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Phase conjugation in quantum optomechanics
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We analyze the phase-conjugate coupling of a pair of optomechanical oscillator modes driven by the time-
dependent beat note of a two-color optical field. The dynamics of the direct and phase-conjugate modes exhibit
familiar time-reversed qualities, leading to opposite sign temperatures for the modes in the classical regime
of operation. These features are limited by quantum effects due to the noncommutative nature of quantum-
mechanical operators. The effects are measurable by readout of the oscillator via a qubit. As a potential application
of this system in sensing, we discuss a protocol applying phase-conjugate swaps to cancel or reduce external
forces on the system.
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Following impressive successes in cooling optomechanical
systems near their quantum ground state [1–4], recent advances
have resulted in the demonstration of a number of quantum-
mechanical effects on a variety of micro- and nanomechanical
and ultracold atom platforms [5–7]. A promising new direction
is the theoretical [8–12] and experimental [13,14] study of
multimode effects, both optical and mechanical. Important
potential applications of quantum optomechanics include, for
instance, the detection of feeble forces and fields at or near the
quantum limit [7], high fidelity quantum state transfer between
optical and mechanical modes [15] or between electromagnetic
fields of different frequencies [16], and fundamental studies
of decoherence and the quantum or classical interface [17].
Clearly the detailed understanding and control of the effects
of both classical and quantum noise are central to such
studies.

A technique of noise reduction that has proven useful in
optical applications is phase conjugation, which permits one
to “time reverse” and cancel the effects of phase aberrations in
the propagation of optical fields. One of its greatest successes
is in astronomy, enabling ground-based telescopes to achieve
resolutions comparable to or better than space telescopes. In
such situations, phase conjugation is achieved by the use of
guide stars and deformable mirrors, but in other applications,
phase-conjugate signals are generated via nonlinearities such
as four-wave mixing [18].

This Rapid Communication extends the idea of phase
conjugation to optomechanics. It proposes a specific coupling
scheme that permits a mechanical mode of one oscillator to
be the phase conjugate of the mode of a direct oscillator.
In contrast to the situation in optics, however, this effect
occurs in time rather than space. In the classical regime
we find as expected that the dynamics of the direct and
phase-conjugate modes exhibit the time-reversal property
familiar from optics. However, this feature is limited by
quantum noise, a direct consequence of the noncommutative
nature of quantum-mechanical operators. When coupling the
optomechanical system to a detector qubit, we find that as
a consequence the phase-conjugate mode interacts with it
with an effective negative temperature, again with important
observable corrections in the quantum regime. Finally, we pro-
pose a protocol to improve the performance of optomechanical
sensors by canceling or reducing certain effects of external
forces.

We consider two mechanical modes optomechanically
coupled to a cavity optical field. They could be two modes of
the same mechanical element, distinct mechanical oscillators
[13], or ultracold atomic clouds [14]. This system is described
by the Hamiltonian (h̄ = 1)

H = Hcav + Hmech + HOM + Hdiss, (1)

with the cavity field Hamiltonian

Hcav = ωcâ
†â + η(t)â† + η∗(t)â, (2)

the mechanical oscillator Hamiltonian

Hmech =
∑
j=1,2

ωj b̂
†
j b̂j , (3)

and the optomechanical interaction Hamiltonian

HOM =
∑
j=1,2

gj â
†â(b̂j + b̂

†
j ). (4)

Dissipation of the two subsystems and their respective baths
is captured in Hdiss. Cavity photons and mechanical phonons
of mode j are annihilated by the bosonic operators â and b̂j ,
respectively, the respective mode frequencies are ωc and ωj ,
gj are the optomechanical coupling constants, and η(t) is the
optical pumping rate.

The dynamics of this system were previously studied [8]
for monochromatic laser driving, in which case it was found
that the only resonant interactions involve the exchange of ex-
citations, a situation that does not result in phase conjugation.
To achieve that goal we consider instead a two-color optical
driving field

η(t) = η1e
−iωL1t + η2e

−iωL2t , (5)

where ηj are complex driving amplitudes. We proceed by de-
composing the intracavity field as the sum of a classical mean
field α(t) = ∑

j=1,2 αj exp(−iωLj t) and associated quantum
fluctuations, with

αj = −iηj

κ/2 + i(ωc − ωLj )
, (6)

where κ is the resonator damping rate, and neglect terms
quadratic in the fluctuations. Following the time-dependent
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unitary transformation

