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We calculate the quantum Cramér-Rao bound for the sensitivity with which one or several parameters,
encoded in a general single-mode Gaussian state, can be estimated. This includes in particular the interesting
case of mixed Gaussian states. We apply the formula to the problems of estimating phase, purity, loss, amplitude,
and squeezing. In the case of the simultaneous measurement of several parameters, we provide the full quantum
Fisher information matrix. Our results unify previously known partial results and constitute a complete solution
to the problem of knowing the best possible sensitivity of measurements based on a single-mode Gaussian state.
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Metrology using electromagnetic fields as a probe is of
fundamental importance in many areas of science and tech-
nology. Applications include, among many others, distance
measurements with laser range finders or radar, measurement
of the shape and composition of objects in microscopy
and spectroscopy, angular velocities with laser gyroscopes,
and attempts of gravitational wave detection using large
interferometers such as VIRGO and Laser Interferometer
Gravitational-Wave Observatory (LIGO). In all these schemes,
one or several parameters of the system under investigation
are encoded in the state of light, and one subsequently tries
to recover that value by detecting the light in a suitable way.
It is important to know with what precision such a parameter
can be measured in principle; that is, once all technical noise
sources are eliminated, measurement instruments are ideally
precise, and the system can be prepared in the same identical
state as often as desired [1].

Quantum parameter estimation theory provides an answer
to this question in the form of the quantum Cramér-Rao bound,
which constitutes a lower bound to the fluctuations of an
estimator of a parameter θ , given the knowledge of how the
quantum-mechanical state ρ depends on the parameter. The
bound is essentially due to quantum uncertainty and is given
by the inverse quantum Fisher information IFisher associated
with the state ρθ , where IFisher measures the distinguishability
(or, in a complementary way, the fidelity) of two close-by
quantum states that differ infinitesimally in θ . The result
can be intuitively understood in quantum information terms.
For neighboring states that differ slightly in the value of a
parameter θ , the more distinguishable the states are, the more
precisely θ can be measured. The quantum Cramér-Rao bound
is applicable to any quantum-mechanical system and provides
often a generalized uncertainty relation, even if no Hermitian
operator can be simply associated with a given observable, as
is the case, for example, for phase estimation [2–4].

In quantum optics, a particularly useful class of states is
the class of Gaussian states, which are defined generally as
states with a Gaussian Wigner function. This class includes
coherent states (e.g., the light emitted by a laser operating
far above threshold), thermal light, squeezed light, and,
in the case of several modes, some entangled states such
as Einstein-Podolsky-Rosen (EPR) states. These states are

readily available in the laboratory with large photon numbers
[5] and play an important role in quantum metrology and
information processing [6]. In [7] quantum Fisher information
was calculated for pure Gaussian states with arbitrarily
many modes, and a measurement scheme was proposed that
saturates the quantum Cramér-Rao bound. However, the need
to calculate the square root of two different operators renders
the calculation, in general, very difficult for mixed states
of infinite dimensional systems. Partial early results include
those by Twamley, who calculated the Bures distance between
squeezed thermal states [8], and Paraoanu and Scutaru, who
did so for displaced thermal states [9]. Scutaru found the
fidelity for thermal states that are both displaced and squeezed
[10]. Monras and Paris found the quantum Fisher information
for the particular problem of loss estimation with displaced
squeezed thermal states [11], and Aspachs et al. considered
phase estimation with thermal states [12]. These results all
refer to single-mode states. Very recently, Marian and Marian
produced a result for the fidelity between arbitrary one- or
two-mode Gaussian states [13]. Other recent works on the
quantum Cramér-Rao bound for two-mode Gaussian states
include [14–16].

Here we provide a comprehensive analysis for general
single-mode Gaussian states. They can be parameterized by
five real parameters that we will describe below. Our analysis
is based on a general expression for the Bures distance between
two Gaussian one-mode states in [10], which we expand
up to second order in the infinitesimal difference dθ in the
parameters between the two neighboring states ρθ and ρθ+dθ .
This yields the quantum Fisher information. For the case of
simultaneous estimation of several parameters, we calculate
the complete quantum Fisher matrix, which sets a lower bound
to the covariance matrix of the parameters in the sense of a
matrix inequality [17].

