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The fundamental quantum interferometry bound limits the sensitivity of an interferometer for a given total
rate of photons and for a given decoherence rate inside the measurement device. We theoretically show that the
recently reported quantum-noise-limited sensitivity of the squeezed-light-enhanced German-British gravitational
wave detector GEO 600 is exceedingly close to this bound, given the present amount of optical loss. Furthermore,
our result proves that the employed combination of a bright coherent state and a squeezed vacuum state is
generally the optimum practical approach for phase estimation with high precision on absolute scales. Based on
our analysis we conclude that the application of neither Fock states nor NOON states nor any other sophisticated
nonclassical quantum state would have yielded an appreciably higher quantum-noise-limited sensitivity.
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Direct detection of gravitational waves (GWs) is one of
the most challenging tasks in contemporary experimental
physics. Over recent years, advancements in the design and
in the practical realization of GW detectors have led to
significant reduction of technical noise. Even for kilowatts
of circulating light powers, the performance of the devices has
approached the precision limits imposed by the laws of physics
themselves. Modern day GW detectors are kilometer-scale
laser interferometers in which suspended mirrors play the
role of test masses of space-time curvature. Displacements
of the mirrors induce variation in the light power leaving the
output port of the interferometer. Thanks to the high light
power circulating inside the interferometer, tiny changes in the
mirrors’ relative positions lead to a measurable change in the
number of output photons—opening up prospects of detecting
GWs where the typical relative mirror motion amplitudes are
expected to be below the size of the proton. The dominating
noise source in GW detectors at signal frequencies above a
couple of hundreds of hertz is the photon shot noise [1,2].
Standard laser light is well described by a coherent state,
which implies that the number of photons n registered at the
output port fluctuates according to the Poissonian statistics as
n = n̄ ± √

n̄, requiring a signal to provide at least an order of√
n̄ change in the mean registered photon number n̄ to provide

a signal-to-noise ratio of unity.
It was proposed already in the early 1980s that the use of a

squeezed vacuum state may lead to an improved performance
of GW detectors without the need for increasing the number
of photons [3,4]. The proposal has recently found its full-scale
realization in the German-British GW detector GEO 600 where
subshot noise sensitivities have been demonstrated in a GW
detection [5]. More recently an operation over several months
has been reported [6], as well as a successful test in one of the
Laser Interferometer Gravitational-Wave Observatory (LIGO)
detectors [7]. Other approaches based on the use of Fock
and the NOON states [8–11] may also lead to an improved
sensitivity, but the improvement is strongly bounded by the
effects of optical loss [12–16].

Here we prove that the quantum enhancement of sensitivity
based on the interferometric scheme combining coherent states
and squeezed vacuum (CSV) as reported in [5] was close to the
fundamental quantum bound under given energy constraints
and optical loss levels. Only a small increase of the squeezing
factor would have virtually met this bound.

We consider a simplified model of the GEO 600 inter-
ferometer consisting of a Michelson interferometer with a
signal-recycling cavity [17], as depicted in Fig. 1. Our model
omits the power recycling cavity of GEO 600, and instead
assumes that the actual light power at the beam splitter P is
achieved by sending in a light field of correspondingly higher
power. Besides the light power the important experimental
parameter of the system is its optical power input-output
transfer coefficient η, where (1 − η) represents the cumulative
effect of photon scattering, absorption, mode mismatch, and
photo detection efficiencies. For the squeezed vacuum state
sent into the asymmetric port of the interferometer in the
GEO 600 setup η was measured to be 0.62 [5]. Phase noise
decoherence effect on the squeezed state [18] was considered
to be negligible. Also the effect of measurement back-action
due to photon radiation pressure [19] is currently negligible
in GEO 600 and is not included in our analysis. However,
back-action can in principle be avoided [20] and thus does not
limit the scope of our analysis.

