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Non-Markovian effect on the precision of parameter estimation
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We study the non-Markovian effect on the dynamics of the quantum Fisher information (QFI) by exactly solving
a model consisting of a qubit system subjects to a zero-temperature reservoir for two different non-Markovian
conditions: a high-Q cavity slightly off-resonant with the qubit transition frequency and a nonperfect photonic
band gap, respectively. The phenomenon that the QFI, namely, the precision of estimation, changes dramatically
with the environment structure and is affected by the environment memory effects. We find that revivals and
retardation of QFI loss may occur by adjusting the cavity-qubit detuning, in the first case, while partial QFI
trapping occurs in nonideal photonic band gaps and the decreasing gap width seriously destroys coherence, thus
reducing the precision of estimation. These features make the qubit system in non-Markovian environments a
good candidate for implementation of quantum optics schemes and information with high precision.
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Parameter estimation is a significant pillar of different
branches of science and technology, and new techniques
developed for measurement of parameter sensitivity have often
led to scientific breakthroughs and technological advancement.
In the field of quantum estimation, the main task is to determine
the value of an unknown parameter labeling the quantum
system, and the primary goal is to enhance the precision of
resolution. There is a great deal of work on phase estimation
addressing the practical problems of state generation, loss, and
decoherence [1–6]. Quantum Fisher information (QFI) lies at
the heart of a parameter estimation theory that was originally
introduced by Fisher [7]. QFI, which characterizes the sensi-
tivity of the state with respect to changes in a parameter, is
a key concept in parameter estimation theory. It provides, in
particular, a boundary to distinguish the members of a family of
probability distributions. When quantum systems are involved,
especially for problems in which the quantity of interest is not
directly accessible, the optimal measurement may be found
using tools from quantum estimation theory. The quantum
version of the Cramér-Rao inequality has been established
and the lower bound is imposed by QFI [8]. Hence, the QFI
becomes the key problem to be solved, an abstract quantity
that measures the maximum information about a parameter φ

that can be extracted from a given measurement procedure.
Every natural object is in contact with its environment,

so its dynamics is that of an open system; thus the interaction
between a composite quantum system and its environment and
understanding the dynamics for different physical quantities
have attracted more interest. This interaction results in the
system experiencing “quantum noise,” which shows up in
the system exhibiting fluctuations, decoherence, and possibly
irreversible dissipative dynamics. Recently great attention has
been paid to the development of a more general understanding
of the dynamics of open quantum systems, in order to deal
with the occurrence of memory effects [9–15]. In particu-
lar, different definitions of quantum non-Markovianity have

*Laboratoire de Physique Théorique, Faculté des Sciences, Univer-
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been theoretically introduced [16,17] and, in some cases,
experimentally investigated [18,19]. A particularly significant
step forward in this context has been performed with the
formulation of new theoretical tools able to characterize and
quantify the deviations of related physical quantities of given
dynamics from Markovianity [20,21]. However, a Markovian
description for an open quantum systems is only an approxi-
mation to most realistic processes, which are non-Markovian.
The non-Markovian effect, as an appealing feature, has led to
the concept of non-Markovian quantum channels in quantum
information processing [22,23]. Nevertheless, the physical
reasons ruling whether an open quantum system exhibits
non-Markovianity dynamics have yet to be fully clarified.

More recently, the dynamics of QFI under decoherence
from a geometrical point of view is investigated. It has been
shown that the collisional dephasing significantly diminishes
the precision of the phase parameter with the Ramsey inter-
ferometry [24]. The QFI of the Greenberger-Horne-Zeilinger
state with respect to SU(2) rotation under decoherence is
studied. The authors observed the decay and sudden change
of the QFI during the evolution [25]. The problem of the
parameter estimation in a spin-j system surrounded by an
environment which is modeled by a quantum Ising chain is
investigated. It has been shown that the QFI decays with
time almost monotonously when the environment reaches
the critical point [26,27]. In this paper we continue the
investigation of physical systems and physical effects that
may lead to good precision of estimation. The main aim of
this work is to examine the problem of parameter estimation
in a qubit system under different non-Markovian conditions.
In particular, we highlight the connection between the memory
effects and open system information. We show that revivals and
retardation of QFI loss may occur by adjusting the cavity-qubit
detuning, in the first case, while partial QFI trapping occurs in
nonideal photonic band gaps.