Gaussian states. The quadratures of an electromagnetic
field mode (in units with h̄ = 2) are defined in terms of the
annihilation and creation operators a and a† of the mode as [18]

x̂ = a† + a, p̂ = i(a† − a) . (1)

In the Wigner function description of the state, the quadratures
correspond to two phase-space coordinates x and p, which
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we group into a two-dimensional vector X, X� = (x,p). The
Wigner function for an arbitrary quantum state given in terms
of its density matrix ρ is then defined as

W (x,p) = 1

2π

∫ ∞

−∞
dξe−ipξ 〈x − ξ |ρ|x + ξ 〉 . (2)

For a single-mode Gaussian state that depends on the param-
eter θ , the Wigner function takes the general form

Wθ (X) = 1

2π |�θ |1/2
e− 1

2 (X−Xθ )��−1
θ (X−Xθ ) , (3)

where Xθ are the parameter-dependent expectation values of
the quadratures in the state ρθ , �θ is the covariance matrix [19],
and |�θ | is its determinant. �θ is a real symmetric matrix with
matrix elements

�θ,ij = 1
2 〈XiXj + XjXi〉 − 〈Xi〉〈Xj 〉 , (4)

and 〈· · · 〉 ≡ tr(ρ · · · ). We see that the Wigner function is
parameterized with five real parameters. The purity of the
state is given by Pθ = trρ2

θ = |�θ |−1/2.
Quantum Cramér-Rao bound. The (squared) sensitivity

(δθ )2 with which a parameter θ can be estimated from Q

measurement results ai of some observable A is defined as
the variance of the deviation from the true value of θ of an
estimator of θ , θest(a1, . . . ,aQ), which depends solely on the
measurements results: δθ2 = 〈[θest(a1, . . . ,aQ) − θ ]2〉s , where

〈· · · 〉s corresponds to the statistical mean. It is bounded from
below by the inverse of the quantum Fisher information,

(δθ )2 � 1

QIFisher(ρθ )
, (5)

where IFisher is defined here as the quantum Fisher information
for a single measurement. The bound is optimized over all
possible positive operator-valued measurements and classical
postprocessing of data (i.e., all estimator functions). For
an unbiased estimator it can be saturated in the limit of
a large number of measurements and thus represents the
ultimate reachable bound of sensitivity. The quantum Fisher
information is given in terms of the Bures distance between
two close-by states ρθ ,ρθ+ε as

IFisher(ρθ ) = 4

(
∂dBures (ρθ ,ρθ+ε)

∂ε

∣∣∣∣
ε=0

)2

. (6)

The Bures distance between two quantum states ρ1,ρ2 is
defined as

dBures(ρ1,ρ2) =
√

2
√

1 −
√

F (ρ1,ρ2), (7)

where F (ρ1,ρ2) = [tr(
√

ρ1ρ2
√

ρ1)1/2]2 denotes the fidelity
between the two states. In [10] it was found that for
two arbitrary single-mode Gaussian states ρ1,ρ2 of the
form (3)

F (ρ1,ρ2) = 2 exp
[− 1

2�X�(�1 + �2)−1�X
]

√|�1 + �2| + (1 − |�1|)(1 − |�2|) − √
(1 − |�1|)(1 − |�2|)

, (8)

where �X = 〈X1 − X2〉 is the mean relative displacement.
Under a smoothness hypothesis, necessary for any Cramér-Rao
bound, we have ∂F (ρθ ,ρθ+ε )

∂ε
|ε=0 = 0 and

IFisher(ρθ ) = −2
∂2F (ρθ ,ρθ+ε)

∂ε2

∣∣∣∣
ε=0

. (9)

The first- and second-order derivatives of the determinant
of a differentiable, invertible matrix Aθ with respect to θ can
be written conveniently as

|Aθ |′ = |Aθ |tr
(
A−1

θ A′
θ

)
(10)

and

|Aθ |′′ = |Aθ |
{
tr
[
A−1

θ A′′
θ − (

A−1
θ A′

θ

)2] + [
tr
(
A−1

θ A′
θ

)]2}
,

(11)

where A′
θ is the term by term derivative of Aθ with respect to

θ [20].
After a straightforward but long and tedious expansion of

the fidelity to second order we find

IFisher(ρθ ) = 1

2

tr
[(

�−1
θ �′

θ

)2]
1 + P 2

θ

+ 2
P ′2

θ

1 − P 4
θ

+ �X′�
θ �−1

θ �X′
θ .

