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QED in a momentum-cutoff vacuum
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We consider a vacuum in which all of the wavelengths of vacuum fluctuations in a preferred inertial frame
are longer than a given minimum length h̄/�. This paper studies spinor QED in such momentum-cutoff
vacuums, in particular, the Lorentz anomalies which appear in the radiative corrections that result from vacuum
fluctuations in the continuum limit � → ∞. A gauge-invariant momentum-cutoff generating functional Z�[A,J ]
in the background-field formalism is given, from which well-defined radiative correction terms as well as
renormalization constants can be derived, at least in the form of a loop-expansion series. Using the conventional
Lorentz-covariant renormalized perturbation procedure, one-loop and two-loop (for photon self-energy only)
calculations are carried out in detail. We find that the non-Lorentz-covariant terms in one-loop and two-loop
radiative corrections converge to nonvanishing terms in the limit � → ∞. The physical meaning as well as some
of the phenomenological consequences of these Lorentz anomalous terms are discussed.
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I. INTRODUCTION

In quantum field theory, the perturbation calculations of
radiative corrections lead to divergent loop integrals. To make
these divergent integrals mathematically meaningful, we are
required to devise a suitable regularization scheme to treat the
divergent integrals as limits of convergent ones. The most
intuitive regularization method is to introduce a cutoff �

in the momentum integrals. This method was employed in
earlier literature for QED and was abandoned in practical
loop-integral computations after 1972, mainly because the
gauge invariance cannot be maintained explicitly in this
regularization procedure [1]. In an earlier paper [2], we
proposed a gauge-invariant momentum-cutoff regularization
scheme for QED and carried out one-loop calculations. This
paper will show that the scheme presented in Ref. [2] can
be generalized to multiloop calculations in QED and also to
calculations in non-Abelian gauge theories.

The key step of our momentum-cutoff regularization
scheme is to write the gauge-invariant loop integrals in the form
of momentum integrals with gauge-invariant integrands, which
are obtained by following a special parallel-transportation
procedure. In comparison with the commonly used gauge-
invariant regularization schemes (Pauli-Villars or dimensional
scheme), which are devised specifically for treating divergent
integrals appearing in loop expansions, this cutoff scheme has
the advantage that, in the background-field approach, it can be
implemented directly on the gauge-invariant generating func-
tional Z[A,J ]. In other words, we can construct a regularized
version of Z[A,J ] (denoted as Z�[A,J ]) which preserves
the gauge-invariant character, and all of the Green functions
derived from Z�[A,J ] are mathematically well defined. Fur-
thermore, based on the observation of the difference between
the gauge-covariant free propagator and the gauge-invariant
free propagator, we shall propose a renormalization procedure
for the electron propagator in which the renormalization is not
only gauge invariant, but also independent of the gauge fixing
in covariant gauges.

*ygu@ustc.edu.cn

Another subject of great concern in this paper is whether the
Lorentz symmetry of the original theory would be preserved
after implementing a momentum-cutoff scheme. In the case of
a sharp momentum cutoff, this issue is related to a proper
designation of a momentum-integration domain D(�) in
the momentum space. In Ref. [2], we have shown that all
Lorentz-invariant D(�) in the Minkowski four-momentum
space are noncompact and are not suitable for rendering
divergent integrals finite, while a Lorentz-invariant compact
D(�) can be easily constructed in a Euclidean four-momentum
space. Thus, we have two alternatives to make the divergent
integrals finite by using the cutoff method, i.e., either to
use a Lorentz-invariant cutoff scheme, which is a purely
mathematical procedure and has no physical consequences,
or to use a non-Lorentz-covariant cutoff scheme, which may
provide us with a finite but non-Lorentz-covariant quantum
field theory.

The main purpose of this paper is to examine a finite QED
theory based on the assumption that all of the wavelengths of
vacuum quantum fluctuations in a preferred reference frame
are longer than a minimum length h̄/�. In comparison with
the conventional QED theory, we would like to emphasize
the following aspects of this momentum-cutoff QED theory
(denoted in the following as �-QED).

(i) �-QED preserves the gauge-invariant character of the
conventional QED and can be constructed based on a gauge-
invariant momentum-cutoff generating functional Z�[A,J ],
which is expected to be a well-defined functional.

(ii) Since the effects from high-momentum virtual quanta
have been replaced with a simple boundary condition in the
momentum space, �-QED is not assumed to be able to give a
good description of the extremely high-energy physics.

(iii) For studying the low-energy physics described with �-
QED, we shall use the conventional renormalized perturbation
procedure (i.e., adding Lorentz-invariant counterterms to elim-
inate divergent outcomes). But now the renormalization will
no longer play the role of the rescuer of the theory from incon-
sistency, unless the continuum limit � → ∞ is actually taken.

(iv) Noting that the cutoff is implemented on the quantum
fluctuation part of the field while its classical part is held
unchanged, the difference between the �-QED and the
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conventional QED appears only in the radiative-correction
calculations. The same consideration also illustrates the
usefulness of the background-field formalism in studying the
�-QED.

(v) In the description of the effects from high-momentum
virtual quanta on the low-energy regime, a major difference
between the conventional QED and the �-QED is that the
latter may exhibit extra non-Lorentz-covariant effects. In this
respect, we shall face one of the following three cases when
the continuum limit � → ∞ is taken:

(a) All Lorentz anomalies, i.e., non-Lorentz-covariant terms
which show up at this limit in the renormalized radiative
corrections, vanish.

(b) All Lorentz anomalies are finite and some of them are
nonvanishing.

(c) Some of the Lorentz anomalies diverge.
In case (a), the conventional QED and the �-QED give

essentially the same description of the low-energy physics. In
case (b), their descriptions of the low-energy physics will be
different unless all Lorentz anomalies appearing in the �-QED
can be canceled out with a finite renormalization of the light
velocity. Last, if case (c) happens, one would not regard the
�-QED as a physically sound theory, at least in its present
form.

Accordingly, in order to establish a quantum field theory
based on a momentum-cutoff vacuum, as well as to construct
a gauge-invariant momentum-cutoff generating functional
Z�[A,J ], it is equally important to know the asymptotic
behavior of the non-Lorentz-covariant consequences deduced
from this generating functional. In this paper, we present one-
loop and two-loop (for photon self-energy only) calculations
of Lorentz anomalies, and the result indicates that the �-
QED we are trying to construct probably belongs to the
case (b).

Finally, we make several remarks, as follows, concerning
the meaning and the implications of the minimum length h̄/�

appearing in our momentum-cutoff theory, as the recent studies
in the field of quantum gravity have shown that the problems of
violation of causality and/or unitarity are usually accompanied
with a quantum field theory of a fundamental length [3].

(i) Unlike the fundamental length which manifests itself at
Planck’s scale in the regime of quantum gravity, the minimum
length h̄/� of a vacuum is introduced artificially into quantum
field theory (QFT) primarily for suppressing the effects from
high-momentum virtual quanta. Thus, in contrast with the fact
that the existence of the Planck’s scale implies a drastic change
of the very concept of the spacetime beyond this scale [4], the
implications of the minimum length h̄/� are comparatively
simple and limited only within the regime of radiative
corrections. On the other hand, it is important to remark that,
in �-QED, the minimum length of the vacuum is allowed to be
removed by using the conventional renormalization technique
while its effects (Lorentz anomalies) remain.