We first present a brief review of the QFI. A crucial goal
of quantum estimation is to archive the best observable. For
example, in order to estimate the true value of parameter θ

provided that the system is in one state of the family {ρθ }, an
observable θ̂ is called to be the unbiased estimator, that is, the
expectation of the estimator should satisfy Tr(ρθ θ̂) = θ and in
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general, the estimator θ̂ is not unique. We can quantify how
accurately a state can measure an unknown parameter with the
QFI associated with the quantum Cramér-Rao (QCR). QFI is
defined as

FQ = Tr[ρ(θ )L2], (1)

where ρ(θ ) is the density matrix of the system, θ is the
parameter to be measured, and L is the symmetric logarithmic
derivation given by

∂ρ(θ )

∂θ
= 1

2
[Lρ(θ ) + ρ(θ )L]. (2)

The QCR inequality has been formulated in which the bound is
asymptotically archived by the maximum likelihood estimator
as well as the classical theory,

�θ � (�θQCR) = 1√
νFQ

, (3)

where (�θ )2 is the mean square error in the parameter θ and
ν is the number of repeated independent trials. The above
inequality defines the principally smallest possible uncertainty
in estimation of the value of phase.

We choose to compare the precision of the parameter
estimation for different Markovian and non-Markovian dy-
namics using this widely accepted approach of QFI. The
interferometric setup generally consists of four steps. The first
is the preparation step, where the input state is chosen as a
qubit optimal state |ψopt〉 = (|g〉 + |e〉)/√2 (here the qubit is
assumed to be a two-level atom system), which maximizes the
QFI of the output state and estimates the unknown parameter
φ as precisely as possible [26]. Then a singlet-qubit phase gate
is applied, given by

U (φ) := |g〉〈g| + eiφ|e〉〈e|, (4)

where θ = φ in some inference parameter (see Fig. 1). The
outcome state is called |ψout〉 = U (φ)|ψopt〉. After the phase
gate operation and before the measurement is performed,
the qubit is subjected to a reservoir. After the decoherence,
the output mixed state ρout(φ) is finally measured for the
estimation of phase uncertainty.

For a pure state, QFI is given by FQ = 4[〈ψ ′|ψ ′〉 −
|〈ψ ′|ψout〉|2] for |ψ ′〉 = ∂|ψout〉/∂θ . If the outcome state is
a mixed state, the QFI is given by

FQ =
∑
i,j

2

λi + λj

|〈λi |[∂ρout(θ )/∂θ ]|λj 〉|2, (5)

where λi (|λi〉) are the eigenvalues (eigenvectors) of ρout.

FIG. 1. (Color online) Interferometric phase estimation scheme
in a unitary operation. After applying the gate operation, the system
interacts with the reservoir. The precision of the estimation is
impacted by characteristics of both the reservoir and the interaction.

We consider a qubit system S interacting with a reservoir
RS . The part “qubit S + reservoir RS” is described by the
Hamiltonian

H = h̄ω0σ̂+σ̂− +
∑

k

h̄[ωkb̂
†
kb̂k + (gkσ̂+b̂k + g∗

k σ̂−b̂
†
k)], (6)

where ω0 denotes the transition frequency of the two-level
system (i.e., the qubit), with σ̂± being the corresponding
atomic raising and lowering operators. The index k labels
different field modes of the reservoir frequency ωk . b

†
k

(bk) is the creation (annihilation) operator of the reservoir
field, with gk being the coupling constant to the qubit. The
Hamiltonian (6) may describe a large class of systems as, for
example, a qubit formed by an exciton in a potential well
environment. We assume that the qubit is initially in general
a superposition with zero-temperature reservoir, |ψ(0)〉 =
(C0(0)|0〉S + C1(0)|1〉S) ⊗ |0〉RS

