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Drift of dark cavity solitons in a photonic-crystal fiber resonator
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We consider a photonic crystal fiber resonator pumped by a coherent injected beam. We show that temporal cav-
ity solitons exhibit a motion with a constant velocity. This regular drift is induced by a broken reflection symmetry
mediated by a third-order dispersion. We focus the analysis on dark temporal cavity solitons. They consist of
asymmetric moving dips in a uniform background of the intensity profile. The number of the moving dips and their
temporal distribution are determined solely by the initial conditions. We characterize this motion by computing
the velocity of the dark temporal cavity soliton. Without fourth-order dispersion, dark cavity solitons do not exist.
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A localized structure and localized patterns consist of
one or more regions in one state surrounded by a region
of a qualitatively different state. Such patterns may be
stationary or oscillatory, static or moving (see overview on this
issue [1,2]). They occur in various fields of nonlinear science,
such as chemistry [3], plant ecology [4], and optics [5,6].
In all these systems, in spite of their diversity, localized
structures and localized patterns are formed thanks to the
balance between a positive feedback mechanism associated
with chemical reaction or light matter interaction tending to
amplify spatial inhomogeneities, and a diffusion or diffraction
processes which on the contrary tends to restore spatial
uniformity. In optics, they are often called cavity solitons
and they are potentially interesting for the all-optical control
of light. In addition, the system is far from thermodynamic
equilibrium, exchanging permanently matter or energy with
the environment. Localized structures can be created anywhere
in the transverse plane. These solutions behave like particles.
A fundamental property of localized structures is that several
of them can coexist. The collision between them can lead to the
annihilation of localized structure or the creation of a new one.

When using waveguides such as fibers, the diffraction or
diffusion are neglected. In this case, the chromatic dispersion
could play an important role. In particular, the interplay
between dispersion and nonlinearity can lead to temporal mod-
ulation of continuous wave beams in all fiber resonators [7].
When diffraction and dispersion have a comparable influence
on the system, 3D dissipative structures are formed. These
structures consist of self-organized or isolated light bullets
traveling at the speed of light within the resonator [8].

In fibers, localized structures often called temporal cavity
solitons are nonlinear pulses that have been theoretically
predicted [9] and experimentally observed in fiber ring
resonators [10]. An estimation of the capacity to operate as
all-optical memories is given: a very high value of 45 kbits
at 25 Gbits/s [10]. Temporal cavity solitons are found in a
well-defined region of parameters called a pinning zone. In
this regime, the system exhibits a coexistence between two
states: the homogeneous steady state (uniform background)
and the periodic distribution of light that emerges from
subcritical modulational instability [9,10]. When operating
close to the zero dispersion wavelength [11,12], high-order
chromatic dispersion effects could play an important role in

the dynamics of photonic crystal fiber resonators, particularly
in relation with supercontinuum generation [13,14]. Photonic
crystal fibers permit a high control of the dispersion curve [12].
The inclusion of the fourth dispersion allows the modulational
instability to have a finite domain of existence delimited by
two pump power values [15]. This effect is also respon-
sible for the stabilization of dark temporal cavity solitons
(DTCSs) [16]. Recently, the link between temporal cavity
soliton propagation [9,10] and frequency Kerr comb gener-
ation phenomenon in high-Q resonators [17] has motivated
further the interest in this issue [18]. It has been shown that
temporal cavity solitons circulating in the fiber cavity at the
cavity repetition rate corresponds to a frequency comb in the
spectral domain [18]. More recently, it has been shown in
resonators without fourth-order dispersion that the third-order
dispersion induces an asymmetry in the spectrum of periodic
structures [19]. These studies are limited to fiber cavities with
group-velocity dispersion restricted to the second and third
orders.

In this paper, we study the combined effects of the third-
and fourth-order dispersion on the stability of DTCSs in a
photonic crystal resonator driven by a coherent beam. We show
that the third-order dispersion induces a motion of DTCSs
with a constant velocity. Moving dark temporal cavity solitons
involved an asymmetric odd or even number of dips which
coexist for finite values of the input field intensity. We estimate
the velocity of asymmetric moving DTCSs.