Since a general interferometric scheme might involve
arbitrary quantum states of light being sent into both input
ports, we make for simplicity the conservative assumption
that the same overall loss would be experienced for both
paths. In reality the input-output transfer coefficient of the
GEO 600 bright port is even lower than 0.62 due to the high
finesse of the power-recycling cavity being almost impedance
matched. Without loss of generality we further assume that in
the absence of gravitational waves the interferometer output
port is at a dark fringe and its arms have perfectly equal
lengths l. Additional phase shifts could always be included
in the general forms of the input state or the measurement
scheme and as such would have no impact on fundamentally
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FIG. 1. (Color online) A simplified model of the GEO 600
interferometer operating at a dark fringe. a0,d0,e0 represent annihi-
lation operators of the corresponding modes at the carrier frequency
ω0, while b±,c±,d±,e± represent annihilation operators of sideband
modes ω0 ± �. Input modes are marked in red. The signal recycling
mirror (MSR) with power transmissivity of 1.9% is placed in the
signal output port and is responsible for the frequency-dependent
amplification of the signal amplitudes. The distances to the two end
mirrors oscillate at frequency � with the relative phase shift π and
amplitude χ .

achievable precision. Oscillations of the differential distance
of the end mirrors at a frequency � induce an exchange of
light power between the carrier light’s optical frequency ω0

and the sideband modes ω0 ± �, which effectively transfers
light between the two output ports of the interferometer. One
can regard the system as a linear transformation between the
three input modes a0,b± to the three output modes a′

0,b
′
± as

depicted in Fig. 1, where the three indices 0,± refer to the
frequencies ω0,ω0 ± �.

In our analysis we apply no restriction to the nature of the
quantum states to be sent into the apparatus, nor do we restrict
ourselves to specific measurements performed at the two
output modes. The performance of the detection is quantified
by a signal-to-noise ratio of unity for the measurement
of a gravitational wave strain h = 2χ/l, where χ is the
amplitude of the mirror oscillations in each arm, as shown
in Fig. 1.

We first consider three modes d0,d± impinging on the
top mirror in Fig. 1. Assuming the amplitude of the latter’s
oscillation is much smaller than the light wavelength, χ �
λ0 = 2πc/ω0, and neglecting higher order sideband modes
ω0 ± n� for n � 2, we can approximate the input-output
relation to first order in ε = hlω0/2c as⎛

⎜⎝
d ′

0

d ′
+

d ′
−

⎞
⎟⎠ =

⎛
⎜⎝

1 iε iε

iε 1 0

iε 0 1

⎞
⎟⎠

⎛
⎜⎝

d0

d+
d−

⎞
⎟⎠ . (1)

An analogous relation holds for e0,e± modes with ε replaced
by −ε to account for the antisymmetric nature of the GW
signal.

In the GEO 600 experiment the signal-recycling cavity was
tuned to the central frequency ω0. We realize this configuration
by setting z = 0 (see Fig. 1) and by setting ω0l/c to a multiple
of π . Up to ε-independent phase factors, which are irrelevant
for the discussion of sensitivity, the input-output relations have

a0 a0

bs
bs

ϕ = 2
√

2

FIG. 2. (Color online) Model of the GEO 600 interferometer
reduced to an equivalent, in terms of sensitivity, two-mode Mach-
Zehnder interferometer with relative phase delay ϕ = 2

√
2gε. bs

represents a symmetric combination of the sideband modes. The
possibility of a more general measurement is illustrated with the
dotted line.

the form⎛
⎜⎝

a′
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b′
+

b′
−

⎞
⎟⎠ = U

⎛
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where

g =
√

T

2 − T − 2
√

1 − T cos[2�l/c]

is the amplification factor due to the presence of the signal-
recycling mirror with power transmissivity T .

Inspecting Eq. (2) we notice that the effective mode cou-
pling that occurs between the central a0 and the symmetrized
sideband mode bs = (b− + b+)/

√
2 reads(

a′
0

b′
s

)
=

(
1

√
2gε

−√
2gε 1

) (
a0

bs

)
, (3)

leaving the antisymmetric mode ba = (b− − b+)/
√

2 intact.
We may look at this effective evolution in terms of an
equivalent Mach-Zehnder interferometer with small relative
phase shift ϕ = 2

√
2gε, where the pairs of input and output

modes are represented by a0,bs and a′
0,b

′
s , respectively, as

shown in Fig. 2.
We first recall the theoretical model that is valid for an

interferometer with modes a0 and bs being in a coherent
state |α〉 and a squeezed vacuum state |r〉, respectively. Here,
e−2r is the squeezing factor of the quadrature variance. In
the experimentally relevant limit when the classical beam
is much stronger than the squeezed one (|α| � sinh2r)
and when the power transmission η is identical for both
arms, the phase estimation uncertainty obtained by simply
measuring the output light power (being proportional to b

′†
s b′

s)
is approximately given by [3]

�ϕ ≈
√

1 − η + ηe−2r

η|α|2 . (4)

The enumerator can be interpreted as a combination of
contributions from the squeezed and the vacuum quadrature
variances with respective weights η and 1 − η defined by the
setup losses [21].

