
PHYSICAL REVIEW A 88, 034501 (2013)

Calculation of strongly forbidden M1 transitions and g-factor anomalies in atoms considered for
parity-nonconservation measurements
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We calculate magnetic dipole transition amplitudes in s − s and s − d transitions of Rb, Cs, Ba+, Fr, Ra+,
Yb+, Ac2+ and Th3+. These transitions were used or considered to be used for parity-nonconservation (PNC)
measurements. We also calculate the magnetic g-factor anomalies for a selection of states, along with electric
quadrupole transition amplitudes for s − d transitions in these systems.
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I. INTRODUCTION

Currently the interest to study parity-nonconservation
(PNC) in atoms remains high due to its status as the best
low-energy test of the standard model. There is interest in
obtaining important information by improving the accuracy
of the measurements and their interpretation, studying PNC
in a chain of isotopes, and measuring nuclear P-odd anapole
moments (see, e.g., review [1]). The most accurate test of
the standard model in atomic PNC comes from the study
of the 6s − 7s PNC transition amplitude in cesium [2]. This
is due to the extremely high accuracy of measurements [2]
and calculations [3–5]. The 6s − 7s transition in cesium is
a strongly forbidden magnetic dipole (M1) transition. Using
the strongly forbidden M1 transitions for PNC measurements
was first suggested by Bouchiat and Bouchiat [6]. More recent
proposals to use M1 transitions for PNC measurements include
s − s and s − d transitions in Ba+ [7,8], Ra+ [9], Yb+ [10],
Fr [11], Rb [12], and Fr-like ions [13] (see also Refs. [14–16]).

The experimental data on the values of the M1 transition
amplitudes is poor. Among the mentioned atoms there are only
experimental data for the 6s − 7s transition in cesium [17–19]
and plans to measure the 6s − 5d3/2 M1 amplitude in Ba+ [20].
Knowing the value of this M1 amplitude is important when
planning and interpreting the measurements and for testing
atomic theory [20].

In this work we present theoretical calculations of M1 tran-
sition amplitudes in a variety of systems considered for PNC
measurements [12–14]. These amplitudes are calculated in
the relativistic Hartree-Fock approximation with contributions
from core polarization and the Breit interaction included to all
orders.

We also calculate magnetic g-factor anomalies, which are
produced by the same mechanisms as the strongly forbidden
M1 transitions, and provide a good test of the accuracy. There
are two main mechanisms (see, e.g., [21]). The first one is
due to the relativistic corrections to the magnetic moment
operator [∼−α2 = −(1/137)2] and dominates in light atoms.
The second mechanism is due to the combined action of
the exchange core polarization and the spin-orbit interaction.
It increases very fast with the nuclear charge (∼Z4α4) and
dominates in heavy atoms [21]. In the present work we
use the relativistic magnetic moment operator; therefore the
relativistic corrections (the first mechanism) are included at
the Hartree-Fock level. The second mechanism is included
in the calculation of the core polarization effects. In many

cases the core polarization is essentially the sole contributor
to the M1 amplitudes and g-factor anomalies (compared with
Hartree-Fock and Breit alone). Comparison of the calculated
M1 amplitude may be made with experiment in the case
of cesium, for which there is good agreement. We also
present results for other systems, including Ba+ (for which
PNC measurements are being considered [7]) and Ra+ and
Fr, for which PNC measurements are underway [11,22]).
Also presented are calculations of s − d electric quadrupole
(E2) transition amplitudes, including both core polarization
and electron correlation effects. Calculated E2 values are
compared with previous calculations for Ba+, Ra+, and Ac2+.
Experimental E2 data exists for Cs and Ba+, and comparing
with our calculated values shows good agreement for Ba+;
however, the Cs data has poor experimental accuracy.

To estimate the accuracy of the M1 amplitude calculations,
we present calculations of the g-factor anomalies in the same
atoms and ions, as well as a comparison with the available
experimental data. The deviation of the g factor of s states
of single-valence-electron atoms from the g factor of a free
electron, known as the g-factor anomaly, has been considered
in many atomic systems [21,23–30]. However, the behavior
of this discrepancy is not uniform across the periodic table:
for light atoms δg is almost constant, whereas in heavy atoms
it changes its sign and increases rapidly with Z, suggesting
two different underlying mechanisms. In Refs. [21,23] the
authors showed how relativistic corrections and the effect of
core polarization account for the behavior of δg in heavy atoms
such as cesium. Experimental data is available for Cs, Fr, and
Rb, and comparison with our results for Cs and Fr yields good
agreement. (In Rb there is a cancellation of two contributions
which increases the relative error.)