We consider a photonic crystal fiber resonator pumped by
a continuous wave of power S2. A schematic setup of this
device is depicted in Fig. 1. Assuming a single-mode optical
fiber, the free propagation of light along the fiber is described
by the nonlinear Schrödinger equation (NLS) in which the
propagation constant is expanded up to the fourth order in a
Taylor series. The NLS is supplemented by an appropriate
coupling of mediated resonator boundary conditions. The
extended NLS combined with boundary conditions leads to
the generalized Lugiato-Lefever (LL) model. The generalized
LL model can be nondimensionalized to [15]
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FIG. 1. Schematic setup of cavity filled with photonic crystal fiber
(PCF) and driven by a coherent input beam S amplitude. BS denotes
a beam splitter.

where F stands for the slowly varying envelope of the electric
field circulating inside the cavity. The time t is the slow time
scale used for describing the evolution of the field envelope
F from one cavity round trip to the other. The coefficients
B2,3,4 account for the second-, third-, and the fourth-order
chromatic dispersion, respectively. The time τ corresponds to
the retarded time in the reference frame moving with the group
velocity of the light. It is the fast time describing the variations
of the structure of the field envelope resulting from the Kerr
effect i|F |2F , dispersion, and dissipation. The parameter �

is the cavity detuning. The model of Eq. (1) is valid in the
double limit of high cavity finesse, and the nonlinear cavity
phase shift must be much smaller than unity. Furthermore, we
assume that the length of the cavity is much shorter than the
characteristic dispersion lengths of the field. In the range of
injection levels that we consider, we can reasonably neglect the
two-photon absorption and the Raman scattering by assuming
that the nonlinearity time response of fiber is instantaneous.
More precisely, when pulse width is larger than 1 ps, the
Kerr effect becomes dominant and therefore these two effects
could be ignored [20]. Finally, we assume that the optical field
maintains its polarization as it propagates along the fiber. We
therefore neglect polarization instabilities.

The homogeneous steady states (HSSs) of Eq. (1) satisfy
S = [1 + i(� − |Fs |2)]Fs . These solutions are not affected
by the high dispersion effects. They are identical to the LL
model [21]. We consider the bistable regime where � >

√
3

and we perform the linear stability analysis of the HSS
with respect to finite frequency perturbations of the form
exp(iωτ + λt). This analysis yields eigenvalues of the linear
operator

λ = −1 + iB3ω
3 ±

√
I 2
s − (� − 2Is + B2ω2 − B4ω4)2,

where Is = |Fs |2 corresponds to the uniform intensity back-
ground of light. The HSSs undergo two modulational in-
stabilities at thresholds Im1 = 1 and Im2 = [2[B2/(4B4) +
�] +

√
{B2/(4B4) + �]2 − 3}/3. The second modulational

instability is induced by the fourth-order dispersion and
allows restabilization of the HSS for Is > Im2. At this second
modulational instability threshold, the critical frequency is
�2

m2 = B2/(4B4). The corresponding critical injected field
intensity is S2

m2 = Im2[1 + (� − Im2)2]. In the linear regime,
the critical frequency as well as the threshold associated
with modulational instability are not affected by the third-
order dispersion. The linear velocity of the periodic train of

dips is

vl = ∂Im(λ)

∂ω
= 3B2B3

4B4
. (2)

To calculate the nonlinear solutions bifurcating from the
threshed associated with modulational instability, we use a
weakly nonlinear analysis. To this end we decompose the
electric field F into its real and imaginary parts, and we expand
the field F and the input field amplitude S in terms of a small
parameter μ that measures the distance from the modulational
instability threshold. The third order adds a new phase in the
dynamics of all fiber cavities. This phase is equal to −B3�

3
m2.

At third order in μ, the solvability conditions yield the follow-
ing amplitude equation: ∂A/∂t = αA + (h1 + ih2) |A|2 A,
where α = S2 − S2

m2 measures the distance from the second
instability threshold. The coefficient h2 proportional to the the
new phase −B3�

3
m2. In the case where B3 = 0, the coefficient

of the cubic term in this equation is real, i.e., h2 = 0. Assuming
that the solution of this amplitude equation has the form A =
R exp (iqt), the stationary solutions are R = ±√−α/h1 and
the phase q = −h2α/h1. The velocity of the periodic train of
dips is

v = 3B2B3

4B4
− 4B4h2α

B2h1
. (3)

The velocity of periodic solutions is corrected by the presence
of a new phase q which is proportional to the distance α

from the critical point associated with the second modu-
lational instability (Im2,Sm2). Weakly nonlinear analysis in
the neighborhood of this threshold allows us to determine
the condition under which modulational instability appears
subcritically. This transition from supercritical to subcritical
bifurcation requires that h1 = 0. This condition corresponds
to the threshold associated with the formation of DTCS.
Normal form or amplitude equations describing the temporal
evolution of slow unstable modes in the neighborhood of the
modulational instability cannot support dissipative temporal
cavity solitons. The weakly nonlinear theory, although, gives
information about the threshold associated with the appearance
of DTCS but cannot describes DTCS because it does not
take into account the nonadiabatic effects that involve the fast
temporal scales which are responsible for the stabilization of
DTCS [22]. However, the inclusion of amended terms can
catch this type of dynamics [23].