. The reduced density matrix
of the qubit S under non-Markovian dynamics at any time can
be obtained exactly by [23]

ρS(t) =
(
ρ11(0)|q(t)|2 ρ10(0)q(t)

ρ01(0)q∗(t) ρ00(0) + ρ11(0)(1 − |q(t)|2)

)
, (7)

where ρij = Ci(0)C∗
j (0). The function g(t) obeys the differ-

ential equation

q̇(t) =
∫ t

0
dτf (t − τ )q(τ ), (8)

and the correlation function f (t − τ ) is related to the spectral
density J (ω) of the reservoir by

f (t − τ ) =
∫

dωJ (ω) exp[i(ω0 − ω)(t − τ )]. (9)

From the above equation, the exact form of g(t) depends on
the particular choice of the spectral density of the reservoir.
The solution of the associated algebraic equation for q̇(t) can
be obtained through Laplace transforms,

L[q(s)] = q(0)

s + L[f (s)])
, (10)

where q(s) and f (s) are the Laplace transforms of q(t) and
f (t − τ ).

We shall now analyze the evolution of QFI for two different
spectral densities: a single Lorentzian simulating a cavity with
a mode nonresonant with the qubit transition frequency and a
nonperfect photonic band gap at the qubit transition frequency.
Let us begin with the first example by taking the spectral
density J (ω) of the electromagnetic field inside a high-Q
cavity supported by the detuning � of ω0 and the center
frequency of the cavity, resulting from the combination of the
environment spectrum and the system-environment coupling.
For this case, the Lorentzian spectral distribution is given by

J (ω) = 1

2π

γ0λ
2

(ω0 − � − ω)2 + λ2
, (11)

where the parameter λ, defining the spectral width of the
coupling, is connected to the reservoir correlation time τB

by the relation τB ≈ λ−1. The relaxation time scale τR over
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which the state of the system changes is then related to γ0

by τR ≈ γ −1
0 . The Markovian and the non-Markovian regimes

are distinguished by the relation of the parameters γ0 and
λ. In the Markovian regime there is γ0 < λ/2 or τR > 2τB ,
and the non-Markovian regime corresponds to γ0 > λ/2 or
τR < 2τB . The reservoir correlation time is greater than the
relaxation time and non-Markovian effects become relevant.
For this reason, we are interested in this regime and we shall
mainly limit our considerations to this case. Substituting J (ω)
into Eq. (9), we get

f (t − τ ) = γ0λ

2
exp[−(λ − i�)(t − τ )]. (12)

Using this correlation function, the Laplace transform of q(t) is

L[q(s)] = 1(
s + 1

2
γ0λ

s−(λ−i�)

) , (13)

and the inverse Laplace transform finally gives

q(t) = e− 1
2 (λ−i�)t

[
cosh

(
�t

2

)
+ λ − i�

�
sinh

(
�t

2

)]
,

(14)

where � =
√

(λ − i�)2 − 2γ0λ.
In Fig. 2, the dynamics of QFI for the initial optimal

state can be compared with respect to Markovian and non-
Markovian regimes for a different order of the spectral width
of the coupling λ and detuning �. In Fig. 2(a), we plot the
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FIG. 2. (Color online) QFI as a function of the dimensionless
quantities γ0t and �/γ0 for the initial state |ψ〉 = 1/

√
2(|0〉 + |1〉).

(a) QFI in terms of γ0t for different values of detuning. In the non-
Markovian regime (λ = 0.05γ0), � = 0 (dashed line), � = 0.2γ0

(dash-dotted line), and � = 0.8γ0 (solid line). In the Markovian
regime (λ = 5γ0) and � = 0 (dotted line). (b) QFI in terms of �/γ0

for the different values of λ with γ0t = 10. The phenomenon of the
slowing down of the QFI decay and of the QFI revivals are clear
manifestation of the environment memory effects.