II. METHOD

To calculate transition amplitudes and g factors, we utilize
the relativistic Hartree-Fock (Dirac-Fock) approximation in a
V N−1 potential. Core polarization and core-valence correla-
tions are included by means of the time-dependent Hartree-
Fock (TDHF) and correlation potential methods [31]. The
TDHF method is equivalent to the well-known random-phase
approximation (RPA).

The Hartree-Fock Hamiltonian has the form

Ĥ0 = cα · p̂ + (β − 1)mc2 − Ze2

r
+ V̂ , (1)
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where V̂ is the self-consistent potential created by electrons
from the core. In addition to the Coulomb interaction, we
include the effect of magnetic interactions and retardation via
the Breit interaction, the details of which are given in [32].

In the TDHF calculations every single electron wave
function of the atom is presented in the form

ψ̃n = ψn + Xae
−iωt + Yne

iωt , (2)

where index n enumerates single-electron states, ψn is the
unperturbed wave function for state n, which is an eigenstate
of the Hartree-Fock Hamiltonian (1), and Xn and Yn are
corrections due to the magnetic field of an external photon
with frequency ω.

These corrections, applicable to all atomic states, are found
by self-consistent iteration of the TDHF equations:

(Ĥ0 − εn − ω)Xn = −(ĤM1 + δV̂M1)ψn,
(3)

(Ĥ0 − εn + ω)Yn = −(Ĥ †
M1 + δV̂

†
M1)ψn.

Here δV̂ is the correction to the self-consistent Hartree-Fock
potential V̂ due to the external dipole magnetic (M1) field. The
equations in (3) are first solved self-consistently for all states
in the core. Then corrections to valence states are calculated
in the field of frozen core.

In the relativistic case the matrix elements for the operator
ĤM1 = �μ · �B and wave functions

ψ(r) = 1

r

(
f (r)�κm

iαg(r)�−κm

)
(4)

are given by

〈ψa|ĤM1|ψb〉 = (κa + κb)〈−κa||C1||κb〉
×

∫
3 (fagb + gafb) j1(kr)dr, (5)

where κ = l for j = l − 1/2, κ = −l − 1 for j = l + 1/2, C1

is a normalized spherical harmonic, wave vector k = ω/c, and
jl(kr) is the spherical Bessel function.

When core polarization is included the matrix element
〈a||M1||b〉 becomes 〈a||M1 + δVM1||b〉. Calculations of
these latter matrix elements with RPA included are given in
Table I.

III. RESULTS

Tables I, II, and III contain a summary of our results for all
elements considered. In all cases the transition energy is taken
as the experimental value [33,35], except for Ac2+ 7s → 8s,
where the transition energy is taken from calculation [36].
Table I clearly illustrates the importance of core polarization
for M1 amplitudes. Indeed, in almost all systems the RPA
value is several orders of magnitude larger than that given by
Hartree-Fock calculations alone.

The most well-studied system in Table I is cesium.
Experimental values of the reduced 6s − 7s M1 amplitude
are the following:

M = (9.04 ± 0.588) × 10−5|μB | [16]

M = (10.1 ± 0.441) × 10−5|μB | [17] (6)

M = (10.3 ± 0.196) × 10−5|μB | [18]

TABLE I. Magnetic dipole transition amplitudes.

M1 (|μB | × 10−5)

Element Transition HF RPA Total

Rb 5s − 6s −1.473 2.689 1.216
5s − 4d 0.2447 0.744 1.019

Cs 6s − 7s −1.652 15.79 14.13
6s − 5d 0.5662 11.42 11.98

Ba+ 6s − 7s −4.050 17.58 13.53
6s − 5d 2.006 20.05 22.06

Fr 7s − 8s −2.491 179.0 176.5
7s − 6d 0.7374 126.2 126.9

Ra+ 7s − 8s −5.744 190.8 185.1
7s − 6d 2.401 207.9 210.3

Yb+ 6s − 7s −5.536 48.71 43.17
6s − 5d 2.166 50.25 52.42

Ac2+ 7s − 8s −8.911 −2382 −2390
7s − 6d 3.510 210.1 213.6

Th3+ 7s − 8s −13.23 −2536 −2549
7s − 6d 4.432 207.8 212.2

compared with the value presented here of M = 14.13 ×
10−5|μB |.

There is another contribution to the M1 amplitude—the
nuclear-spin-dependent (NSD) amplitude induced by the hy-
perfine interaction. It can be separated experimentally due to its
dependence on the hyperfine component of the M1 transition.
In s − s transitions the hyperfine induced amplitude is an
order of magnitude smaller than the nuclear-spin-independent
(NSI) amplitude (see, e.g., [47]). In the s − d transitions the
NSD amplitude is even smaller, since the nondiagonal s − d

hyperfine interaction matrix elements are smaller.
In addition to M1 amplitudes, we present the E2 s − d

transition amplitudes given in Table II. In these calculations
we have included the effect of correlations using the all-order
correlation potential 
̂ method (see, e.g., [31]). Applying this
method to M1 amplitudes makes little difference, as 
̂ changes
only the radial wave function, which M1 transitions are not
sensitive to.