Û (t) = exp[α∗(t)â − α(t)â†], (7)

the equation of motion for the cavity fluctuations can be
integrated applying a slowly varying envelope approximation
for the mechanical modes [19]. The resulting expression
is substituted in the Heisenberg-Langevin equations for the
mechanical oscillators, which then read

db̂
dt

= M(t) · b̂ + N̂ + D, (8)

where b̂ = (b̂1,b̂2,b̂
†
1,b̂

†
2)T. Here

D =

⎛
⎜⎜⎜⎝

−ig1|α|2
−ig2|α|2
ig1|α|2
ig2|α|2

⎞
⎟⎟⎟⎠ (9)

describes the classical driving of the oscillators, and

M =

⎛
⎜⎜⎜⎝

−i�1 − �1
2 T1 P1 C1

T2 −i�2 − �2
2 C2 P2

P∗
1 C∗

1 i�1 − �1
2 T ∗

1

C∗
2 P∗

2 T ∗
2 i�2 − �2

2

⎞
⎟⎟⎟⎠ ,

(10)

where �j and �j include the optical spring and optome-
chanical cold damping effects familiar from single-mode
optomechanical cooling. The explicit form of all elements of
M(t) can be found in the Supplemental Material [19]. Finally

N̂ =

⎛
⎜⎜⎜⎜⎝

ζ̂1 + √
γ1ξ̂1

ζ̂2 + √
γ2ξ̂2

ζ̂
†
1 + √

γ1ξ̂
†
1

ζ̂
†
2 + √

γ2ξ̂
†
2

⎞
⎟⎟⎟⎟⎠ , (11)

where γj and ξj account for the noise associated with
the coupling of the mechanical oscillators to their thermal
reservoirs and

ζ̂j = −igj (α∗f̂ + αf̂ †), (12)

with

f̂ (t) = √
κe(−κ/2−iωc)t

∫ t

0
dt ′e(κ/2+iωc)t ′ âin(t ′), (13)

describes the coupling of the optical cavity noise to the
mechanical oscillators, with âin the usual input field noise
operator familiar from the input-output formalism [20].

All elements of the matrix M(t) include constant contri-
butions and terms oscillating at the beat frequency of the
two driving fields. Their explicit forms are cumbersome
and are relegated to the Supplemental Material [19]. The
important point is that due to their temporal dependence it
is possible to choose the frequencies ωLj so as to favor
specific coupling coefficients, for example, the single-mode
parametric amplification described by the coefficients Pj (t),
or other forms of mode coupling described by Tj (t) and Cj (t),
in particular, phase conjugation.

Specifically, for the resonant interaction

ωL2 − ωL1 = �1 + �2, (14)

a condition that is a temporal analog of “quasi-phase-
matching” in nonlinear optics [18], the dominant mode
coupling is mediated by the amplitude C+

j appearing in the
oscillatory portion of Cj (t) [see Eq. (18) of the Supplemental
Material]. This choice renders all other couplings and in-
teractions, and also the classical driving terms, off-resonant
and negligible for sufficiently large separation of �1 and �2

(see [19] for explicit expressions). In this regime we can then
reduce Eq. (8) to a (2 × 2) system and the coupling matrix
acting on (b̂1,b̂

†
2)T becomes

M2(t) =
(

−i�1 − �1
2 C+

1 e−i(�1+�2)t

(C+
2 )∗ei(�1+�2)t i�2 − �2

2

)
. (15)

The nature of the coupling between the mechanical modes is
determined by the eigenvalues of M2. Moving to corotating
frames and in the limit of negligible dissipation, they are

given by ±
√
C+

1 (C+
2 )∗. If this product is real, we find ourselves

in the situation of two-mode parametric amplification, with
both modes experiencing gain and becoming entangled [18].
Here we focus instead on the case when the eigenvalues are
imaginary and the interaction between b̂1 and b̂

†
2 is oscillatory

in nature, i.e., phase conjugation. Unlike two-mode parametric
amplification [21], this evolution associated with M2 alone
is not unitary in that case. It is therefore accompanied by
quantum noise entering the system through the driving field,
the consequences of which will be discussed later.

The eigenvalues can be tuned by the choice of frequency of
the driving lasers. Pure phase conjugation is realized for

ωL1 = ωc − �1 + �2

2
±

√
(�1 − �2)2 − κ2

2
, (16a)

ωL2 = ωc + �1 + �2

2
±

√
(�1 − �2)2 − κ2

2
, (16b)

which requires that |�1 − �2| > κ . We then have

C+
1 = iα∗

1α2g1g2(�1 + �2)

[κ/2 − i(�1 − �2)][κ/2 + i(�2 + �2)]
, (17a)

(C+
2 )∗ = −iα1α

∗
2g1g2(�1 + �2)

[κ/2 + i(�1 − �1)][κ/2 − i(�2 + �1)]
, (17b)

with �j = ωc − ωLj and

C+
1 (C+

2 )∗ = −4|α1α2g1g2|2 |(�1 − �2)2 − κ2|
κ2(�1 − �2)2

. (18)

While the dynamics of the oscillators do exhibit phase conju-
gation effects outside that regime, the dominant contribution in
that case is normally parametric amplification. This difference
between the oscillator frequencies also justifies the rotating
wave approximation made earlier and ensures stability.

