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Quantum systems of ultracold bosons with customized interparticle interactions
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Recent progress in cooling and trapping of polarized clouds of chromium 52Cr, dysprosium 164Dy, and erbium
168Er opens a roadmap to quantum systems where the shapes of interparticle interactions can be customized. The
main purpose of this work is to get deeper insight into the role the overall shape of the interparticle interaction
plays in the context of trapped ultracold bosons. We show that strong interparticle repulsion inevitably leads
to multihump fragmentation of the ground state. The fragmentation phenomenon is universal—it takes place in
traps of different dimensionalities and topologies and for very broad classes of repulsive interparticle potentials.
The physics behind this is identified and explained.
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Nowadays, dilute ultracold atomic and molecular clouds are
considered as toolboxes to probe the static and dynamical prop-
erties of many-particle Hamiltonians [1–4]. Consequently,
some phenomena which are very difficult or even impossible
to study in their natural appearance and environment can
be explicitly reconstructed and modeled in ultracold atomic
systems. However, until recently, one substantial ingredient
was missed—control over the overall shape of interparticle
interactions.

Recent experiments with ultracold polarized clouds of
chromium 52Cr [5,6], dysprosium 164Dy [7], and erbium 168Er
[8] have ultimately shown that the short-range interparticle in-
teraction potential alone cannot describe the observed physics
and it should be augmented by an additional long-range
term which usually takes on the form of a dipole-dipole
interaction [9,10]. Another venue to manipulate the effective
interparticle interaction is to admix a small component of an
excited Rydberg state to the ground state of ultracold atoms
[11,12] via off-resonant optical coupling, thereby creating
so-called “dressed” Rydberg systems. These steps towards
the control and manipulation of the overall shape of the
interparticle interaction open a roadmap to mimic or simulate
static and dynamical phenomena and effects appearing in
the context of other fields of physics where shapes of interpar-
ticle interactions play crucial roles, e.g., in nuclear physics.

The perspective of working with quantum systems where
the interparticle interaction is customized encourages us to
get deeper insight into the role it plays. The role of the sign
is evident: If it is negative, the system is attractive, if it is
positive, the system is repulsive, but what roles do its range
and tails play? What physical phenomena or properties are
they envisioned to impact? The main phenomenon predicted
and intensively studied in the field of ultracold atoms is con-
densation, manifesting itself in a peaked density with a profile
similar to the lowest-in-energy eigenstate of the confining
potential. Condensation also means coherence between weakly
interacting particles [1,2]. On the other hand, the existence of
multihump features in the ground-state density might indicate
possible (strong) correlations in the system which usually
destroy condensation and break partially or completely the
coherence between the particles.

The multihump structure of the ground-state density can be
caused by applied external potential barriers. In a double well,
for instance, a sufficiently high barrier can split the density into
two well-separated subclouds. Such a system is then called

twofold fragmented [13], implying that coherence between
the subfragments is lost. If more barriers are available, as in
optical lattices, the system can be multifold fragmented—in
this respect, see the famous Mott-insulating phases [14].
Complimentary modulations of the density profiles and loss of
interparticle coherence can be caused by a strong, repulsive
interparticle interaction. In one-dimensional systems with
contact interparticle interactions it originates from the well-
known fermionization phenomenon [15,16] for interboson
interactions of other shapes—to solidlike states [see, e.g.,
Coulomb bosons [17] and dipolar (screened Coulomb-like)
bosons [18]]. In two dimensions strong repulsion is pre-
dicted to be responsible for so-called crystallization [9,10]—
appearances of stable rims in the density profiles and/or
its partial factorization into multihump structures (see, e.g.,
Refs. [19,20]). In [21], ground-state fragmentation of bosons
with long-range interactions in a single trap has been shown
to exist within a two-mode model.

The main goal of the present Rapid Communication
is to investigate the microscopic details of how repulsive
interparticle potentials create nontrivial features (humps) in the
densities of ultracold systems confined in simple barrierless
traps. We also want to understand which characteristic of a
general interparticle interaction function favors these density
modulations and, thereby, controls the accompanying devel-
opments of correlations and fragmentation.