(ii) Unitarity is indispensable for a workable �-QFT and
will be preserved when the � cutoff is implemented directly
on all quantum fluctuation fields. However, as discussed in this
paper, such a cutoff scheme may break the gauge symmetry
and should be replaced with a more sophisticate scheme which
is applied on the trace of a gauge-covariant operator. In Sec. II,
we shall propose a cutoff scheme which ensures that both the

gauge symmetry and the unitarity of the original theory will
be preserved.

(iii) It is obvious that when we introduce a minimum
length in a relativistic field theory, we have to reconsider
the notion of causality. This problem exists undeniably in
�-QED because the Lorentz anomaly would certainly lead
to a breakdown of microcausality. However, if the Lorentz
violation is small, we may anticipate that the �-QED will still
describe a perfectly local and causal physics in some reference
frames [5].

The paper is organized as follows. In Sec. II, we illustrate
the notations used in this paper. Then, for realizing the gauge-
invariant momentum-cutoff project, we propose a parallel-
transportation scheme so that one can construct a gauge-
invariant p representation for the trace of the gauge-covariant
operator used in (Abelian or non-Abelian) gauge-field theories.
In Sec. III, we construct a gauge-invariant momentum-cutoff
version of the generating functional of QED in the background-
field formalism and discuss the issue of gauge dependence.
Section IV presents the one-loop calculations for photon and
electron self-energy, respectively. There we also show how to
define a dressed electron propagator in a gauge-independent
way. In Sec. V, we calculate the two-loop photon self-energy
by the renormalized perturbation. We discuss the physical
meaning as well as the phenomenological consequences of
the Lorentz anomaly in Sec. IV.

II. GAUGE-INVARIANT p REPRESENTATION OF
THE TRACE OF A GAUGE-COVARIANT OPERATOR

We begin by specifying some basic notations which will
be used throughout this paper. Let H{|ϕ〉} be a field space.
In x representation, a c number (or Grassmann number) field
is represented as ϕr (x) = 〈r,x|ϕ〉, where r denotes the labels
other than spacetime coordinates. Local gauge transformations
are represented by local unitary operators Uθ on the field space
H with

〈r ′,x ′|Uθ |r,x〉 = δα′αδ(4)(x ′ − x)(e−iθa (x)T a

)i ′i , r = (α,i),

(2.1)

where i denotes the index of representation space of the gauge
group G, and T a,θa(x), a = 1, . . . ,n, are generators of G and
local gauge functions, respectively.

We shall represent a vector gauge field as an element |Aμ〉 of
the field space Had with Aa

μ(x) = 〈a,x|Aμ〉, where a denotes
the index of the adjoint representation of G. Sometimes we
shall also represent the vector gauge field as a local Hermitian
operator Aμ on a field space H, defined by

〈r ′,x ′|Aμ|r,x〉 = δα′αδ(4)(x ′ − x)[Aμ(x)]i ′i ,
(2.2)

Aμ(x) = Aa
μ(x)T a.

Under a local gauge transformation, the vector gauge field
transforms according to

Aμ(x) −→ Aθ
μ(x) = Uθ (x)

[
Aμ(x) − i

g
∂μ

]
U−1

θ (x). (2.3)

Let L[A] be an operator on H which depends on the gauge
field Aa

μ(x). L[A] is gauge covariant if it satisfies L[Aθ ] =
UθL[A]U−1

θ . The trace of L[A] in the x representation
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can be written as Tr{L[A]} = ∫
d4xL(x|A), with L(x|A) =

〈x|tr{L[A]}|x〉, where tr denotes the trace in r space. Similarly,
in p representation, we have Tr{L[A]} = ∫

d4p

(2π)4 L(p|A), with
L(p|A) = 〈p|tr{L[A]}|p〉. We note that, for a gauge-covariant
L[A], the x-space density L(x|A) is gauge invariant, while the
transformation law of the density L(p|A) is nonlocal in p

space, under local gauge transformations.
When L[A] is a trace-class gauge-covariant operator, there

will be no problem of gauge symmetry breaking to use
p representation for a calculation of Tr{L[A]}. However,
when L[A] yields a well-defined p-space density L(p|A)
but the integral of L(p|A) exhibits ultraviolet divergence, a
momentum-cutoff regularization will usually break the gauge
symmetry of the trace of L[A]. In order to obtain a gauge-
invariant momentum-cutoff regularization of Tr{L[A]}, it is
advisable to replace L[A] with a new operator L̃[A] such that
(i) Tr{L̃[A]} = Tr{L[A]} and (ii) L̃(p|A) = 〈p|tr{L̃[A]}|p〉 is
a gauge-invariant p-space density. In fact, such an operator
can be constructed as follows.

First, we introduce a parallel-transportation operator T [A]
on H, which is defined by

〈x ′|T [A]|x〉

= Ps exp

{
−ig

∫ 1

0
dsAa

μ[x + s(x ′ − x)](x ′ − x)μT a

}
,

(2.4)

where Ps denotes the path ordering with the ordering
parameter s.

Second, for any two operators A and B on H, we define
(i) the x transposition At of A by

〈r ′,x ′|At|r,x〉 = 〈r ′,x|A|r,x ′〉; (2.5)

(ii) the x product A ◦ B of A and B by

〈r ′,x ′|A ◦ B|r,x〉 =
∑
r ′′

〈r ′,x ′|A|r ′′,x〉〈r ′′,x ′|B|r,x〉, (2.6)

with (At)† = (A†)t and (A ◦ B)† = B† ◦ A†.
Let the operator L′[A] be defined by

L′[A] = L[A] ◦ T t[A]. (2.7)

It is obvious that we have Tr{L′[A]} = Tr{L[A]} because
〈x|T [A]|x〉 = 1 impliesL′(x|A) = L(x|A). Furthermore, not-
ing that T [A] is gauge covariant, the transformation law of
L′[A] has the form

〈x ′|L′[Aθ ]|x〉
= 〈x ′|Uθ (x ′)L[A]U−1

θ (x)|x〉〈x|Uθ (x)T [A]U−1
θ (x ′)|x ′〉

= 〈x ′|Uθ (x ′)L′[A]U−1
θ (x ′)|x〉. (2.8)

From Eq. (2.8), we know that 〈x ′|tr{L′[A]}|x〉 is gauge
invariant for all (x ′,x). Hence L′(p|A) = 〈p|tr{L′[A]}|p〉
is a gauge-invariant p-space density. So that the mapping
L[A] → L̃[A] is Hermiticity preserving, we introduce another
operator

L′′[A] = (T t[A])† ◦ L[A], (2.9)

which also satisfies our requirements. Then we have

L̃[A] = 1
2 {L′[A] + L′′[A]}. (2.10)

In the following, we present explicit expressions of the
gauge-invariant p density L̃(p|A) by expanding the matrix
elements of L[A] and L̃[A] in p representation in powers
of A,

〈p′|L[A]|p〉

=
∞∑

n=0

(−ig)n

(2π )4(n−1)

∫
d4k1 · · ·

∫
d4kn

×L(n)a1···an

μ1···μn
(p′,p; k1, . . . ,kn)Aa1μ1 (k1) · · · Aanμn(kn),

(2.11)
〈p′|L̃[A]|p〉

=
∞∑

n=0

(−ig)n

(2π )4(n−1)

∫
d4k1 · · ·

∫
d4kn

× L̃(n)a1···an

μ1···μn
(p′,p; k1, . . . ,kn)Aa1μ1 (k1) · · · Aanμn(kn).