(12)

Equation (12) shows that the quantum Fisher information
depends on three terms representing the information carried
by (1) the evolution of the noise properties of the state encoded
in �θ , (2) the evolution of the purity Pθ with θ , and (3) the
“speed” of displacement �X′

θ = d〈Xθ+ε − Xθ 〉/dε|ε=0 of the
state in phase space. Equation (12) provides a generalization
of the result for pure Gaussian single-mode states [7] and
constitutes the main result of this Rapid Communication.
The second term vanishes if, for the value of θ under
consideration, the state is pure, Pθ = 1, under the condition
that the eigenvalues of ρθ are differentiable at that value of θ .

Unification of previous partial results. We now show that
one obtains from (12) previous partial results for particular
measurements. We recall that a general single-mode Gaussian
state can always be represented as a squeezed displaced
thermal state ν [19],

ρ = R(ψ)D(α)S(ξ )νS(ξ )†D(α)†R(ψ)† , (13)

where R(ψ) = exp(iψa†a) is the rotation operator, D(α) =
exp(αa† − α∗a) is the displacement operator, and S(ξ ) =
exp( 1

2ξa†2 − 1
2ξ ∗a2) is the squeezing operator.

The five real parameters can be interpreted physically as
(1) the shift of the state along the x quadrature, parameterized
by a R 
 α > 0, and the phase of the rotation ψ ∈ R, (2)
a complex squeezing parameter ξ = reiχ , r,χ ∈ R, where
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r > 0 defines the amount of squeezing and χ is the squeezing
direction (we will also use the parameter σ = e−r ), and (3)
the purity of the initial thermal state ν, P0 = 1/(2Nth + 1),
where Nth = tr(νa†a) denotes the number of thermal photons.
Since squeezing and shifting are unitary operations, we have

Pθ = P0 for all possible parameters θ . This implies that the
second term in (12) only contributes if θ is a function of Nth

for the parametrization (13).
With these parameters, �X = 2α(cos ψ, sin ψ), and the

general covariance matrix can then be written as [19]

� = (2Nth + 1)

(
σ 2 cos2(χ + ψ) + 1

σ 2 sin2(χ + ψ) 1
2

(
σ 2 − 1

σ 2

)
sin(2χ + 2ψ)

1
2

(
σ 2 − 1

σ 2

)
sin(2χ + 2ψ) 1

σ 2 cos2(χ + ψ) + σ 2 sin2(χ + ψ)

)
(14)

Applying Eq. (5), we find the following expressions for
the quantum Fisher information Iθ for all five parameters θ ∈
{α,ψ,σ,χ,Nth} [from now on we replace the subscript Fisher
with the parameter(s) θ to be varied]. The quantum Fisher
information for the estimation of α reads

Iα = 4P0

(
1

σ 2
cos2(χ ) + σ 2 sin2(χ )

)
. (15)

Note that amplitude estimation is directly related to the
measurement of the power of the electromagnetic signal. As
expected, Iα is maximal when the state is amplitude squeezed.
For an unsqueezed state, σ = 1, we have Iα = 4P0, which for
a pure state, P0 = 1, agrees with the result that one may obtain
directly from the overlap of two coherent states.