The formation of a periodic train of dips that emerge from
a subcritical modulational instability is often the prerequisite
condition for the formation of temporal cavity solitons [9,10].
In free propagation, it has been shown that the nonlinear
Schrödinger equation admits an exact solution in the form of
a bright soliton in the anomalous dispersion region of the fiber
and dark solitons in the normal dispersion regime [24]. This
theoretical prediction was confirmed by experiments [25,26].
In what follows we will focus our analysis on the temporal
cavity solitons. Direct numerical simulations of Eq. (1) with
periodic boundary conditions close the second threshold
show a motion of both bright and dark temporal cavity
solitons, as shown in Fig. 2. The inclusion of the third-order
description renders the profile of cavity solitons asymmetric,
as shown in Fig. 2. This asymmetry originates from the
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τ

FIG. 2. Single moving (a1) bright and (b1) dark temporal cavity
solitons obtained by numerical simulations of Eq. (1). The parameters
are B2 = 0.75, B3 = 0.12, B4 = 0.2, and � = 3. For (a1, a2) S = 2;
(b1, b2) S = 2.4; and (a2, b2) are τ − t maps showing the time
evolution of bright and dark cavity solitons, respectively. Maxima are
plain white and mesh number integration is 512.

third-order dispersion term in Eq. (1) that breaks the reflection
symmetry (τ → −τ ). This asymmetry breaking occurs also
in synchronization mismatch, i.e., the difference between the
laser repetition time and the cavity round-trip time [27]. This
effect leads to convection in the fiber cavity through pumping
synchronization mismatch due to inaccuracy in the cavity
length.

In what follows, we focus on DTCS. A bifurcation diagram
of a single moving DTCS that emerges from the modulational
instability located at the point Sm2 is shown in Fig. 3. We plot in
this figure only a portion of the upper HSS solution. From the
threshold Sm2 emerges an unstable branch of moving DTCS
subcritically. The full lines indicate the minimum values of
the real part of the intracavity field associated with DTCS.

FIG. 3. Bifurcation diagram associated with a moving single dark
temporal cavity soliton. Parameters are B2 = 0.75, B3 = 0.12, B4 =
0.2, and � = 3. The full (broken) curve indicates stable (unstable)
solutions. The open circle indicates the minimum numerical values
of the real part associated with moving DTCS.

τ

FIG. 4. τ − t maps showing the time evolution dark cavity
solitons obtained for the same parameters as in Fig. 2(b), the
real part of the intracavity field presenting (a) two and (b) three
moving dark temporal solitons obtained by numerical simulations of
Eq. (1).

The corresponding numerical values are indicated by open
circles. At the turning point Sl ≈ 2.42, the DTCS becomes
stable. When decreasing the input field amplitude, a coexisting
behavior between the HSS and DTCS occurs in the range
Sm2 < S < Sl . Inside this hysteresis loop, there exists a region
of the S parameter values called a pinning zone P where
moving DTCS occurs. In this regime, Eq. (1) admits a set of
moving DTCSs that exhibit 2n + 1 or 2n moving dips, where
n is a positive integer. The limit n → ∞ corresponds to the
infinitely extended, moving periodic train of dips. Examples of
moving DTCS having different numbers of dips are illustrated
in Fig. 4. The number of dips and their temporal distribution
depend on the initial conditions used. They are obtained for
the same parameter values as in Fig. 3 and differ only by the
initial condition. The velocity of the moving DTCS is affected
by correction to the velocity provided by the linear analysis
[cf. Eq. (3)], namely, v = vl + vnl . From the parameter
values of Fig. 2(b1), analytical and numerical simulations
of Eq. (1) show that Sc ≈ Sm2. The velocity obtained from
the linear stability analysis vl ≈ 0.34, and that obtained from
the numerical simulations is vnum ≈ 0.27. The difference
between the two velocities corresponds to the nonlinear cor-
rection. The velocity should depend on the distance from the
threshold.

In conclusion, we have identified dynamical behavior due to
the third-order dispersion in an all-fiber resonator driven by a
coherent radiation beam, i.e., motion of a dark temporal cavity
soliton with a constant velocity. We characterized the motion
by constructing the bifurcation diagram associated with the
motion of a single dark temporal cavity soliton and we estimate
the velocity.
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