(2.12)

Making use of (2.4) and noting that, in p representation,
Eqs. (2.5) and (2.6) have the form

〈r ′,p′|At|r,p〉 = 〈r ′, − p|A|r, − p′〉 (2.13)

and

〈r ′,p′|A ◦ B|r,p〉 =
∫

d4q

(2π )4

∫
d4q ′

(2π )4

∑
r ′′

〈r ′,q ′|A|r ′′,q〉〈r ′′,p′ − q ′|B|r,p − q〉, (2.14)

we obtain

L̃(n)a1···an

μ1···μn
(p′,p; k1, . . . ,kn) =

n∑
m=0

im

m!

∫ 1

0
ds1 · · ·

∫ 1

0
dsm(∂ ′ + ∂)μ1 · · · (∂ ′ + ∂)μm

× 1

2

⎧⎨
⎩L(n−m)am+1···an

μm+1···μn

⎡
⎣p′ −

m∑
j=1

(1 − sj )kj ,p +
m∑

j=1

sj kj ; km+1, . . . ,kn

⎤
⎦ ,Ps

(
T a1

s1
· · · T am

sm

)⎫⎬⎭ ,

(2.15)

where ∂ ′
μ and ∂μ denote ∂/∂p′μ and ∂/∂pμ, respectively.
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When the operator L[A] is covariant under spacetime translations, its expansion coefficients have the form

L(n)a1···an

μ1···μn
(p′,p; k1, . . . ,kn) = δ(4)

⎡
⎣p′ − p −

n∑
j=1

kj

⎤
⎦L(n)a1···an

μ1···μn
(p; k1, . . . ,kn). (2.16)

Then, we have

〈p′|L̃[A]|p〉 =
∞∑

n=0

(−ig)n

(2π )4(n−1)

∫
d4k1 · · ·

∫
d4knδ

(4)

⎛
⎝p′ − p −

n∑
j=1

kj

⎞
⎠ L̃(n)a1···an

μ1···μn
(p; k1, . . . ,kn)Aa1μ1 (k1) · · · Aanμn(kn),

(2.17)

with

L̃(n)a1···an

μ1···μn
(p; k1, . . . ,kn) =

n∑
m=0

im

m!

∫ 1

0
ds1 · · ·

∫ 1

0
dsm∂μ1 · · · ∂μm

× 1

2

⎧⎨
⎩L(n−m)am+1···an

μm+1···μn

⎛
⎝p +

m∑
j=1

sj kj ; km+1, . . . ,kn

⎞
⎠, Ps

(
T a1

s1
· · · T am

sm

)⎫⎬⎭ . (2.18)

In practical calculations of radiative corrections in �-QED, one would frequently use the p-representation vertex expansion
of the gauge-covariant electron propagator SF [A] and the gauge-invariant electron propagator G[A] = SF [A] ◦ T t[A] in the
presence of a classical electromagnetic field A. For SF [A], we have

〈p′|SF [A]|p〉 =
∞∑

n=0

(−ig)n

(2π )4(n−1)

∫
d4k1 · · ·

∫
d4knS

(n)
μ1···μn

(p; k1, . . . ,kn)Aμ1 (k1) · · ·Aμn(kn)δ(4)

⎛
⎝p′ − p −

n∑
j=1

kj

⎞
⎠ ,

(2.19)

where

S(n)
μ1···μn

(p; k1, . . . ,kn) ≡ SF

⎛
⎝p +

n∑
j=1

kj

⎞
⎠ γμn

· · · SF (p + k1)γμ1SF (p), (2.20)

with SF (p) = i(γ μpμ+m)
p2−m2+iε

. For the gauge-invariant propagator G[A], we have

〈p′|G[A]|p〉 =
∞∑

n=0

(−ig)n

(2π )4(n−1)

∫
d4k1 · · ·

∫
d4knG

(n)
μ1···μn

(p; k1, . . . ,kn)Aμ1 (k1) · · · Aμn(kn)δ(4)

⎛
⎝p′ − p −

n∑
j=1

kj

⎞
⎠ ,

(2.21)

where

G(n)
μ1···μn

(p; k1, . . . ,kn) =
n∑

m=0

im

m!

∫ 1

0
ds1 · · ·

∫ 1

0
dsm∂μ1 · · · ∂μm

S(n−m)
μm+1···μn

⎛
⎝p +

m∑
j=1

sj kj ; km+1, . . . ,kn

⎞
⎠ . (2.22)

III. A GAUGE-INVARIANT MOMENTUM-CUTOFF
GENERATING FUNCTIONAL IN THE
BACKGROUND-FIELD FORMALISM

In this section, we shall use the technique illustrated in
Sec. II to construct a gauge-invariant momentum-cutoff gen-
erating functional for QED in the background-field formalism
[6,7]. According to this formalism, a quantum electromagnetic
field is divided into a background field Aμ(x) plus a quantum-
fluctuation field Qμ(x) which is the variable of integration in
the functional integral. The generating functional for Green
functions of Q in the presence of the background field A and

in a Lorentz gauge is then given by [7]

Z[A,J ] =
∫

[dQ] exp

{
i

(
S[A + Q] + W [A + Q]

+ 1

2ξ
〈Qμ|∂μ∂ν |Qν〉 + 〈Qμ|Jμ〉

)}
, (3.1)

where

S[A] = − 1
4 〈Fμν |Fμν〉, |Fμν〉 = ∂μ|Aν〉 − ∂ν |Aμ〉, (3.2)
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and

exp{iW [A]}
=

∫
[dψdψ̄] exp{i〈ψ̄ |iγ μ(∂μ + igAμ) − m|ψ〉}, (3.3)

with g (or, alternatively, −e in Ref. [2]) denoting the charge
of electron. In addition, we assume that under a local
gauge transformation, Aμ(x) and ψ(x) transform according
to Aμ(x) → Aμ(x) + 1

g
∂μθ (x) and ψ(x) → e−iθ(x)ψ(x), re-

spectively, while Qμ(x) and Jμ(x) are held invariant. Thus,
Z[A,J ] is a gauge-invariant functional.

It is crucial for the following discussions to carry out
formally the functional integration for all quantum-fluctuation
field variables. For the integration of the Q variable, we
separate out the terms quadratic in Q contained in S[A + Q]
and write

S[A + Q] + 1

2ξ
〈Qμ|∂μ∂ν |Qν〉

= S[A] + 1

2
〈Qμ|(Dμν)−1|Qν〉 + 〈Qμ|∂ν |Fνμ〉, (3.4)

where

Dμν =
[
gμν∂

λ∂λ −
(

1 − 1

ξ

)
∂μ∂ν

]−1

(3.5)

is the photon propagator. Letting

I [A,Q] = 〈Qμ|∂ν |Fνμ〉 + W [A + Q] − W [A] (3.6)

and performing the functional integration of Q, Eq. (3.1) can
be written as

Z[A,J ] = exp{i(S[A] + W [A])} exp

{
iI

[
A,

δ

iδJ

]}

× exp

{
− i

2
〈Jμ|Dμν |J ν〉

}
. (3.7)

On the other hand, according to Refs. [2] and [6], the effective
action W [A] can be formally written in the form

W [A] = gTr

{∫ 1

0
dλSF [λA]γ μAμ

}
, (3.8)

where

SF [A] = [γ μ(∂μ + igAμ) + im]−1 (3.9)

is the electron propagator in the background field A.

