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Cooperative spontaneous emission of three identical atoms
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We study cooperative single-photon spontaneous emission from three multilevel atoms with one of them being
excited for different atomic configurations in optical vector theory. The dynamic evolution is solved by finding
the eigenvalues of a 3 × 3 matrix, and then the relevant decay rates and Lamb shifts are obtained analytically.
It is shown that the symmetry of atomic configuration has a big influence on the super-radiance of the system.
To obtain strong super-radiance requires not only the distances among the three atoms to be much shorter than
the wavelength, but also to have symmetrical distribution. We also calculate the emission spectra and find that it
normally has three peaks, but it has two peaks under the equilateral-triangle configuration.
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I. INTRODUCTION

The spontaneous emission spectra and Lamb shift of an
independent atom once stimulated the development of quan-
tum theory and quantum electrodynamics. The cooperative
spontaneous emission was first investigated by Dicke in 1954
[1], where the dimension of atomic ensemble is smaller than
the involved emission wavelength, and he found that the strong
coupling between atoms can greatly enhance or suppress
the spontaneous emission, called the super- and subradiance,
respectively. After the pioneering work by Dicke, the phe-
nomena of super- and subradiance were extensively studied
by different methods with different models [2–7]. In the study
of decay dynamics, the rotating-wave approximation (RWA)
is a good approximation as the counter-rotating terms formally
violate the energy conservation, and only lead to virtual
processes. However, the virtual processes really exist and are
the origin of Lamb shift. The counter-rotating terms must be
considered if we want to calculate the collective Lamb shift of
coherent atomic systems. Recently, the collective spontaneous
emission and Lamb shift from the N -atom system including
the counter-rotating terms and virtual photons were extensively
discussed by Scully’s group [8–12] and others [13–15]. They
found that the virtual processes (the counter-rotating terms)
could have a significant effect on the time evolution of the
system. Meanwhile, the experimental research about collective
Lamb shift also made progress [16,17]. In the above theoretical
research [8–15], the authors adopted several assumptions to
simplify the calculation. One of the assumptions is the scalar
photon theory in which the polarization and vector character
of the field is ignored.

In our previous works [18,19], we studied a similar system
by optical vector theory where all possible wave-vector
directions and polarizations of the vacuum modes in the
three-dimensional space are taken into account. Meanwhile,
a unitary transformation method we previously developed
[20–22] could effectively help us to solve the effects of the
counter-rotating terms. Finally, by numerical calculation, we
studied the influence of ensemble volume, density, and the
effect of geometry on cooperative spontaneous emission. In
short, the model in Refs. [18,19] is similar to that in the
previous papers [8–15], where a large number of atoms are
randomly distributed in a fixed volume. Due to the large
number of atoms, it is impossible to derive an analytic solution,

and numerical computation is usually required. In another
paper [23], a system of two identical atoms is studied, where
the analytic expression for the decay rate and Lamb shift was
obtained, and their dependence on the distance between the
two atoms was studied.

In this paper, we consider the system of three multilevel
atoms with optical vector theory. The problem of dynamic
evolution is transformed to an eigenvalue problem of a 3 × 3
matrix. Especially, we can get an analytic solution beyond
the numerical calculation and use it to analyze the influence
of atomic configuration on the decay rates and Lamb shifts.
We find that the atomic configuration has a great impact on
the dynamical evolution and emission spectra of the system.
The results of this paper may be valuable to experimental
research of coupled quantum dots where the configuration can
be easily controlled, and the cooperative spontaneous emission
of quantum dots is a new focus of research [24–27].

This paper is prepared as follows: In Sec. II, we give
the model and Hamiltonian of system, and apply the unitary
transformation to the Hamiltonian. In Sec. III, we derive
the analytic expression of three eigenvalues associated with
three exponentially decaying eigenstates under the Weisskopf-
Wigner approach. In Sec. IV, we apply the analytic solution
to several different atomic configurations, and calculate the
decay rates and Lamb shift, respectively. In Sec. V, the
expression of the spontaneous emission spectrum is given and
the spectra under several different conditions are plotted. At
last, a summary is given in Sec. VI.

II. MODEL AND HAMILTONIAN

We consider the system consists of three identical multilevel
atoms interacting with the vacuum field. The atoms are fixed
in space and labeled 1, 2, and 3, respectively. The Hamiltonian
of the system can be written as (h̄ = 1) [6], [23]

H = H0 + HI + Hd−d , (1)

where H0 is the unperturbed Hamiltonian of the atoms
and vacuum field, HI is the interaction Hamiltonian be-
tween the atoms and the vacuum modes, and Hd−d is the
electrostatic dipole-dipole interaction Hamiltonian between
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the atoms,

H0 =
∑

n

∑
i

ωi |i〉n〈i|n +
∑

k

ωkb
†
kbk, (2)

HI =
∑
n,k

∑
j �=i

gk,ij |i〉n〈j |n(b†ke
−ik·rn + bke

ik·rn ), (3)

Hd−d = 1

4πε0

∑
m<n

[
d(m) · d(n)

r3
mn

− 3(d(m) · rmn)(d(n) · rmn)

r5
mn

]
,

m,n = 1,2,3. (4)

Here ωi is the energy of level |i〉, b
†
k (bk) is the creation

(annihilation) operator of the kth mode with frequency ωk ,
and gk,ij = ωijdij (2ε0ωkV )−1/2êkd̂ij is the coupling strength
between the kth electromagnetic mode with unit polarization
vector êk and the atomic transition between levels |i〉 and
|j 〉 with transition dipole moment dij= e〈i|r|j 〉 = dij d̂ij , of
which dij (assumed to be real) and d̂ij are the magnitude and
unit vector, respectively. The nth atom is located at position
rn and the displacement between the mth and nth atoms is
rmn ≡ rn − rm ≡ rmnr̂mn. In Eq. (4), d(n) = ∑

ij dij |i〉n〈j |n is
the operator of the dipole moment for the nth atom. We assume
that the three atoms have the same direction of dipole moment
which can be realized in experiment. The angle between the
dipole moment and the vector rmn is ηmn, as shown in Fig. 1.