QFI variation as a function of the dimensionless quantity
γ0t for various values of �. In the non-Markovian regime
(λ = 0.05γ0), the dashed black line is for � = 0, dash-dotted
red line is for �/γ0 = 0.2, and the solid green line is for
�/γ0 = 0.8. In the Markovian regime (λ = 5γ0), the dotted
blue line is for � = 0. We start with the Markovian regime.
In the resonant limit, � = 0, one can see that the QFI
exhibits a sudden drop to the minimum value. However, the
increasing detuning number may retard the QFI loss during the
time evolution. For a more detailed example, taking � = 0,
� = 0.8γ0, and � = 4γ0, the values of the QFI are equal
to QF = 0.014, QF = 0.020, and QF = 0.173, respectively.
The drop phenomenon of the QFI with time reflects that
the parameter estimation of the open system becomes more
inaccurate, because the weak coupling regime (i.e., the relation
time is greater than the reservoir correlation time and q(t)
is essentially a Markovian exponential decay) destroys the
quantum coherence and, consequently, the estimation based
on the quantum coherence will be inaccurate. When the cavity
bandwidth λ is smaller than the free-space atomic linewidth
(non-Markovian regime for λ = 0.05γ0), the resonant case
shows that the QFI oscillates with time as the periodic function
is suppressed to the zero value and raises the gain, exhibiting a
sudden drop and revival of the information. Within this regime,
q(t) presents oscillations describing a quasicoherent exchange
of energy between the qubit and the environment. The oscilla-
tion of QFI with time implies that the precision of estimation
may rise again during some time period. In a sense, this
phenomenon can be regarded as evidence of the enhancement
of coherence in the open quantum system, which may be under-
stood as the reversed flow of information from the environment
back to the system. This indicates that in the weak-coupling-
regime case, the environment remarkably suppresses the
reversed flow of information. When the parameter � becomes
larger than zero as shown in Fig. 2(a) for the cases � = 0.2 and
� = 0.8, the QFI increases for each value of time and we find
that revivals and retardation of QFI loss may occur by adjusting
the cavity-qubit detuning. The phenomenon of the QFI revivals
during that time is a clear manifestation of the environment
memory effects. From this result, the enhancement of the QFI
may occur by adjusting the cavity-qubit detuning. According
to quantum estimation theory, the increasing of QFI means the
optimal precision of estimation is increased. To get an intuitive
understanding of the effects of detuning and non-Markovian
characteristics on the QFI, we plot in Fig. 2(b) the QFI variation
as a function of the dimensionless quantity �/γ0 for various
values of λ with γ0t = 10. The dotted blue line is for λ = 3γ0,
the dashed black line is for λ = 0.1γ0, the dash-dotted red line
is for λ = 0.05γ0, and the solid green line is for λ = 0.02γ0.
We find that the QFI oscillates with detuning, exhibiting a
periodic function of �/γ0. Besides, we can observe that the
amplitude of the QFI increases with decreasing λ/γ0. It is
clear that the spectral width of the environment significantly
destroys the precision of the parameter estimation.

As a second example, we consider a non-Markovian
environment with the spectral density

J (ω) = 1

2π

[
γ1λ

2
1

(ω − ω0)2 + λ2
1

+ γ2λ
2
2

(ω − ω0)2 + λ2
2

]
, (15)
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FIG. 3. (Color online) QFI as a function of the dimensionless
quantities γ1t starting from the initial optimal state |ψ〉 = 1/

√
2(|0〉 +

|1〉) for the nonperfect PBG case, λ1 = 10λ2 = 30γ1 for different
values of γ2: γ2 = γ1 (dotted line), γ2 = 2/3γ1 (dashed line), γ2 =
1/3γ1 (dash-dotted line), and γ2 = 0 (solid line). QFI trapping is used
and it decays with time almost monotonously when the width of the
gap is increased.