Now we introduce an auxiliary field

|φμ〉 = −Dμν |J ν〉. (3.10)

By making use of the identity

exp

{
i

2
〈Jμ|Dμν |J ν〉

}
δ

iδJλ

exp

{
− i

2
〈Jμ|Dμν |J ν〉

}

= exp

{
i

2

〈
δ

δφμ

∣∣∣∣Dμν

∣∣∣∣ δ

δφν

〉}
φλexp

{
− i

2

〈
δ

δφμ

∣∣∣∣Dμν

∣∣∣∣ δ

δφν

〉}
,

(3.11)

Eq. (3.7) may be rewritten as

Z[A,J ] = exp
{
i
(
S[A] + W [A] − 1

2 〈Jμ|Dμν |J ν〉)}
× (exp{Dφ} exp{iI [A,φ]})φμ=−DμνJ ν , (3.12)

where Dφ denotes a bilinear functional derivative operator
which, in p representation, has the form

Dφ = i

2

∫
d4k

∫
d4k′〈k′|Dμν |k〉 δ2

δφμ(k′)δφν(−k)
. (3.13)

A serious problem to notice here is that the right-hand side
of Eq. (3.12) is actually not mathematically well defined. The
problem arises because (i) the traces taken in the Dirac field
space Hψ in the definitions of W [A] and I [A,φ] do not exist,
and (ii) DφF [φ] is not well defined when F [φ] is a local
functional of φ(x). In order to construct a regularized version
of Z[A,J ], we implement a momentum-cutoff scheme both
on the trace taken in Hψ and on the derivative operator Dφ

defined on the photon-field space Hφ as follows.
Let O be an operator on Hψ. We define a � trace of O,

Tr�{O} =
∫
D(�)

d4p

(2π )4
tr{〈p|O|p〉}, (3.14)

where D(�) is a momentum-integration domain in p space.
In addition, we also define a momentum-cutoff functional
derivative operator on Hφ ,

Dφ�
= i

2

∫
D(�)

d4k

∫
D(�)

d4k′〈k′|Dμν |k〉 δ2

δφμ(k′)δφν(−k)
.

(3.15)

With a properly chosen momentum-integration domain D(�),
it is not difficult to ensure that (i) the regularized version of
Eq. (3.8),

WS�
[A] = gTr�

{∫ 1

0
dλSF [λA]γ μAμ

}
, (3.16)

is finite, and (ii) Dφ�
F [φ] is well defined for most of the local

functional F [φ]. As discussed in the previous section of this
paper and Ref. [2], a � trace of a gauge-covariant operator
usually breaks the gauge symmetry, while a gauge-invariant
momentum-cutoff version of W [A] can be defined as

W�[A] = gTr�

{∫ 1

0
dλG[λA]γ μAμ

}
, (3.17)

where G[A] denotes a gauge-invariant electron propagator
given by

G[A] = SF [A] ◦ T t[A]. (3.18)

Also, when the background field Aμ satisfies ∂ν |Fνμ〉 = 0, the
gauge-invariant momentum-cutoff version of I [A,φ] can be
written in the form (see Appendix)

I�[A,φ] = W�[A + φ] − W�[A]

= gTr�

{∫ 1

0
dλG[A + λφ]γ μφμ

}
. (3.19)

Hence, we define the gauge-invariant momentum-cutoff
generating functional for QED as

Z�[A,J ] = exp
{
i
(
S[A] + W�[A] − 1

2 〈Jμ|Dμν |J ν〉)}
× (exp{Dφ�

} exp{iI�[A,φ]})φμ=−DμνJ ν , (3.20)

which is expected to be well defined mathematically and will
be served as the starting point of our discussions of the QED in
a momentum-cutoff vacuum. Noting that the gauge-invariant
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effective action �[A] can be computed by evaluating Z[A,0]
and summing all connected one-particle-irreducible graphs
with A fields on external legs [8], the momentum-cutoff
gauge-invariant effective action should be given by

��[A] = S[A] + W�[A]

− i(exp{Dφ�
} exp{iI�[A,φ]})connected1PI

φ=0 . (3.21)

In addition, the quantum expectation value of any functional
F [A] in a momentum-cutoff vacuum will be given by

F̄�[A] = exp{Dφ�
}(F [A + φ] exp{iI�[A,φ]})

exp{Dφ�
} exp{iI�[A,φ]}

∣∣∣∣
φ=0

. (3.22)

Finally, we should also consider the issue of gauge
dependence of our momentum-cutoff theory. Let DF

φ�
denote

the derivative operator Dφ�
in the Feynman gauge (i.e., ξ = 1),

F [A] be a gauge-invariant functional, and φT be the transversal
part of φ. Then we have F [A + φ] = F [A + φT ], which
implies

Dφ�
F [A + φ] = DF

φ�
F [A + φ]. (3.23)

Consequently, from Eq. (3.19), we obtain

Dφ�
I�[A,φ] = DF

φ�
I�[A,φ]. (3.24)

Hence, the contribution of each graph to the effective action
��[A] is independent of the gauge-fixing parameter ξ , while
F̄�[A] may depend on ξ only if F [A] is a non-gauge-invariant
functional.

IV. ONE-LOOP CALCULATION

A. Photon self-energy

From Eq. (3.21), we see that a loop expansion of the
gauge-invariant effective action ��[A] in a momentum-cutoff
vacuum can be achieved by expanding I�[A,φ] in a power
series of φ. Letting

��[A] = S[A] +
∞∑

n=1

�
n-loop
� [A], (4.1)

and expanding G[A + λφ] on the right-hand side of Eq. (3.19)
in a power series of λ,

G[A + λφ] = G[A] +
∞∑

n=1

λnG(n)[A,φ], (4.2)

we obtain immediately

�
one-loop
� [A] = W�[A] (4.3)

and

�
two-loop
� [A] = g

2
Dφ�

Tr�{G(1)[A,φ]γ μφμ}. (4.4)

On the other hand, in order to obtain the vacuum polarization
function �μν(k|�) in a momentum-cutoff vacuum, we need a

vertex expansion of ��[A],

��[A] =
∞∑

n=0

(−ig)n

(2π )4(n−1)

∫
d4k1 · · ·

∫
d4kn�

(n)
μ1···μn

× (k1, . . . ,kn|�)Aμ1 (k1) · · · Aμn(kn)δ(4)

⎛
⎝ n∑

j=1

kj

⎞
⎠,

(4.5)

which yields

�μν(k|�) = −g2
[
�(2)

μν(k, − k|�) + �(2)
νμ(−k,k|�)

]
. (4.6)

Thus, according to Eqs. (4.3), (3.17), (2.22), and (2.20), the
one-loop contribution to �μν(k|�) is given by

�one-loop
μν (k|�) = − ig2

2

∫
D(�)

d4p

(2π )4
tr
{
G(1)

μ (p; k)γν

+G(1)
ν (p; −k)γμ

}
, (4.7)

where

G(1)
μ (p; k) = SF (p + k)γμSF (p) + i

∫ 1

0
ds∂μSF (p + sk).

(4.8)

Separating out the divergent part of �
one-loop
μν (k|�) by expand-

ing it in a power series of k,

�one-loop
μν (k|�) = �div

μν (k|�) + �(2)R(k2)dμν(k) + O(�−1),

(4.9)

we have

�div
μν (k|�) = 8ig2

3

∫
D(�)

d4p

(2π )4

[
dμν(k)

(p2 − m2)2
− κμν(p; k)

(p2 − m2)3

]
,

(4.10)

�(2)R(0) = 0, (4.11)

with

dμν(k) = k2gμν − kμkν, (4.12)

κμν(p; k) = (pk)2gμν − (pk)(pμkν + kμpν) + k2pμpν.