Let us consider a generic many-body Hamiltonian of
N identical bosons trapped in an external trap poten-
tial V (r) and interacting via a general interparticle inter-
action potential: Ĥ (r1, . . . ,rN ) = ∑N

j=1[− 1
2∇2

rj
+ V (rj )] +

∑N
j<k λ0W (rj − rk). Here λ0 defines the strength of the

interaction and W (r − r′) ≡ W (R) its shape. In this work,
h̄ = 1, m = 1.

To start with, we consider several one-dimensional bar-
rierless traps: a standard harmonic V (x) = 0.5x2, a nonhar-
monic V (x) = 0.5x6, and asymmetric linear V (x) = {−x :
x < 0; 3x/4 : x � 0}. We examine the following interparti-
cle interaction functions: exponential exp[− 1

2 (|x − x ′|/D)n],

screened Coulomb 1/
√

(|x − x ′|/D)2n + 1, and sech-shaped
sech[(|x − x ′|/D)n] of half-width D with n = 1 and their
sharper interactions analogous obtained with n = 2. In the
following we use the shorthand notations exp[−Rn], 1/Rn,
and sech[Rn]. To solve the respective many-boson Schrödinger
equation numerically we use the recently developed

041602-11050-2947/2013/88(4)/041602(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.041602


RAPID COMMUNICATIONS

ALEXEJ I. STRELTSOV PHYSICAL REVIEW A 88, 041602(R) (2013)

 0 

0.5

V
(x

), 
(x

)

1.0

W~Exp[-R]

coordinate

 0 

0.3

4.0

W~Sech[R]

 0 

0.2

10.0

W~1/R

1

1.0

W~Exp[-R2]

coordinate

4.0

W~Sech[R2]

10.0

W~1/R2

11111110

(a) (d)

(b) (e)

(c) (f)

FIG. 1. (Color online) Diversity of fragmentation phenomena.
Strong interparticle repulsion leads to the formation of multihump
localized, fragmented structures irrespective of the shapes of the
interparticle W (R) and trapping V (r) potentials used. Shown are
the densities of one-dimensional systems made of N = 108 bosons
and corresponding trapping potentials which are scaled and shifted
for better presentation. Upper panels: Asymmetric linear trap and
screened Coulomb interboson interactions of half-width D = 5 and
strength λ0 = 0.3 with n = 1 (a) and n = 2 (d). Middle panels:
Harmonic trap and sech-shaped interactions with D = 4 and λ0 =
1.0, n = 1 (b), n = 2 (e). Lower panels: Nonharmonic trap and
exponential interparticle interactions with D = 3 and λ0 = 1.5, n = 1
(c), n = 2 (f). Interparticle interaction potentials with sharper edges
(n = 2) enhance fragmentation (see text for details). All quantities
shown are dimensionless.

multiconfigurational time-dependent Hartree method for
bosons (MCTDHB) [22,23]. This method is capable of
providing numerically exact solutions [24].

The left panels of Fig. 1 plot the ground-state densities
obtained at a full many-body level for one-dimensional sys-
tems with 1/R, sech[R], and exp[−R] interparticle interaction
functions of different widths (ranges) confined in different
traps. The main fascinating observation is that, irrespective of
the shapes of the interparticle and trapping potentials used, a
strong enough interparticle repulsion leads to the formation
of multihump localized structures and, therefore, indicates
possible correlations and fragmentation in the systems.

To shed more light on which characteristic parameters of
the interparticle interaction function drive and control the
number of humps, correlations and fragmentation, we have
computed the ground-state properties of the same many-body
systems as above, but with sharper interparticle interactions
1/R2, sech[R2], and exp[−R2]. The results presented in the
right panels of Fig. 1 show that for sharper versions of
the interparticle interactions the multihump structures are
retained and become even more pronounced. The many-body
analysis of these multihump solutions reveals that they are not
condensed but multifold fragmented (see Ref. [25] for more
details). In the asymmetric linear trap the four-hump density
of N = 108 bosons depicted in Fig. 1(d) is formed by four
contributing natural subfragments ρ(x) = ∑4

i=1 ni |φNO
i (x)|2.