which represents a Lorentzian with a dip used as a model
to simulate the spontaneous decay of a qubit in a nonperfect
photonic band gap (PBG). λ1 defines the bandwidth of the
flat background continuum, and λ2 represents the width of the
gap. γ1 and γ2 are the strength of the background and the gap,
respectively. The positivity condition for the spectral density
defined in Eq. (15) requires γ1λ

2
1 > γ2λ

2
2 at large values of

ω and γ1 > γ2 at the center of resonance [23,28], combining
these two inequalities in condition [28]. For the special case
γ1 = γ2, the spectral density reduces exactly to zero at the
center of the gap (ω = ω0), leading to population trapping. In
this considered case, the correlation function is given by

f (t − τ ) = 1
2 (γ1λ1e

−λ1(t−τ ) − γ2λ2e
−λ2(t−τ )). (16)

Using this function, the Laplace transform of q(t) is

L[q(s)] = (λ1 + s)(λ2 + s)

s3 + s2(λ1 + λ2) + s(λ1λ2 + �) + λ1λ2�
, (17)

where � = (γ1λ1 − γ2λ2)/2 and � = (γ1 − γ2)/2. The in-
verse Laplace transform finally gives

q(t) =
∑

i

μ2
i + μi(λ1 + λ2) + λ1λ2

(μi − μj )(μi − μk)
eμi t , (18)

where i,j,k = 1,2,3 are all different indexes, and μi are the
three solutions of the third degree equation appearing in the
denominator of Eq. (17).

We now investigate the QFI dynamics of the qubit in a non-
perfect PBG as described by the spectral density of Eq. (15). In

Fig. 3 we plot the QFI as a function of dimensionless quantity
γ1t for various values of γ2. The blue dotted line is for γ2 = γ1,
the black dashed line is for γ2 = 2/3γ1, the red dash-dotted
line is for γ2 = 1/3γ1, and the green solid line is for γ2 = 0.
We find that the behavior of QFI versus time is affected by
the strength γ2, especially at the critical value γ2 = γ1. The
spectral density goes to zero at the center of the gap and as
a consequence, we obtain QFI trapping exhibiting asymptotic
behavior with the value FQ = 0.746. The critical reason is that
the reservoir cannot take the information during the interaction
with the open system in this limit. For other values of γ2, QFI
decays with time almost monotonously when the width of the
gap is augmented. Interestingly, the plot evidences how by
decreasing γ2 the trapping of QFI is lost and the QFI decay
always speeds up. In particular, for γ2 = 0 the shape of the
QFI is found to be similar to the simple Lorentzian case. From
this result, the decreasing parameter γ2 leads to the decay of
QFI and destroys the coherence, thus reducing the optimal
precision of estimation.

In conclusion, by using QFI we have investigated the
problem of parameter estimation in a qubit system considering
an exactly solvable model where the qubit is surrounded
by a bosonic environment at zero temperature. We have
examined two different spectral densities corresponding to two
different environments: the first case considered is a Lorentzian
spectrum representing a high-Q cavity out of resonance with
the qubit transition frequency and the second, a nonperfect
photonic band gap. We observed that revivals and retardation
of QFI loss may occur by adjusting the cavity-qubit detuning,
in the first case. On the other hand, the second spectral density
has permitted the study of QFI dynamics when ideal conditions
of the photonic band gap are not satisfied. In this case, the QFI
trapping and the decreasing gap width seriously destroy the
coherence and thus reduce the precision of estimation. An
important future investigation will be the study of the effects
of finite-temperature environments on the dynamics of QFI.
In comparison with some recent work on the non-Markovian
effect on the dissipation of the system in a microscopic way,
our present work from a phenomenological viewpoint might
be more practical to explain some experimental observations
of the dissipation on the precision of the estimator parameter
subject to a realistic environment, providing more hints for
future investigation of this topic.

We acknowledge enlightening discussions with Fabio
Benatti, Felipe Fanchini, and Adil Benmoussa.
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