(4.13)

We shall use two types of the momentum-cutoff domain
D(�) to evaluate divergent integrals such as �div

μν (k|�) given
by Eq. (4.10):

(i) a Lorentz-invariant four-dimensional (4D) cutoff in the
Euclidian four-momentum space R4{pα; α = 1,2,3,4} with
p4 = −ip0, which we shall denote by

D4(�) = R4{pα | |p|2 < �2}, (4.14)

where |p|2 = −p2 is a Lorentz invariant; and
(ii) a 3D cutoff in the Minkowski four-momentum space

R4{pμ; μ = 0,1,2,3} with rotational symmetry in a preferred
inertial frame specified by a timelike unit vector nμ =
{1,0,0,0}. For an arbitrary inertial reference frame, we have

D3(�) = R4{pμ | (np)2 − p2 < �2}. (4.15)
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Thus, under D4(�) cutoff, we obtain

�div
μυ(�,k) = �(�)dμν(k), (4.16)

where

�(�) = − g2

12π2

[
ln

�2

m2
− 1

2

]
+ O(�−1), (4.17)

while under D3(�) cutoff, we obtain

�div
μυ(�,k) = �′(�)dμν(k) + �a(�)κμν(n; k), (4.18)

where

�′(�) = − g2

12π2

[
ln

4�2

m2
− 4

3

]
+ O(�−1) (4.19)

and

�a(�) = g2

36π2
+ O(�−1). (4.20)

On the other hand, when we use a D3(�) cutoff in studying
higher-order contributions, the polarization function given by
Eq. (4.6) can be generally written in the form

�μν(k|�) = �(�,k2)dμν(k) + �a
μν[�,(nk)2,k2], (4.21)

where

�a
μυ[�,(nk)2,k2] = �a1[�,(nk)2,k2]dμν(k)

+�a2[�,(nk)2,k2]κμν(n; k) (4.22)

is the Lorentz anomalous term in �μν(k|�), with

�a1(�,0,k2) = 0. (4.23)

Let �(ct)a
μυ [�,(nk)2,k2] be the corresponding Lorentz anoma-

lous term contributed from the counterterm (see Sec. V). Then
the Lorentz anomaly of �μν(k|�) is defined as

�anom
μν (n,k) = lim

�→∞
{
�a

μυ[�,(nk)2,k2] + �(ct)a
μυ [�,(nk)2,k2]

}
.

(4.24)

In particular, from Eq. (4.20), the order-g2 Lorenz anomaly of
�μν(k|�) is given by

�(2)anom
μν (n,k) = g2

36π2
κμν(n; k). (4.25)

Furthermore, if we denote the renormalized photon propagator
as D̄μν and write its p representation in the form

〈k′|D̄μν |k〉 = −i(2π )4δ(4)(k′ − k)D̄μν(k), (4.26)

then, in the �-QED, we have

D̄μνk = −i

{
[1 − �R(k2)]dμν(k) + 1

ξ
kμkν − �anom

μν (n,k)

}−1

.

(4.27)

B. Electron self-energy

In computing the radiative corrections to a free-electron
propagator, we should take notice of the fact that there
are two different versions of free-electron propagator in the
background-field formalism: a gauge-covariant one, which is
defined by SF [A]|Fμν=0, and a gauge-invariant one, which is
defined by G[A]|Fμν=0 = SF = (∂μγ μ + im)−1, where G[A]

is the gauge-invariant electron propagator given by Eqs. (2.21)
and (2.22). In Ref. [2], we have computed the one-loop
renormalization constant Z2 and the Lorentz anomaly by
using the Feynman gauge and SF [A]|Fμν=0 as the free-electron
propagator. It is easy to verify that, in an arbitrary covariant
gauge, Z2 will depend on the gauge-fixing parameter ξ , while
the one-loop Lorentz anomaly of the electron self-energy
is independent of ξ. Since the dependence of Z2 on ξ

can be completely avoided when we use G[A]|Fμν=0 as the
free-electron propagator, it is worthwhile here to carry out the
calculations of the radiative corrections to the gauge-invariant
electron propagator G[A].

According to Eq. (3.22), the dressed gauge-invariant
electron propagator has the form

Ḡ� = Ḡ�[A]
∣∣
A=0 = 1

∂μγ μ + im + i��

= exp{Dφ�
}(G[φ] exp{iI�[0,φ]})

exp{Dφ�
} exp{iI�[0,φ]}

∣∣∣∣
φ=0

, (4.28)

where �� denotes the unrenormalized electron self-energy
in a momentum-cutoff vacuum. Let Ḡ�|connected1PI denote the
sum of all connected one-particle-irreducible graphs in the
perturbation expansion of the right-hand side of Eq. (4.28)
and rewrite it as

Ḡ�|connected1PI = SF +
∞∑

n=1

Ḡ
n-loop
� . (4.29)

Then the n-loop contribution to the electron self-energy has
the form

�
n-loop
� = iS−1

F Ḡ
n-loop
� S−1

F . (4.30)

For a calculation of �
one-loop
� , we use the expansion (4.2)

and obtain

Ḡ
one-loop
� = Dφ�

{G(2)[0,φ]}. (4.31)

Writing �
one-loop
� in p representation,

〈p′|�one-loop
� |p〉 = (2π )4δ(4)(p′ − p)�(p|�), (4.32)

from Eqs. (2.21), (4.30), and (4.31), and making use of the
transversality of G(2)

μν(p; k, − k), we obtain

�(p|�) = −g2
∫
D(�)

d4kS−1
F (p)gμνG(2)

μν(p; k, − k)S−1
F (p)

(2π )4(k2 − μ2)
,

(4.33)

where μ is the photon mass. Furthermore, by making use of
Eqs. (2.22) and (2.20), we have

gμνG(2)
μν(p; k, − k) = L(a)(p; k) + L(b)(p; k) + L(c)(p; k),

(4.34)

where

L(a)(p; k) = SF (p)γ μSF (p + k)γμSF (p), (4.35)

L(b)(p; k) = i

∫ 1

0
ds∂μ{SF [p + (s − 1)k]γ μSF (p + sk)},

(4.36)
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L(c)(p; k) = −1

2

∫ 1

0
ds1

∫ 1

0
ds2∂

μ∂μSF [p + (s1 − s2)k].

(4.37)

We note that the contribution to �(p|�) from L(a)(p; k)
is just the conventional one-loop electron self-energy in the
Feynman gauge,

�(a)(p|�) = 2ig2
∫
D(�)

d4k

(2π )4

γ μ(pμ + kμ) − 2m

(k2 − μ2)[(p + k)2 − m2]
.

(4.38)

Now we write

�(a)(p|�) = �div(p|�) + �R(p|μ) + O(μ) + O(�−1)

(4.39)

and require that �R(p|μ)|(γp)=m = 0. Then, under 4D cutoff,
we have

�div(p|�) = g2

8π2

{
1

4
[(γp) + 2m] +

[
2m − (γp)

2

]
ln

�2

m2

}
,

(4.40)

�R(p|μ) = g2

8π2

{∫ 1

0
ds[2m − (1 − s)(γp)] ln

m2

ws

− 5m

2

}
,

(4.41)

while under 3D cutoff, we have

�div(p|�) = g2

8π2

{
2

3
(γp) − 3

2
m +

[
2m − (γp)

2

]
ln

4�2

m2

+ 1

3
(np)(γ n)

}
, (4.42)

�R(p|μ) = g2

8π2

{∫ 1

0
ds[2m − (1 − s)(γp)] ln

m2

ws

− 5m

2

}
,

(4.43)

where

ws = sm2 − s(1 − s)p2 + (1 − s)μ2 (4.44)

and

�(2)anom = g2

24π2
(np)(γ n) (4.45)

gives the Lorentz anomaly of the electron self-energy
�(a)(p|�).