The quantum Fisher information for phase estimation reads

Iψ = 4P0α
2

(
σ 2 cos2(χ ) + 1

σ 2
sin2(χ )

)

+ 1

1 + P 2
0

(1 − σ 4)2

σ 4
. (16)

The first term depends on the mean field. It is largest when
the state is phase squeezed, i.e., when χ = 0 and σ > 1.
The second term depends only on the squeezing-dependent
noise properties of the state and its purity. Each of these
two terms corresponds exactly to the results of [12], where
the authors analyze displaced thermal states and thermal
squeezed states. Equation (16) generalizes these results to the
most general single-mode Gaussian states that can be both
squeezed and displaced at the same time. Optimizing (16)
for a fixed average number of photons N = tr(ρa†a) leads
directly to the result found in [21]: squeezed vacuum states
are optimal for phase measurement, leading asymptotically
to a precision δψ = 1/[8(N + N2)]. Generating such states
with a large squeezing is challenging. Using bright squeezed
states instead, for which α � 1, one gets the asymptotic limit
δψ  1/(2σ

√
N ) [22].

For the estimation of squeezing, we find asymptotically the
same bound as [23,24] for pure Gaussian states. The quantum
Fisher information for the estimation of σ 2 reads

Iσ 2 = 1

1 + P 2
0

1

σ 4
. (17)

On the other hand, the quantum Fisher information Ir for the
squeezing parameter r is a constant, which generalizes the
result in [23].

The quantum Fisher information relevant for estimating the
squeezing angle is

Iχ = 1

1 + P 2
0

(1 − σ 4)2

σ 4
. (18)

Interestingly, both the squeezing and its angle can be estimated
with a sensitivity that reaches, for large Nth, a constant
independent of Nth. This is in contrast to the estimation for the
thermal photon number itself, for which the sensitivity keeps
getting worse with larger photon number. The corresponding
quantum Fisher information reads

INth = 1

Nth + N2
th

. (19)

This can be understood as a consequence of increasing thermal
smearing of the state as a function of temperature, which leads
to larger and larger (thermal) photon number fluctuations.
Alternatively, we have the quantum Fisher information for
the estimation for purity IP = 1/(P 2 − P 4), as follows also
from INth by the laws of error propagation.

Equation (12) can also be applied to the estimation of other
relevant physical parameters through different parametriza-
tions of the Gaussian state, such as the estimation of losses.
Taking as the initial state an amplitude-squeezed state with
real amplitude α0 and variance σ 2 in the amplitude quadrature
(ψ = χ = 0), the amplitude and the covariance matrix of the
state read, after an attenuation of η, respectively,

α(η) =
√

1 − η α0 , (20)

� =
(

σ 2 + η(1 − σ 2) 0

0 1
σ 2 + η

(
1 − 1

σ 2

)
)

. (21)

The quantum Fisher information for the estimation of η is
found to be

Iη = 1

1 − η

×
(

α2
0

σ 2 + η(1 − σ 2)
+ [1 − 2η(1 − η)](1 − σ 2)2

2η[2σ 2 + η(1 − η)(1 − σ 2)2]

)
.

(22)
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This corresponds exactly to the result of [11] if we translate η

to the parameter φ in that paper, as 1 − η = cos2(φ) = e−γ t ,
where γ denotes the rate in the Lindblad master equation and
t is the evolution time in the channel.

Extension to multiple parameters. In the case of the simulta-
neous measurement of several parameters θ = θ1, . . . ,θp, the
quantum Cramér-Rao bound generalizes to a matrix inequality
bounding the covariance matrix γ of the estimators, defined
through its matrix elements γij = 〈θiθj 〉 − 〈θi〉〈θj 〉. A lower
bound of this matrix is given by the inverse of the quantum
Fisher matrix I(θ) [17],

γ � 1

Q
I(θ)−1 . (23)

The inequality is to be understood in the sense that A � B is
equivalent to A − B being a positive semidefinite matrix. The
quantum Fisher matrix I(θ) is defined through the symmetric
logarithmic derivative Lθi

of the state with respect to a
parameter θi ,

I(θ)ij = tr

(
ρθ

Lθi
Lθj

+ Lθj
Lθi

2

)
= tr

(
∂θi

ρθLθj

)
. (24)