To further discuss the properties of optomechanical phase
conjugation we absorb free phases into operators, resulting
in a real, positive coupling constant C = |C+

1 |. The coupled-
mode equations for the mechanical oscillators simplify
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then to

db̂1

dt
=

(
−i�1 − �1

2

)
b̂1 + Ce−i(�1+�2)t b̂

†
2 + F̂1(t), (19a)

db̂
†
2

dt
=

(
i�2 − �2

2

)
b̂
†
2 − Cei(�1+�2)t b̂1 + F̂†

2 (t), (19b)

where we have combined any external force F̂ (t) applied to
the system and noise contributions in the operators

F̂j (t) = iF̂ (t) + √
γj ξ̂j (t) + ζ̂j (t). (20)

In what follows we take mode 1 to be the phase-conjugate
mode, and mode 2 the direct mode.

Equations (1) are easily solved in Fourier space to give

b̃j (ω) = Rj (ω)[F̃j (ω) − L(�k,ω + �j )F̃†
k (−ω − �1 − �2)]

(21)

with j �= k,

Rj (ω) = 1

�j/2 + i(ω + �j ) + CL(�k,ω + �j )
, (22)

and L(γ,ω) = C(γ /2 + iω)−1.
The intrinsic noise contribution

√
γj ξ̂j (t) + ζ̂j (t) forms a

noise floor above which we can measure the effects of the
external force F̂ (t). Assuming for now that its strength is well
above the noise level we have F̂j (t) ≈ iF̂ (t) in Eq. (20). In
that case, the position operators

x̃j (ω) ≡ b̃j (ω) + b̃
†
j (−ω) (23)

become

x̃j (ω) = χj (ω)F̃ (ω) + χj,c(ω)F̃ (ω + �1 + �2)

+χ∗
j,c(−ω)F̃ (ω − �1 − �2), (24)

with

χj (ω) = i[Rj (ω) − R∗
j (−ω)], (25)

χj,c(ω) = −iRj (ω)L(�k,ω + �j ). (26)

It is straightforward to evaluate the spectral densities
Sxx,j (ω) = ∫

dω′〈x̃j (ω)x̃j (ω′)〉 of the mechanical oscillator
positions for the case of a stationary force, for example, sta-
tionary noise, for which 〈F̃ (ω)F̃ (ω′)〉 = δ(ω + ω′)SF (ω) with
SF (ω) = ∫

dt e−iωt 〈F̂ (t)F̂ (0)〉. Their full analytic expressions
are cumbersome and can be found in the Supplemental
Material [19]. For qualitative insight we reproduce only the
contributions to Sxx,1(�1) proportional to SF (±�2). This
corresponds to the response of the phase-conjugate mode 1
to a narrow-width external force applied to the direct mode 2
only. We find

Sxx,1(�1) ∝ χ∗
1,c(−�1)[χ1(�2) + χ1,c(−�1)

+χ∗
1,c(−�1 − 2�2)]SF (−�2). (27)

The key point here is that the spectral density at the positive
frequency �1 depends on the external force noise power
spectrum at the negative frequency, −�2. This is a signature
of the time-reversal property of phase conjugation, and is
in stark contrast to the familiar situation of linearly coupled
oscillators. In the latter case the susceptibilities are the same,
but the effect of phase conjugation is to change signs in the

arguments of F̃ (ω) in the last two terms of Eq. (24). (Note
that for parametrically amplified oscillators, the gain from the
drive prevents thermalization of the system in the absence of
saturation.)

Consider, for example, a force with effective temperature
Teff acting on the direct mode only, so that [22]

SF (ω)

SF (−ω)
= exp

(
h̄ω

kBTeff(ω)

)
. (28)

As a result of the phase-conjugate coupling, oscillator 1
experiences then a force with negative temperature −Teff . This
has physically observable consequences, which can be seen,
for example, by coupling that oscillator to a qubit of transition
frequency �1 and upper to lower level decay rate � through
the interaction Hamiltonian [23]

V = Ax̂1σ̂x, (29)

a simple model of a spectrum analyzer. The Fermi golden rule
transition rates of the qubit are

�g→e = A2Sxx,1(−�1), (30)

�e→g = A2Sxx,1(�1). (31)

It is straightforward to determine the steady-state occupation
of the two states of the qubit, and to infer its temperature
as a function of the temperature of the external force. This
situation is depicted in Fig. 1, which shows that indeed,
for high enough temperatures the qubit equilibrates at −Teff .
Importantly, though, the situation is fundamentally different
for low temperatures, where the temperature of the qubit levels
to a constant value. This is due to the quantum noise terms√