The contribution to �(p|�) from L(b)(p; k) + L(c)(p; k) is
given by

�(b+c)(p|�) = g2
∫
D(�)

d4k

(2π )4

L(p; k)

(k2 − μ2)
, (4.46)

where

L(p; k) = [(γp) − m][L(b)(p; k) + L(c)(p; k)][(γp) − m].

(4.47)

In order to evaluate �(b+c)(p|�), it is convenient to carry out
first the integration of s variables included inL(p; k). A careful
analysis shows that we have L(p; k)|(γp)=m = 0, but the on-
shell point is, in fact, a branch point ofL(p; k) as it contains the

terms with the factor ln(m2 − p2). Since further integrations
on the cutoff k space would be very complicated, we shall
separate out the ultraviolet divergent part of �(b+c)(p|�) just
as we have done in Eq. (4.39) for �(a)(p|�),

�(b+c)(p|�) = �div(p|�) + �R(p|μ) + O(μ) + O(�−1).

(4.48)

Now the divergent part �div(p|�) can be obtained by expand-
ing the integrand in a power series of k. Our calculation shows
that the divergent part under both 4D and 3D cutoff are the
same, which is given by

�div(p|�) = g2

16π2
[(γp) − m]

[
2m + (γp)η(z)|z=1−p2/m2

p2 − m2

]

× [(γp) − m] ln
�2

m2
, (4.49)

with η(0) = 1 and η(z) is nonanalytic at z = 0.
Thus, the self-energy �(b+c)(p|�) has no contribution

to the mass renormalization constant �m and the Lorentz
anomaly, while its contribution to the on-shell wave-function
renormalization constant Z2 has the form

δZ
(b+c)
2 = − 3g2

32π2
ln

�2

m2
+ ZR

(
μ

m

)
+ O(μ) + O(�−1).

(4.50)

V. RENORMALIZATION AND MULTILOOP
CALCULATION

The purpose of this section is to study the renormalized
two-loop photon self-energy in a momentum-cutoff vacuum
by making use of the renormalized perturbation method [9].

After adding an order-g2 counterterm to the Lagrangian,
the order-g4 momentum-cutoff vacuum polarization function
can be written as

�(4)
μν(k|�) = �two-loop

μν (k|�) + (δ(1)�)(4)
μν(k|�), (5.1)

where �
two-loop
μν (k|�) is the polarization function derived from

Eqs. (4.4)–(4.6) and (δ(1)�)(4)
μν(k|�) denotes the contribution

from the order-g2 counterterm,

L(1)
ct = −δ

(1)
3

4
FμνFμν + ψ̄

[
δ

(1)
2 iγ μ(∂μ + igAμ) − δ(1)

m

]
ψ,

(5.2)

which is to be added to the renormalized Lagrangian,

L = − 1
4FμνFμν + ψ̄[iγ μ(∂μ + igAμ) − m]ψ + Lgf ,

(5.3)

for a cancellation of the ultraviolet divergences in
�

one-loop
μν (k|�). The renormalization constants δ

(1)
3 ,δ

(1)
2 , and δ(1)

m

may be determined by the one-loop calculations carried out in
Sec. VI.

Let us calculate (δ(1)�)(4)
μν(k|�) at first. This can be done by

recalculating the one-loop polarization function �
one-loop
μν (k|�)

starting from the modified Lagrangian L + L(1)
ct and focus on

its order-g4 term. The electron propagator in the background
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field A is now given by

S
(1)
F [A] = [(

1 + δ
(1)
2

)
γ μ(∂μ + igAμ) + i

(
m + δ(1)

m

)]−1
.

(5.4)

According to Eq. (3.8), the modified one-loop effective action
has the form

W (1)[A] = (
1 + δ

(1)
2

)
gTr

{∫ 1

0
dλS

(1)
F [λA]γ μAμ

}

= W [A] − ig�(1)
m Tr

{∫ 1

0
dλ(SF [λA])2γ μAμ

}
+O(g5), (5.5)

where �(1)
m = δ(1)

m − mδ
(1)
2 . Noting that (SF [A])2 =

i∂SF [A]/∂m, Eq. (5.5) can be rewritten as

W (1)[A] = W [A] + �(1)
m

∂W [A]

∂m
+ O(g5). (5.6)

Thus, by making use of the results given in Eqs. (4.9)–(4.20),
we obtain the order-g4 term of the polarization function derived
from W

(1)
� [A],(

δ(1)�
)(4)
μν

(k|�)

= �(1)
m

[
g2

6π2m
+ ∂�(2)R(k2)

∂m
+ O(�−1)

]
dμν(k), (5.7)

with

�(1)
m = −3g2m

16π2

[
ln

�2

m2
+ 1

2

]
, under 4D cutoff,

(5.8)

�(1)
m = −3g2m

16π2

[
ln

4�2

m2
− 5

9

]
, under 3D cutoff.

Particularly, since the Lorentz anomaly of �
one-loop
μν (k|�) does

not depend on m, the contribution to �(4)
μν(k|�) from L(1)

ct will
not contain any Lorentz anomalous term.

Now we calculate the polarization function �
two-loop
μν (k|�)

by expanding the right-hand side of Eq. (4.4) in powers of
A. Assuming the invariance of the integration domain D(�)
under the reflection pμ → −pμ and doing a straightforward
calculation, we obtain

�two-loop
μν (k|�) = g4

2(2π )8

∫
D(�)

d4q

×
∫
D(�)

d4p
3!tr

{
Ḡ

(3)
λμν(p; q,k, − k)γ λ

}
q2

,

(5.9)

where Ḡ(n)
μ1···μn

(p; k1, . . . ,kn) denotes the symmetrized version
of the functions G(n)

μ1···μn
(p; k1, . . . ,kn) given by Eq. (2.22) [2].

Expand 3!tr{Ḡ(3)
λμν(p; q,k, − k)γ λ} in a power series of k and

write

3!tr
{
Ḡ

(3)
λμν(p; q,k, −k)γ λ

} = Qμν(p,q; k) + Rμν(p,q; k),

(5.10)

where Qμν(p,q; k) is a second-degree polynomial of k and
Rμν(p,q; k) denotes the second-degree remainders of the

power series. Rewrite Eq. (5.1) as

�(4)
μν(k|�) = �(4)div

μν (k|�) + �(4)R
μν (k|�) + O(�−1), (5.11)

where

�(4)div
μν (k|�) = g4

2(2π )8

∫
D(�)

d4q

∫
D(�)

d4p
Qμν(p,q; k)

q2

+ g2�(1)
m

6π2m
dμν(k), (5.12)

�(4)R
μν (k|�) = g4

2(2π )8

∫
D(�)

d4q

∫
D(�)

d4p
Rμν(p,q; k)

q2

+�(1)
m

∂�(2)R(k2)

∂m
dμν(k). (5.13)

In the following, we shall focus on the calculation of
�(4)div

μν (k|�) [�(4)R
μν (k|�) is expected to be convergent when

� → ∞]. By making use of the transversality of Qμν(p,q; k),
we have

g4

2(2π )8

∫
D4(�)

d4q

∫
D4(�)

d4p
Qμν(p,q; k)

q2
= �(4)(�)dμν(k),

(5.14)

g4

2(2π )8

∫
D3(�)

d4q

∫
D3(�)

d4p
Qμν(p,q; k)

q2

= �(4)′(�)dμν(k) + �(4)a(�)κμν(n; k). (5.15)