Inserting into Eq. (4) the relation h = ϕc/
√

2gl and the
mean photon number produced in unit time by the light
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source of power P , |α|2 = P/(h̄ω0), we arrive at the (fre-
quency domain) single-sided strain-normalized noise spectral
density

�h = 1

lg

√
ch̄λ0

4πP

√
1 − η + ηe−2r

η
. (5)

The above formula is valid for an interferometer whose
decoherence is dominated by optical loss being independent of
the input port. To apply Eq. (5) to the actual data as presented
in Ref. [5] we have to rescale the measured light power at the
beam splitter of P̃ ≈ 2.7 kW, which already experienced some
optical loss.

We now set η = 0.62, which was measured for the squeezed
vacuum state being reflected from the interferometer’s signal
output port [5]. A reasonable ansatz is to decompose the
efficiency in an in-coupling and out-coupling efficiency (η =
ηin ηout). Since imperfect mode-matching mainly affects the
input efficiency we conservatively estimate ηin to be about
0.73. Using Eq. (5) and the correspondingly higher value for
the circulating power of P = P̃ /ηin = 3.7 kW corresponds
to an out-coupling efficiency of the signal sidebands of 0.85
being a reasonable value for GEO 600 [22]. We estimate that
the above approximation leads to an error well within the
measurement error for P̃ ≈ 2.7 kW of about 20% [23].

Figure 3 (red dashed line) shows our model described
above in comparison to the experimental data presented in
[5]. Both traces match rather well above 1500 Hz, where
the experimental data are clearly dominated by quantum
noise. Our model [Eq. (5)] uses the following experimental
parameters [5]: λ0 = 1064 nm, l = 1200 m, P = 3.7 kW,
η = 0.62, T = 1.9%, and e−2r = 0.1.

The main mathematical concept behind the derivation of
the fundamental quantum interferometry bound is the quantum
Fisher information (QFI) [25,26]. Let ρ be the input state sent
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FIG. 3. (Color online) GEO 600 noise spectral density normal-
ized to strain (�h, black) according to Ref. [5] and predictions of our
simplified theoretical model based on given values for the circulating
light power and for the given optical loss: no vacuum squeezing
(dashed gray), 10 dB vacuum squeezing [dashed red, Eq. (5)] as
realized in [5], and 16 dB vacuum squeezing coinciding with the
fundamental quantum enhancement bound [solid red, Eq. (12)]. Note
that the injection of 16 dB vacuum squeezing is in reach of current
technology, since 12.7 dB was already observed, even with imperfect
photodetectors [24].

into the interferometer while ϕ represent the total action of
the interferometer including the phase delay ϕ and loss. QFI
calculated on the output state F (ϕ(ρ)), which for brevity
we denote as F (ρ), provides a limit on the achievable phase
estimation sensitivity via the Cramér-Rao bound

�ϕ � 1√
F (ρ)

. (6)

In recent years the influence of nonzero optical loss was
considered [12–16]. For a generic two-mode input state ρN

with a precisely defined total photon number N the limit on
phase sensitivity is [14–16]

max
ρN

F (ρN ) � Nη

1 − η
, with η < 1 . (7)

Here we present a generalized bound also applicable to
states having an uncertain photon number such as coherent
states and squeezed states as required for the setup investigated
here. Let us also observe that in our setup no additional
reference beams are involved. Consequently, any kind of
measurement on the output beams is necessarily a photon
number measurement and hence coherences between different
total photon number subspaces of the two-mode density matrix
are not observable [27,28]. If, on the other hand, one assumed
additional phase reference beams, the whole problem of phase
estimation would need to be reformulated by specifying which
relative phase is actually being estimated and which photons
are included in the total power budget [29]. Assuming that no
additional reference beams are present, we can equivalently
write any kind of a two-mode state with uncertain photon
numbers, e.g., |α〉 ⊗ |r〉, as an incoherent mixture of states
having a certain photon number in both modes

ρN̄ ≡
∞⊕

N=0

pNρN, (8)

where pN is the probability of projecting the state ρN̄ onto
the N -photon subspace, and ρN is the normalized conditional
density matrix in the N -photon subspace.