The first fragment with n1 = 52 bosons is localized at the
trap minimum and forms the most intense hump. The leftmost
hump is formed by n3 = 20 bosons residing in a well-localized
third natural orbital. Two other humps at the right are formed
by n2 ≈ 27.6 and n4 ≈ 8.4 bosons residing in the second and

fourth natural orbitals, which are slightly delocalized. In the
harmonic trap and sech-shaped interaction [see Fig. 1(e)],
the three symmetric fragments carry 30, 48, and 30 bosons,
respectively. In the nonharmonic trap a Gaussian interaction
results in a twofold fragmented ground state with 97.2 and
10.8 bosons per fragment [see Fig. 1(f)]. Here it is worthwhile
to stress that for weak repulsions the regime of normal
condensation is, of course, recovered irrespective of the
particular form of interaction. Indeed, the ground-state density
of the system depicted in Fig. 1(d) with a very weak repulsion
λ0 = 0.01 has one hump and is fully condensed, n1 ≈ 100%
(see Ref. [25] for more details).

The above observed diversity of the fragmentation is
caused by the interplay between the interparticle and trapping
potentials. To distinguish and isolate effects originating from
the range or width of the interparticle interaction, the particular
shape of its tails, and the strength of the interparticle repulsion,
let us consider a box-shaped trap and interparticle interaction
potential of a rectangular shape, W (x − x ′) = {1 : |x − x ′| �
D; 0 : otherwise}. In this system an increase in the strength of
the interparticle repulsion does not change either the effective
length of the trap or the range of the interparticle interaction
potential.

The left panels of Fig. 2 show how the ground-state densities
of the system made of N = 108 bosons with a rectangular
interparticle interaction of half-width D = 3, trapped in a
box-shaped trap of length L = 4, respond when the repulsion
strength is increased, λ0 = 0,0.3,1.0. We see that in the
noninteracting case the density is broad and has a maximum at
the trap center. The strong interparticle repulsion, in contrast,
leads to localization of the density at the edges of the box. Basic
“electrostatic” arguments can explain this behavior. For strong
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FIG. 2. (Color online) Physics of fragmentation in bosonic
systems confined in box-shaped traps of length L and interacting
via an interparticle interaction potential of rectangular shape with
half-width D = 3. The left panels show that for strong repulsion
λ0 = 0.3,1.0 [(b), (c)] it costs energy to keep N = 108 bosons in the
middle of the trap (L = 4), and to minimize the energy the system
fragments into two well-separated subclouds. The density of the
noninteracting system is shown in (a). The right panels show how
to control the fragmentation in strongly repulsive systems (λ0 = 1.0)
by varying the length L of the box. For L = 8 the ground state is
threefold fragmented (e) and for L = 15 it is fourfold fragmented (f).
Shown are the one-particle densities and trap potentials. All quantities
shown are dimensionless.
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repulsion it costs energy to keep the bosons in the middle of the
trap, so they repel and push each other away—the cloud starts
to form a minimum in the center of the trap. If we increase the
repulsion further, the total energy is increased, but the system
cannot expand farther apart due to the box-shaped topology of
the trap. To minimize the energy the density is split into two
well-separated fragments.

The right panels of Fig. 2 present a complimentary study
where we keep the interparticle interaction λ0 = 1.0, D = 3
fixed and increase the box size L = 5,8,15 providing, thereby,
more room for the bosons. We see that starting from some
critical length of the trap (box size), to minimize the repulsion,
the system of N = 108 bosons is split into three subclouds
with 36 bosons per fragment. To split the system into four
fragments with 27 bosons per subcloud one has to increase the
trap’s length farther on. So, for strong enough interparticle re-
pulsions, ground-state fragmentation is an inevitable property
of trapped bosonic systems. The interplay between the width
of the finite-range part of the interparticle interaction function
and the length of the trap defines the particular fragmentation
scenario.

