)–3(h),

the correlation functions in SI are evaluated as

E(θ1,θ2,θ3) = 0,

E(θ1,θ2,θ
′
3) = 0.722,

E(θ1,θ
′
2,θ3) = 0.722,

E(θ1,θ
′
2,θ

′
3) = −0.722,

E(θ ′
1,θ2,θ3) = 0.722,

E(θ ′
1,θ2,θ

′
3) = −0.722,

E(θ ′
1,θ

′
2,θ3) = −0.722,

E(θ ′
1,θ

′
2,θ

′
3) = 0.

(27)

Inserting these correlation functions in (27) into Eq. (2), we get

S ′
2 = 4.332 > 4. (28)

This indicates that the SI [13] is robustly violated. Additionally,
with the desired correlation functions in Eq. (27) for the MI

test [12], the M function (1) is evaluated as

M2 = 2.166 > 2. (29)

Obviously, the MI [12] is violated as well.

C. SI test with biseparable three-qubit entangled states

Above, we have shown that both the SI and MI are violated
by the genuine tripartite entangled GHZ and W states. Now,
we show in this subsection that the MI, rather than the SI, can
still be violated by biseparable three-qubit entangled states.

Without loss of generality, let us consider the following
biseparable three-qubit entangled state:

|ϕ〉123 = |χ〉12|ξ 〉3 = 1√
2

(|00〉 + |11〉)12|0〉3. (30)

The local variables θj (j = 1,2,3) can be encoded into the
state |ϕ〉 by performing the single-qubit operation Vj (θj ) (22)
on each TLA. Then, the state |ϕ〉123 is transformed into

|ϕ̃〉123 = V1(θ1)V2(θ2)V3(θ3)|ϕ〉123. (31)

Consequently, the correlation function can be theoretically
calculated as

E(θ1,θ2,θ3) = 〈ϕ̃|P |ϕ̃〉 = cos(θ1 − θ2) cos θ3, (32)

with P = σz1 ⊗ σz2 ⊗ σz3. Thus, for one set of local vari-
ables {θ1,θ2,θ3,θ

′
1,θ

′
2,θ

′
3}, the S function in Eq. (2) can be
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FIG. 4. Steady-state transmission spectra of the driven cavity Tss versus the detuning �r = ωd − ωr for the encoded state |ϕ̃〉 with the local
variables chosen as {θ1,θ2,θ3,θ

′
1,θ

′
2,θ

′
3} = { π

4 ,0,0, 7π

4 , π

2 , π

6 }. Panels (a)–(h) correspond to the local variables {θ1,θ2,θ3}, {θ1,θ2,θ
′
3}, {θ1,θ

′
2,θ3},

{θ1,θ
′
2,θ

′
3}, {θ ′

1,θ2,θ3}, {θ ′
1,θ2,θ

′
3}, {θ ′

1,θ
′
2,θ3}, and {θ ′

1,θ
′
2,θ

′
3}. Here, the parameters are the same as those in Fig. 2.

calculated as

S3 = | cos(θ1 − θ2) cos θ3 + cos(θ1 − θ2) cos θ ′
3

+ cos(θ1 − θ ′
2) cos θ3 − cos(θ1 − θ ′

2) cos θ ′
3

+ cos(θ ′
1 − θ2) cos θ3 − cos(θ ′

1 − θ2) cos θ ′
3

− cos(θ ′
1 − θ ′

2) cos θ3 − cos(θ ′
1 − θ ′

2) cos θ ′
3|. (33)

For the local variables chosen as {θ1,θ2,θ3,θ
′
1,θ

′
2,θ

′
3} =

{π
4 ,0,0, 7π

4 , π
2 , π

6 }, we have

S3 = 2.828 < 4. (34)

This indicates that the SI [13] is not violated. The numerical
experiments to verify such an argument are similar to those
done previously. Experimentally, for the local variables chosen
as {θ1,θ2,θ3,θ

′
1,θ

′
2,θ

′
3} = {π

4 ,0,0, 7π
4 , π

2 , π
6 } and the parameters

selected as the same as those in Fig. 2, the steady-state
transmission spectra of the driven cavity as a function of
the detuning �r = ωd − ωr for the encoded state |ϕ̃〉 is
plotted in Fig. 4. Panels (a)–(h) correspond to the local vari-
ables {θ1,θ2,θ3}, {θ1,θ2,θ