The forbidden M1 amplitudes are very small and sensitive
to different corrections. Matrix elements of the M1 operator

TABLE II. Electric quadrupole transition amplitudes in units of a2
0 .

Element Transition This work Other calculations Experiment

Rb 5s − 4d 33.42
Cs 6s − 5d 33.60 35 ± 3.5 [37]
Ba+ 6s − 5d 12.69 12.734 [39] 12.74 ± 0.37 [43]

12.63 [40]
12.625 [41]
12.74 [42]

Fr 7s − 6d 33.59
Ra+ 7s − 6d 14.77 14.59 [38]
Yb+ 6s − 5d 12.19
Ac2+ 7s − 6d 9.58 9.52 [38]
Th3+ 7s − 6d 7.10
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TABLE III. g-factor anomaly δg (×10−5) for s1/2, d3/2, and d5/2

states. The gj -factor may be recovered using g1/2 = δg1/2 + gfree,
g3/2 = δg3/2 + (6 − gfree)/5, and g5/2 = δg5/2 + (gfree + 4)/5, re-
spectively, for the three states considered. Here gfree = 2.002 319 304
is the measured free electron g factor [34].

Element State δgHF δgRPA δgtotal δgexpt

Rb 5s1/2 −2.6 4.9 2.3 1.18 ± 0.2 [28]
4d3/2 −0.4 −0.9 −1.3 –
4d5/2 −0.6 0.0 −0.6 –

Cs 6s1/2 −2.9 28.4 25.5 22.1 ± 0.2 [28]
5d3/2 −0.7 −4.8 −5.5 –
5d5/2 −1.3 1.2 −0.1 –

Ba+ 6s1/2 −6.4 31.6 25.2 17.13 ± 0.11 [44]
17.29 ± 0.1 [45]

5d3/2 −4.7 −16.7 −21.4 −20.8 ± 0.03 [45]
5d5/2 −7.3 1 −6.3 −9.29 ± 0.7 [46]

Fr 7s1/2 −4.3 335.7 331.4 265.1 ± 9 [27]
6d3/2 −0.7 −26.7 −27.4 –
6d5/2 −1.2 12.2 11.0 –

Ra+ 7s1/2 −8.8 356.2 347.4 –
6d3/2 −4.7 −73.4 −78.1 –
6d5/2 −6.6 29.6 23.0 –

Yb+ 6s1/2 −8.6 88.4 79.8 –
5d3/2 −5.7 −23.6 −29.3 –
5d5/2 −8.2 12.5 4.3 –

Ac2+ 7s1/2 −13.3 342 328.7 –
6d3/2 −9.0 −78.4 −87.4 –
6d5/2 −11.7 28.0 16.3 –

Th3+ 7s1/2 −18 326.5 308.5 –
6d3/2 −13.5 −78.4 −91.9 –
6d5/2 −16.7 24.4 7.7 –

are very sensitive to the frequency of the laser field ω. All g

factors are calculated at ω = 0. This is why they are similar. In
contrast, each M1 amplitude is calculated at the frequency of

this transition, and frequencies grow rapidly with the degree
of ionization. This is why the amplitudes are different. For
example, the frequency of the 7s − 8s transition in Ac2+ is
about 2 times larger than in Ra+. If we calculate the M1
amplitude for Ac2+ at the same frequency as in Ra+, we get
an answer very close to that of Ra+.

Our method to estimate the higher-order corrections to M1
amplitudes that are omitted is based on the calculations of the
g-factor anomalies which have similar mechanisms. Results
of our calculations for the g-factor anomalies due to the rela-
tivistic and many-body corrections are presented in Table III.
Comparison with the experimental data for the g-factor
anomalies (and 6s − 7s M1 amplitude in Cs) indicates that
the theoretical error in our calculation is from 10% to 40%.

Previous calculations for s − d M1 transitions exist for
some systems: 80 × 10−5|μB | [39] for Ba+, and 140 ×
10−5|μB | and 130 × 10−5|μB | for Ra+ and Ac2+, respectively
[38]. The values for Ra+ and Ac2+, while differing from our
calculations given in Table I, are nevertheless consistent with
our values given the error estimates discussed previously.
In the case of Ba+ the difference is too large and should
be treated as a disagreement between present calculations and
those of Ref. [39]. Additionally, the calculations of the E2
transition amplitudes for these ions have also been performed
previously. In the case of Ba+, experimental data for E2 exists
and a comparison with our result indicates an accuracy of
better than 1%. Comparison may also be made with previous
calculations, the results of which are given in Table II, which
are consistent with this level of accuracy.
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