To get deeper insight into the physics behind the fragment-
ation discovered above at a full many-body level, let us
now rely on an idealized picture of a twofold fragmented
state. The total density of such a state is formed by a sum
of two isolated and independent subclouds (fragments). Its
many-body wave function is then a Fock state |n1,n2〉 repre-
sented by a single symmetrized permanent �(r1, . . . ,rN ) =
ŜφL(r1) · · ·φL(rnL

)φR(rnL+1) · · · φR(rnL+nR
), with nL bosons

residing in the left φL and nR in the right φR fragment, respec-
tively. The optimal shapes of the fragments are determined
self-consistently by solving the multiorbital best mean-field
(BMF) equations [26,27] which we can be rewritten [25] as
[
ĥ + λ0(nL − 1)V eff

φL
(r) + λ0nRV eff

φR
(r)

]
φL = μ11φL + μ12φR,

[
ĥ + λ0(nR − 1)V eff

φR
(r) + λ0nLV eff

φL
(r)

]
φR = μ21φL + μ22φR.

Here ĥ = − 1
2∇2

r + V (r) is a single-particle Hamiltonian.
The V eff

φi
(r) = ∫ |φi(r′)|2W (r − r′)dr′ terms play the roles

of effective self-consistent potentials—their profiles depend
on a given shape of interparticle function W (r − r′) and on
the left and right densities |φi(r′)|2, i = L,R of the involved
subclouds. A negligible overlap between the well-isolated left
and right fragments allows one to neglect the other integrals
appearing in the original BMF equations.

The upper panel of Fig. 3 exemplifies schematically how the
effective barrier V eff

f = ∫ |f (x ′)|2W (x − x ′)dx ′ is produced
by a rectangular interparticle interaction potential W (x − x ′)
of range D acting on a Gaussian-shaped cloud f (x) of half-
width a. This effective barrier depicted by a solid line with
circles is centered at the cloud origin. The profile of this barrier
is flat over the extent of the cloud f (x) and drops as an erf
function at the ±D edges.

Two other panels of Fig. 3 show how a rectangular
interparticle interaction of half-width D induces the effective
potentials in the above studied one-dimensional bosonic
system trapped in a box-shaped trap. The lower panel of Fig. 3
depicts by a solid line with circles the interaction-induced
effective potential V eff

φL
(x) = ∫ |φL(x ′)|2W (x − x ′)dx ′. It is

constant over the extent of the φL(x) fragment and, therefore,
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FIG. 3. (Color online) Explanation on how finite-range inter-
particle interaction potentials induce effective barriers and confine
fragmented states. The upper panel plots by a solid line with circles
an effective barrier V eff

f (x) = ∫ |f (x ′)|2W (x − x ′)dx ′ produced by a
rectangular interparticle interaction potential W (x − x ′) of half-width
D acting on a Gaussian-shaped function f (x) of half-width a. Lower
panel: The solid line with circles depicts an effective barrier V eff

φL
(x) =∫ |φL(x ′)|2W (x − x ′)dx ′ produced by the action of a rectangular

interparticle potential on the subcloud φL. The superposition of this
interaction-induced effective barrier and the external trap (here it is
a square box of length L) results in a well where the φR subcloud is
confined. Middle panel: The action of the same finite-range W (x − x ′)
on φR produces an effective well capable of confining the left subcloud
φL. The induced potential V eff

φR
(x) is plotted by a solid line with circles.