Let nμ = {1,0,0,0} and

Q(p,q) = ∂2

∂kλ∂kλ

gμνQμν(p,q; k), (5.16)

Q(0)(p,q) = ∂2

∂k0∂k0
gμνQμν(p,q; k). (5.17)

Then, from Eqs. (5.14)–(5.17), we obtain

�(4)(�) = g4

48(2π )8

∫
D4(�)

d4q

∫
D4(�)

d4p
Q(p,q)

q2
, (5.18)

�(4)′(�) = g4

24(2π )8

∫
D3(�)

d4q

×
∫
D3(�)

d4p
Q(p,q) − 2Q(0)(p,q)

q2
, (5.19)

�(4)a(�) = g4

24(2π )8

∫
D3(�)

d4q

×
∫
D3(�)

d4p
4Q(0)(p,q) − Q(p,q)

q2
. (5.20)

When doing calculations of these two-loop integrals, we
tried various different cutoffs of the eight-dimensional (p,q)
space and investigated the asymptotic behavior of the integrals
under the limit � → ∞. Our result indicates that only the
cutoff which corresponds to an universal 3D-momentum cutoff
of each kind of virtual particle yielded a definite Lorentz
anomaly. In other words, it would be more appropriate to
interpret the Lorentz anomaly as a typical feature of the
momentum-cutoff vacuum rather than as a general conse-
quence of a non-Lorentz-covariant cutoff scheme. As an
illustration, let us consider the case where the cutoff � in
q space can be different from the cutoff �p = z� in p space.
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A straightforward calculation shows that, under such cutoffs,
the Lorentz anomalous term �(4)a(�) given by Eq. (5.20) can
be written in the form a(z) ln �2

m2 + b(z) + O(�−1). Moreover,
we found that a(z) = 0 if and only if z = 1 and both a(z) and
b(z) are discontinuous at z = 1. With z = 1, we obtain

�(4)(�) = g4

64π4

[
ln

�2

m2
− 3

2
+ O(�−1)

]
, (5.21)

�(4)′(�) = g4

64π4

[
ln

�2

m2
+ 5

3
ln 2 − 65

54
+ O(�−1)

]
,

(5.22)

�(4)a(�) = g4

12π4

[
ln 2 − 133

144
+ O(�−1)

]
. (5.23)

By making use of these results as well as Eqs. (5.12) and
(5.8), we obtain

�(4)div
μυ (�,k) = − g4

64π4

[
ln

�2

m2
+ 5

2
+ O(�−1)

]
dμν(k),

(5.24)

and

�(4)div
μυ (�,k)

= − g4

64π4

[
ln

�2

m2
+ 7

3
ln 2 + 5

54
+ O(�−1)

]
dμν(k)

+�(4)a(�)κμν(n; k), (5.25)

under 4D and 3D cutoff, respectively. Hence for a cancellation
of the divergent term included in �(4)div

μυ (�,k), we need an

order-g4 counterterm L(2)
ct with

δ
(2)
3 = − g4

64π4
ln

�2

m2
+ finite constant. (5.26)

Combining this with what has been given in Sec. IV, we
conclude that in the �-QED, the β function up to order g4 is
given by

β(g) = g

2
m

∂

∂m

[
δ

(1)
3 + δ

(2)
3

] = g3

12π2
+ g5

64π4
, (5.27)

which coincides with that given by the conventional QED. On
the other hand, the order-g4 Lorentz anomaly has the form

�(4)anom
μν (n,k) = g4

12π4

[
ln 2 − 133

144

]
κμν(n; k) + O(k4).

(5.28)

VI. DISCUSSION AND CONCLUSION

In previous sections, we have proposed a scheme for
realizing gauge-invariant momentum-cutoff regularization on
quantum gauge-field theories. By making use of this scheme,
we construct a gauge-invariant momentum-cutoff generating
functional Z�[A,J ] for QED and carry out one- and two-
loop calculations. It is evident, when the cutoff is imposed
on the Euclidean four-momentum space and the integration
domain is chosen to be D4(�), that the generating functional
Z�[A,J ] becomes a Lorentz invariant and all of the Green
functions deduced from it are both gauge invariant and Lorentz
covariant. Thus, after renormalization and removing the 4D

� cutoff, the physical results deduced from these Green
functions are the same as those deduced by using other
conventional regularization schemes, as demonstrated in our
one- and two-loop calculations. Accordingly, we may think
of this work as providing a workable cutoff regularization
scheme for the conventional quantum gauge-field theory [10].
However, our investigations on the consequences of 3D �

cutoff demonstrate that, if we treat the cutoff as a physical
process rather than as a mathematical procedure, we can
do more interesting works, i.e., constructing quantum field
theories in a momentum-cutoff vacuum and investigating their
unusual behavior in the continuum limit [11].

In constructing such quantum field theories, a challenge
we have to face is the violation of Lorentz symmetry. In
fact, in order to have the theory make sense, we require
that after a renormalization procedure, all Lorentz anomalous
terms in radiative corrections converge to finite terms in the
continuum limit. Since the generating functional Z�[A,J ] is
well defined and can be constructed according to a definite
procedure (see Sec. III), whether the theory thus constructed
meets this requirement reduces to a well-defined mathematical
problem. We tackle this problem by perturbation calculations
and anticipate that the problem can be solved eventually with
nonperturbative techniques.

Finally, we would like to present a short discussion about the
physical meaning of the Lorentz anomalies as well as some of
the phenomenological consequences of the momentum-cutoff
vacuum in �-QED.

Let us consider first the propagation of the electromagnetic
field in a momentum-cutoff vacuum. After renormalization
and taking the continuum limit, the Maxwell equation in the
momentum-cutoff vacuum, according to Eq. (4.27), can be
written as{

[1 − �R(−∂λ∂λ)]dμν(i∂) − 1

ξ
∂μ∂ν − �μν

anom(n,i∂)

}
Aν(x)

= 0. (6.1)

For simplifying our discussion, we shall use the Landau gauge
(i.e., let ξ → ∞) and consider only the approximation of order
g2. In this approximation, Eq. (6.1) has the form

{[1 − �(2)R(−∂λ∂λ)]dμν(i∂) − �anomκμν(n,i∂)}Aν(x) = 0,

(6.2)

where �anom = Nf
g2

36π2 , with Nf denoting the number of the
species of the charged fermion with charge g. In comparison
with the corresponding equation in the conventional QED,

[1 − �(2)R(−∂λ∂λ)]dμν(i∂)Aν(x) = 0, (6.3)

Eq. (6.2) involves an extra Lorentz anomalous term, which
breaks explicitly the Lorentz symmetry exhibited in Eq. (6.3).
However, we can show that Eq. (6.2) is actually covariant
under a Lorentz transformation with a light velocity that is
different from that which has been used in Eq. (6.3). In other
words, if we change the light velocity from c to c̄ = e−αpc in
the preferred inertial frame with nμ = {1,0,0,0} by invoking
an alternative definition of the interval

ds̄2 = ds2 − (1 − e−2αp )nμnνdxμdxν, (6.4)
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Eq. (6.2) would have the same form as Eq. (6.3). Certainly,
provided that the spacetime coordinate xμ as well as the
covariant vector fields Aν and the spinor fields ψ and ψ̄ are
regarded as independent of the metric, a change of the light
velocity in QED can be achieved by changing the Minkovski
metric as follows:

gμν → ḡμν = gμν − (1 − e−2αp )nμnν. (6.5)

Thus, we obtain

d̄μν(i∂) ≡ (−ḡμνḡλ� + ḡμλḡν� )∂λ∂�

= dμν(i∂) − (1 − e2αp )κμν(n,i∂). (6.6)

Letting αp = 1
2 ln(1 − Nf

g2

36π2 ) and noting that
�(2)R(−ḡλ� ∂�∂λ) = �(2)R(−gλ�∂� ∂λ) + O(g4), Eq. (6.2)
can be rewritten as

[1 − �(2)R(−ḡλ� ∂�∂λ)]d̄μν(i∂)Aν(x) = 0, (6.7)

which is covariant under the Lorentz transformation with the
light velocity c̄ = e−αpc.