The maximization of F over states ρN̄ with an indefinite
photon number but the mean value fixed to N̄ may therefore be
carried out by taking normalized density matrices in N -photon
subspaces written as

F (ρN̄ ) = F

( ∞⊕
N=0

pNρN

)
, (9)

with a constraint
∑∞

N=0 pNN = N̄ . Thanks to the convexity
of F [30,31] we get (for η < 1)

F (ρN̄ ) �
∞∑

N=0

pNF (ρN ) �
∞∑

N=0

pN

Nη

1 − η
= N̄η

1 − η
, (10)

where we have applied Eq. (7) to each of the photon number
subspaces separately. This leads to the bound on the ultimate
phase sensitivity in the form

�ϕ �
√

1 − η

ηN̄
, (11)

where compared to previous results the average N̄ appears in
lieu of the definite number of photons. Let us point out that
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the above derivation was possible only thanks to the linearity
of the bound on the QFI in N and would break down in the
decoherence-free case, where QFI grows as N2. In general,
taking a sensitivity bound derived under an assumption of
a fixed number of N photons and just replacing N with an
average N̄ for arbitrary states is illegitimate and may lead
to apparently contradicting statements on the possibility of
beating the so-called Heisenberg limit [32–35].

Making use of Eq. (11) we are therefore entitled to write
the fundamental bound on interferometer strain sensitivity as

�h = 1

lg

√
ch̄λ0

4πP

√
1 − η

η
, (12)

which is depicted as the solid red line in Fig. 3. Most
interestingly, virtually the same spectral density is provided
by Eq. (5) when using 16 dB (e−2r = 0.025) of squeezing
instead of 10 dB.

We conclude that there is no need for an alternative to
the CSV interferometric strategy in the regime of high light
powers. The actual meaning of “high,” however, depends on
the loss level 1 − η. The higher the losses the sooner the CSV
strategy becomes optimal. Figure 4 is a contour plot of the
ratio of precision achievable with the most general optimal
N photon states of light and the precision achievable with
the CSV strategy, with N̄ = |α|2 + sinh2r = N , as a function
of N and the loss level 1 − η. Optimal precision achievable
with general states has been found by a direct numerical
optimization of QFI up to N = 100 [12]. For larger N we
found a rather accurate extrapolation formula

�ϕ =
√

1 − η

ηN

[
1 + 1√

N

(
a + b

N
+ c

N2

)]
, (13)

where parameters a, b, and c are fitted using low N data.
This model is consistent with the asymptotic formulas derived
in [14]. For currently realistic loss levels of 1 − η ≈ 30%,
already N = 2 × 109 guarantees less than 1% deviation of the
CSV scheme from the optimal strategy. However, future GW
detectors will use photon rates of the order 1024. Then even
loss levels below 1% will still keep the CSV scheme within
1% of the fundamental quantum interferometry bound.

Even though the presence of decoherence diminishes the
potential gains offered by quantum metrology, the fact that
rather realistic strategies based on squeezed states allow us to
make the most of quantum enhancement is highly encouraging.
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FIG. 4. (Color online) Optimality of the coherent state – squeezed
vacuum state (CSV) scheme quantified as the ratio of precisions
achievable with the optimal N -photon state and the CSV strategy
with the same mean number of photons and optimal squeezing. Note
that in GEO 600, the effective number of photons used per 1 s was
approximately 2 × 1022. For such a high photon number the CSV
strategy would achieve 99.9996% of the optimum quantum strategy’s
sensitivity for a loss of 38%.

These claims can easily be extended to cover other optical in-
terferometric schemes proposed to study fundamental physics
[36] as well as quantum-enhanced atomic clock calibration,
where theoretical results indicate that the precision of Ramsey
interferometry with spin-squeezed states is close to the optimal
one in the asymptotic regime of a large number of atoms
[15,37,38].
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