The symmetric logarithmic derivative can be expressed in
terms of the spectral decomposition of the density matrix,
ρθ = ∑

n ρn(θ)|ψn(θ )〉〈ψn(θ)|, as

Lθi
≡ 2

∑
nm

〈ψm|∂θi
ρθ |ψn〉

ρn + ρm

|ψm〉〈ψn| . (25)

The sum is over all terms with ρn + ρm �= 0. Contrary to
the single-parameter case, bound (23) may not necessarily
be achievable. In the case of a diagonal quantum Fisher
information matrix one gets back result (5). The quantum
Fisher matrix defines a Riemannian metric with metric tensor
gij [17,25],

d2
Bures(ρθ ,ρθ+dθ ) = gij dθidθj = 1

4Iij (θ). (26)

This implies that we can calculate the quantum Fisher matrix
by differentiating the Bures distance dBures(ρθ ,ρθ+dθ ) with
respect to parameters dθi and dθj .

When applying this procedure to (7) with (8) for the fidelity
of a single-mode Gaussian state, we obtain the matrix element
Iθiθj

for measuring parameters θi and θj ,

Iθiθj
= 1

2

1

1 + P 2
θ

tr

(
�−1

θ

∂�θ

∂θi

�−1
θ

∂�θ

∂θj

)

+ 2

1 − P 4
θ

∂Pθ

∂θi

∂Pθ

∂θj

+
(

∂�X
∂θi

)�
�−1

θ

(
∂�X
∂θj

)
. (27)

Compared to (12) we see that squared derivatives with respect
to the same parameter θ are simply replaced by mixed
derivatives with respect to θi and θj , such that the diagonal
matrix elements agree with (12), Iθiθi

= Iθi
. With the general

expression (27) one can explicitly calculate the entire quantum
Fisher information matrix with dimension up to 5 × 5.

In terms of the parameters introduced in (13), there are only
two independent nonvanishing off-diagonal matrix-elements,

Iχψ = Iχ (28)

Iαψ = 2P0α

(
1

σ 2
− σ 2

)
sin(2χ ) . (29)

The first equation can be easily understood from (14),
where χ and ψ always appear in linear combination. From
(29) we see that for states without displacement (α = 0),
without squeezing (σ = 1), or squeezing in direction χ = 0
the off-diagonal matrix-element Iαψ vanishes, implying that in
this case the matrix-valued quantum Cramér-Rao bound (23)
for the combined estimation of amplitude and phase boils down
to two separate bounds, one for each of these two estimations.
Note, however, that, in general, the two bounds cannot be
saturated simultaneously.

Another useful example of the possibility of statistically
independent measurements is the simultaneous measurement
of attenuation η and phase ψ when light in an interferometer
passes through a phase shifter. A realistic phase shifter, such
as a thin piece of glass, will indeed not only shift the phase
but typically also lead to some attenuation of the signal and
thus to a mixed state if one does not keep track of the
photon number, such that (24) applies. This situation was
considered recently in [26], albeit for a state with a fixed
number of photons, in which case the corresponding 2 × 2
quantum Fisher information matrix is diagonal. Here we see
that the same independence holds for all single-mode Gaussian
states.

In summary, we have derived the quantum Cramér-Rao
bound for the measurement of the five parameters char-
acterizing a general mixed single-mode Gaussian state of
light. Our analysis generalizes and unifies several existing
approaches for particular states or particular single-parameter
measurements [8–12]. We have also derived the quantum
Fisher information matrix that gives a matrix-valued lower
bound on the covariance matrix of estimators in the case of the
simultaneous measurement of several parameters and found
that the only two joint measurements which are generically
not independent are those of the phase together with the
amplitude or together with the phase of the squeezing. Our
results constitute a complete solution of the problem of the
best possible sensitivity for the measurement of an arbitrary
parameter of the most general (not necessarily pure) single-
mode Gaussian state.

Note added. Recently, we became aware of an alternative
approach for estimation of a single parameter with general
multimode Gaussian light by Monras [27]. While our results
agree with the general Eq. (13) in that paper when specialized
to the single-mode single-parameter case, our Eq. (12) contains
an extra term compared to his Eq. (16) due to the variation of
the purity with the parameter.
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