Second, we consider the Dirac equation in a momentum-
cutoff vacuum. In the approximation of order g2, this equation
has the form

[γ μ∂μ + im + i�(2)R(iγ μ∂μ) + i�(2)anom]ψ(x) = 0, (6.8)

with �(2)anom = g2

24π2 iγ
μnμnν∂ν. From the identity

γ μγ ν + γ νγ μ = 2gμν, (6.9)

we know that the change of the light velocity from c to
c̄ = e−αec can be achieved via a change of the γ matrix,

γ μ → γ̄ μ = γ μ − (1 − eαe )γ νnνn
μ. (6.10)

Thus, letting αe = ln(1− g2

24π2 ) and noting that �(2)R(iγ̄ μ∂μ) =
�(2)R(iγ μ∂μ) + O(g4), Eq. (6.8) can be rewritten as

[γ̄ μ∂μ + im + i�(2)R(iγ̄ μ∂μ)]ψ(x) = 0, (6.11)

which is covariant under the Lorentz transformation with the
light velocity c̄ = e−αec. Thus, for a �-QED with Nf = 3,

all the order-g2 Lorentz anomalies will be eliminated by
renormalizing the light velocity with c̄ = (1 + g2

24π2 )c.
Now we turn to discuss the Lorentz symmetry breaking

in the low-energy regime predicted by the �-QED in the
continuum limit when the Lorentz anomalous terms cannot
be completely eliminated by a renormalization of the light
velocity. We shall (i) ignore all radiative corrections except
Lorentz anomalies, (ii) neglect the O(k3) terms in the Lorentz
anomalies, and (iii) eliminate the Lorentz anomaly in the
photon propagator via a renormalization of the light velocity.
Then we obtain the following Maxwell-Dirac equations:

�Aμ = gψ̄[γ μ − λeγ
νnνn

μ]ψ, (6.12)

[i(γ μ − λeγ
νnνn

μ)(∂μ + igAμ) − m]ψ = 0, (6.13)

where λe(γ n)(pn) is the Lorentz anomaly in the free-electron
propagator, nμ = (1 − v2)−

1
2 {1,v} specifies the motion of

the reference frame with respect to the vacuum, and the
renormalized light velocity c = 1 remains valid in all inertial
frames.

A. The free electron

From Eq. (6.13), we obtain the free-electron propagator,

SF (p) = i

(pμ − λepνnνnμ)γ μ − m
. (6.14)

Let p = Eu; the dispersion relation for a free electron can be
written in the form

E2 = m2

1 − u2 − λe(2−λe)(1−u·v)2

1−v2

. (6.15)

Then, the rest mass and the group velocity of the electron are
given by

me = m

√
1 − v2

(1 − λe)2 − v2
(6.16)

and

ug = (1 − v2)u − λe(2 − λe)(1 − u · v)v
(1 − λe)2 − v2 + λe(2 − λe)u · v

, (6.17)

respectively. We note that the rest mass me varies under the
boost of the reference frame and, in the preferred frame with
v = 0, we have

E2 = m2

(1 − λe)2 − u2
= m2

e

1 − (1 − λe)2u2
g

. (6.18)

This implies that, for a free electron, the maximal attainable
velocity relative to the vacuum is (1 − λe)−1c.

Furthermore, the conserved current density of the free
electron can be defined as

jμ = ψ̄(γ μ − λeγ
νnνn

μ)ψ, (6.19)

which, like the rest mass me, also depends explicitly on the
motion of the reference frame relative to the vacuum.

B. The electron in a Coulomb field

According to the Maxwell-Dirac equations (6.12) and
(6.13), the potential energy of an electron in the Coulomb
field of a static point charge −Zg in the given reference
frame is

V (r) = −Zg2

r
, (6.20)

and the motion of the electron in the Coulomb field is
described by[

1 − λe(1 − v · α)

1 − v2

]
[H − V (r)]ψ

=
{[

α−λe(1 − v · α)v
1 − v2

]
· p + βm

}
ψ. (6.21)

Equation (6.21) can be rewritten in the form

Hψ =
{

1 − λe − v2

(1 − λe)2 − v2

[
α · p + βm − Zαv

r

]
+ Kanom

}
ψ,

(6.22)
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where

Kanom = −λe

(v · α)(α · p + βm) + (1 − λe − α · v)(p · v)

(1 − λe)2 − v2

(6.23)

is the anomalous part of the kinetic energy and

αv = (1 − λe)2 − v2

1 − λe − v2
g2 (6.24)

denotes the fine-structure constant in the given reference
frame. In fact, if the Coulomb system is at rest in the preferred
frame with v = 0, the energy eigenvalues of the system will
be given by the well-known Sommerfeld’s formula

En,κ = me

⎧⎨
⎩1 + Z2α2

0(
n − |κ| +

√
κ2 − Z2α2

0

)2

⎫⎬
⎭

− 1
2

, (6.25)

with α0 = (1 − λe)g2.
In these two examples, we can see two types of manifesta-

tion of the Lorentz anomalies in �-QED: (i) the fundamental
constants me and αv become varying under the boost of
the reference frame, and (ii) the Hamiltonian of the free
electron contains an anomalous kinetic term Kanom which may
lead to spatially anisotropic and/or parity violation effects
observable in the reference frames other than the preferred
one.

During the past decades, mainly motivated by ideas about
quantum gravity, there has been tremendous interest in
searching for the Lorentz-invariance violation, and a number
of theoretical frameworks have been developed to discuss
the possible ways of violating Lorentz invariance [5,12].
As the mechanism of violating Lorentz invariance in the
momentum-cutoff model of quantum field is quite different, it
is anticipated that the research on this model will be useful to
search for and explain the evidences of Lorentz violation.

In conclusion, the research conducted so far on momentum-
cutoff vacuums has indicated that it is worthwhile to do further
research on this subject, both in theory and experiments, not
only for providing another version of workable quantum field
theory but also for discovering unknown features of the local
geometry of the vacuum which, in the conventional QED, we
had assumed to be well known.
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APPENDIX

We give a proof of Eq. (3.19), which is valid also for non-
Abelian gauge fields. Let F [ϕ] be a functional of the field
ϕr (x) and f (r,x|ϕ) = δF [ϕ]/δϕr (x). Then we have

F [ϕ + �ϕ] − F [ϕ]

=
∑

r

∫
d4x

∫ 1

0
dλf (r,x|ϕ + λ�ϕ)�ϕr (x). (A1)

Thus, for a current density given by

Jμa(x|A) = − δW [A]

δAa
μ(x)

, (A2)

we obtain

W [A + φ] − W [A] = −Tr

{∫ 1

0
dλJμ[A + λφ]φμ

}
, (A3)

where Jμ[A] is a current density operator which satisfies

〈x|tr{Jμ[A]T a}|x〉 = J a
μ(x|A). (A4)

It is easy to derive Eq. (3.19) from (A3) by defining the current
density operator as

Jμ[A] = −gG[A]γμ. (A5)
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