γi ξ̂i(t) + ζ̂i(t) of Eq. (20), which we have ignored so far
in the discussion (but not the numerics) and which limit the
effectiveness of phase conjugation in the quantum regime.
That these terms should be important is easily understood by
recalling that phase conjugation achieves a situation where the
expectation values of the annihilation operator of mode 1 and
the creation operator of mode 2 become equal,

〈b̂1〉 = 〈b̂†2〉. (32)

This equality cannot be valid at the level of operators, since
this would violate the boson commutation relations. The

0.25 0.5 0.75 1
Teff

1

0.5

0.5

1
Tqubit

FIG. 1. (Color online) Temperature of the qubit for linearly (blue,
dashed) and phase-conjugate (red, solid) coupled oscillators as a
function of force temperature in natural units. The parameters are
�1 = 1, �2 = 1.5, γ1 = γ2 = 0.1, and C = 0.025.
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FIG. 2. (Color online) Qubit temperature as a function of the
width σF of SF (ω) for linearly (blue, dashed) and phase-conjugate
(red, solid) coupled oscillators. Other parameters as in Fig. 1.

fundamental quantum noise present in phase conjugation is
essential in preserving them, and the flattening of the negative
temperature of the qubit for Teff → 0 is a direct signature of
that noise. This fundamental element of phase conjugation in
the quantum regime was first realized in the optical case [24],
where it was shown that except in special cases [25] quantum
noise imposes a limitation on the ability of phase conjugation
to reverse the effect of external fluctuations below the classical
limit.

We also remark that the situation is more complex if the
spectral width σF of SF (ω) becomes large enough to drive
both modes directly. This situation is depicted in Fig. 2: for
σF � |�1 − �2| oscillator 1 is subject to the time-reversed
version of F (t) only. As σF increases, oscillator 1 starts to
experience the direct effect of F (t) as well. This eventu-
ally overwhelms the contribution due to phase conjugation,
with a relatively sharp transition where the oscillators go
through a resonance, but with the temperature remaining finite
throughout.

We conclude by outlining a possible protocol that exploits
optomechanical phase conjugation to reduce the distortion due
to a classical external force Fj (t) affecting the oscillators.
Transforming to their respective frames of reference, B̂j =
ei�j t b̂j , the free evolution is given by

B̂j (t) = B̂j (t0) − i

∫ t

t0

dt ′ei�j t
′
Fj (t ′). (33)

Starting at t = −t1, both oscillators evolve freely and are
subject to their respective forces. At t = 0, we apply a
phase-conjugate swap of the two oscillators, fast enough so
we can neglect the effect of the force during that process.
Following this we let the system evolve freely for a time t2.

After these steps the state of the oscillators is

B̂j (t2) = B̂
†
k (−t1) + i

∫ 0

−t1

dt ′e−i�kt
′
Fk(t ′)

− i

∫ t2

0
dt ′ei�j t

′
Fj (t ′) + N̂PC,j

= B̂
†
k (−t1) + N̂PC,j

+ i

∫ τ

0
dτ ′e−iτ ′

[
Fk

( − τ ′
�k

)
�k

−
Fj

(
τ ′
�j

)
�j

]
, (34)

where we have used the “echo condition”

�kt1 = �j t2 ≡ τ. (35)

Force cancellation occurs if the term in square brackets
vanishes. For the degenerate case �j = �k this requires
only that the force be time-symmetric Fj (−t ′) = Fk(t ′). This
corresponds to the situation in optical phase conjugation
where cancellation of phase distortions requires symmetry
with respect to forward and backward propagation. For the
nondegenerate case cancellation requires that the force be
both time-symmetric and self-similar F (τ ′) = 1

�j,k
Fj,k( τ ′

�j,k
)

[26], with F (τ ′) = F (−τ ). For a static force cancellation
requires Fk/�k = Fj/�j , but for “quasistatic” forces that
vary slowly compared to the inverse oscillator frequencies
we still expect a degree of cancellation. The self-similarity
condition is quite restrictive, but for cases in which �j,k are
related by a factor 2k with k an integer, a broader range of
options arises. In particular, in this case it is known that
the self-similar signals F (τ ′) can share spectral properties
with 1/f noise [26], raising the possibility of the partial
cancellation of classical 1/f noise. A more detailed analysis
of optomechanical phase-conjugation-based noise reduction
techniques will be the object of future studies.

In conclusion, we have proposed a scheme to achieve phase-
conjugate coupling between two optomechanically driven
mechanical oscillators. In a stationary setting, it formally
swaps the roles of emission and absorption of excitations with
an external force, leading to negative temperatures that could
be measured by coupling a qubit to the position of an oscillator.
However, unavoidable quantum noise limits this process in the
low-temperature limit where h̄�j becomes comparable to the
effective thermal energy of the force, kBTeff . Phase-conjugate
swapping can be used to reduce or cancel effects of external
forces acting on the oscillators.
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