All quantities shown are dimensionless.

in the above BMF equations it just energetically shifts the
left-localized subcloud upwards without changing its shape:
V eff

φL
(x)φL(x) ≈ ∫ |φL(x ′)|2dx ′φL(x) = φL(x). The action of

V eff
φL

(x) on the right fragment φR(x), in contrast, is dramatic—it
induces the effective barrier. A superposition of this effective
barrier and the external trap (box) is capable of confining the
right subcloud φR(x). Similarly, the action of W (x − x ′) on
the right subcloud creates an effective barrier V eff

φR
(x) confining

the left fragment (see the middle panel of Fig. 3).
Here we have arrived at a microscopic, self-consistent

picture of self-induced fragmentation which requires, as a
prerequisite, localized subclouds, finite-range interparticle
repulsion, and a trap of a finite length. The action of a finite-
range repulsive interparticle potential on a cloud produces an
effective barrier. The profile of this barrier depends on the
density of the cloud, the number of the particles in it, and
on the shape of W (r − r′). When several localized clouds or
fragments are present, each of them creates its own effective
potential that is seen by the other subclouds as an effective
barrier. The superposition of these self-induced barriers and
external trap results in a multiwell potential confining the
fragmented system as a whole object.

The multihump structure of the density is driven by the frag-
mentation phenomenon, which has been observed experimen-
tally [28,29] and is well understood theoretically [13,30–32].
From this perspective, variations of the shapes of W (r − r′)
can modify the induced effective potentials and, thereby, the
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fragmentation in the following manner: (a) By decreasing the
range of the interparticle repulsion we increase the overlap
between the fragments which reduces the fragmentation and
leads to the development of coherence between them [33];
(b) by increasing the strength of the interparticle repulsion and
keeping its range fixed we increase the heights of the induced
barriers which isolate the fragments and enhance fragmenta-
tion; and (c) by flattening the tails of the interparticle interac-
tion function one stimulates the overlap between the subclouds
which melts the humps and blurs the fragmentation. A compar-
ison of the left and right panels of Fig. 1 confirms this analysis.

A simple geometrical relation between the effective length
of the trap L and range D of the finite-range part of the
interparticle interaction function defines the number M of
available humps (fragments). For L < D we have a system
of noninteracting particles because, irrespective of the shape
and size of the trapped cloud, the created effective barrier is
geometrically broader than the trap (box) itself. When L > D

there is enough room for two fragments to be trapped by the
self-induced effective barriers; to accommodate M fragments
the length of the trap should be L > (M − 1)D (see, e.g.,
Fig. 2).

The obtained geometrical picture of localized fragments
and self-induced effective potentials is universal and can be
applied to systems of bosons, fermions, and distinguishable
particles also at higher dimensions. In the left and right panels
of Fig. 4 we plot illustrative numerical examples of almost
ideal self-induced twofold fragmented ground states of bosonic
systems with N = 100 particles interacting via sharp repulsive
sech-shaped interparticle potentials and confined in slightly
elongated two- and three-dimensional harmonic traps.

Summarizing, we predict that the density of trapped
repulsive ultracold bosons inevitably fragments into multi-
hump structures to minimize strong interparticle repulsion.
The physics behind this is an interplay between classical
“electrostatic” repulsion which pushes the bosons from the
trap center towards its edges, thereby provoking the formation

FIG. 4. (Color online) Universality of self-induced fragmentation
mediated by finite-range interparticle interaction potentials. Left:
Twofold fragmented ground state in a harmonic two-dimensional
(2D) trap slightly elongated in one direction. Right: Twofold
fragmented ground state in a slightly elongated three-dimensional
(3D) harmonic trap. To visualize the 3D functions we plot several
isosurfaces of the density and an equipotential cut of the trap. All
quantities shown are dimensionless.

of multihump structures in the density, and quantum me-
chanics which governs the loss of interhump coherence, i.e.,
fragmentation.

Finally, for experimental verification of the predicted
phenomena with ultracold systems, one needs that (i) the range
of interparticle interaction should be comparable with the
length of trapping potentials and (ii) the repulsive interaction
should be strong enough. Both these requirements are already
reachable [25] within presently available technologies in
dipolar ultracold atomic Bose-Einstein condensates trapped
in tight optical traps [34,35] and in trapped ultracold systems
of “dressed” Rydberg atoms [36,37].
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