′
3}, {θ1,θ

′
2,θ3}, {θ1,θ

′
2,θ

′
3}, {θ ′

1,θ2,θ3},
{θ ′

1,θ2,θ
′
3}, {θ ′

1,θ
′
2,θ3}, and {θ ′

1,θ
′
2,θ

′
3}. According to Eq. (16)

and from Figs. 4(a)–4(h), the correlation functions in the SI

are evaluated as
E(θ1,θ2,θ3) = 0.704,

E(θ1,θ2,θ
′
3) = 0.596,

E(θ1,θ
′
2,θ3) = 0.704,

E(θ1,θ
′
2,θ

′
3) = 0.596,

E(θ ′
1,θ2,θ3) = 0.704,

E(θ ′
1,θ2,θ

′
3) = 0.596,

E(θ ′
1,θ

′
2,θ3) = −0.704,

E(θ ′
1,θ

′
2,θ

′
3) = −0.596.

(35)

Inserting these correlation functions in (35) into Eq. (2), we
get

S ′
3 = 2.816 < 4. (36)

Obviously, the SI [13] is not violated. However, with the
available correlation functions in (35) for the MI test [12],
the M function (1) is calculated as

M3 = 2.6 > 2. (37)

This means that the MI [12] is still violated. Therefore, the
MI cannot be served as a proper criterion for the existence of
genuine tripartite entanglement.

IV. DISCUSSIONS AND CONCLUSIONS

We would like to emphasize that the deviations of S

function between ideal predictions and the results of numerical
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experiments in (19) and (28) are really negligible, e.g.,
δS1 = S1 − S ′

1 = 0.024 for the case of GHZ states, and δS2 =
S2 − S ′

2 = 0.022 for the case of W states. This implies that
the influence of the dissipation of the cavity (which leads to
various finite widths of the transmission spectra) is practically
unimportant. Therefore, the present proposal for testing the SI
could be feasible with a dissipative cavity.

Presently, there are many existing schemes to generate
three-qubit GHZ and W states in a driven cavity system,
which are available for quantum nonlocality test. Taking
a kind of driven cavity system (circuit QED [31]) as an
example, GHZ and W states can be readily generated in
circuit QED by several methods, such as a sequence of
quantum gates [18], measurement-based generation [32,33],
and one-step dynamical evolution [25,34–38]. References
[18,32,33] have really shown that the GHZ and W states can be
generated with different transition frequencies of three atoms
(superconducting qubits). Certainly, these states can be easily
generated with the same transition frequencies of three atoms
[25,34–38] by adjusting the applied external biased fluxes.
Moreover, it can also be found that both GHZ and W states
of three different atoms can be prepared with three different
external driving [18] or only one external driving [25,32–34]
on the cavity. Alternatively, without the external driving on
the cavity, GHZ and W states can be effectively generated
with local classical drivings on the atoms [35–38]. Therefore,
there are many feasible and flexible methods to generate GHZ
and W states in circuit QED, which are available for quantum
nonlocality tests.

In conclusion, we have proposed a feasible method to test
the SI with three TLAs dispersively coupled to a driven cavity.
The joint measurements of three TLAs were realized by prob-
ing the steady-state transmission spectra of the driven cavity.
With these kinds of joint measurements, the local-variable-
dependent probabilities of various basis states superposed
in the local-variable-encoded states can be directly readout.
Consequently, various correlation functions for different local
variables can be easily calculated. As a consequence, both the
SI and MI can be efficiently tested for three kinds of tripartite
entangled states: GHZ states, W states, and biseparable three-
qubit entangled state |χ〉12|ξ 〉3. It is shown that the MI can be
violated by these three kinds of states, while the SI can only be
violated by GHZ and W states, not by a biseparable three-qubit
entangled state |χ〉12|ξ 〉3. Therefore, it is verified that the
violation of SI can be used as a robust criterion to confirm the
existence of genuine tripartite quantum nonlocality, rather than
the usual MI. We believe that our proposal can be generalized
to test genuine multipartite quantum nonlocality characterized
by multiqubit SI [19] in a straightforward way.
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