In order to take into account the counter-rotating terms and
simplify the calculation, we introduce a unitary transformation
U= exp(iS) with [20]

S =
∑
n,k

∑
j �=i

gk,ij ξk,ij

iωk

|i〉n 〈j |n (b†ke
−ik·rn − bke

ik·rn ), (5)

where ξk,ij = ωk/(ωk + |ωji |) and ωji ≡ ωj − ωi .
By subtracting the free-electron self-energy Ese =
−∑

n,j �=i

∑
k (|gk,ij |2/ωk)|i〉n〈i|n, the effective Hamiltonian

after the transformation can be written as

HS = eiSHe−iS − Ese

= H0 + (H ′
0 − Ese) + H ′

I + Hiv + Hd−d + o
(
g2

k,ij

)
,

(6)

where

H ′
0 − Ese =

∑
n,k

∑
j �=i

|gk,ij |2
ωk

(
ξ 2
k,ij + ωji

ωk

ξ 2
k,ij − 2ξk,ij + 1

)

× |i〉n〈i|n, (7)

FIG. 1. The schematic description of the relation between dipoles
and displacements.

H ′
I =

∑
n,k

∑
i<j

Vk,ij (|i〉n 〈j |n b
†
ke

−ik·rn + |j 〉n 〈i|nbke
ik·rn ),

(8)

Hiv = −
∑

m<n,k

∑
i,i ′,j,j ′

2gk,ij gk,i ′j ′ξk,ij

ωk

(2 − ξk,i ′j ′)|i〉m

×〈j |m ⊗ |i ′〉n〈j ′|neik·rmn . (9)

Here H ′
0 − Ese only contains the diagonal energy corrections,

which is called the nondynamic shift for single atoms. H ′
I is

the transformed interaction Hamiltonian between the atoms
and the vacuum modes, and Vk,ij = gk,ij 2|ωji |/(ωk + |ωji |)
is the transformed coupling strength. Hiv is the interaction
Hamiltonian due to exchange of virtual photons. Note that
after the unitary transformation, H ′

I has a RWA-like form and
Hd−d does not change its form because it commutes with S.

III. DYNAMIC EVOLUTION

Here we consider the initial state that on average has one
atom in the first excited state and the other two in the ground
state, which can be called the single-photon state [8–19]. We
denote the ground and first excited levels of the identical
atoms as |g〉 and |e〉, respectively. In the transformed total
Hamiltonian HS , the zeroth term HS

0 := H0 + (H ′
0 − Ese) can

be rewritten as

HS
0 =

∑
n

∑
i

ω′
i |i〉n〈i|n +

∑
k

ωkb
†
kbk, (10)

where we have introduced the effective state energies ω′
i =

ωi + δnd
i with the nondynamic shift for single atoms,

δnd
i =

∑
j �=i,k

|gk,ij |2
ωk

(
ξ 2
k,ij + ωji

ωk

ξ 2
k,ij − 2ξk,ij + 1

)
. (11)

In the interaction picture with respect to HS
0 , the interaction

Hamiltonian becomes

HIP = eiHS
0 t (H ′

I + Hiv + Hd−d )e−iHS
0 t = HIP

I + HIP
sta ,

(12)

where

HIP
I =

∑
n,k

Vk,eg(|g〉n〈e|nb†ke−i(ω′
eg−ωk)t e−ik·rn

+ |e〉n 〈g|n bke
i(ω′

eg−ωk)t eik·rn ), (13)

HIP
sta = HIP

iv + HIP
d−d = Hiv + Hd−d

=
∑
m<n

�mn
sta (|em〉 〈en| + |en〉 〈em|), (14)

�mn
sta = 1

4πε0

[
d(m)

eg · d(n)
ge

r3
mn

− 3
(
d(m)

eg · rmn

)(
d(n)

ge · rmn

)
r5
mn

]

−
∑

k

2g2
k,egξk,eg

ωk

(2 − ξk,eg)eik·rmn . (15)

Here the quasistatic shift �mn
sta comes from the electrostatic

dipole-dipole interaction and the interaction due to exchange

033856-2



COOPERATIVE SPONTANEOUS EMISSION OF THREE . . . PHYSICAL REVIEW A 88, 033856 (2013)

of virtual photons. The state |en〉 stands for the one where the
nth atom is in the first excited level and the others are in their
ground levels. In the interaction picture, the wave function at
time t can be written as

|ψ (t)〉 =
∑

n

Cn(t) |en; 0〉 +
∑

k

Ck(t) |G; 1k〉, (16)

where the state |G; 1k〉 represents the three atoms all in the
ground state and a single photon in mode k, and |en; 0〉 stands
for the state where only the nth atom is in its excited level
and the electromagnetic field is in the vacuum state. From the
Schrödinger equation i∂t |ψ (t)〉 = HIP |ψ (t)〉, we obtain the
equations of motion for the state amplitudes,

Ċn(t) = −i
∑

k

Vk,ege
i(ω′

eg−ωk)t eik·rnCk(t) − i
∑
m�=n

�mn
staCm(t),

(17)

Ċk(t) = −i
∑

n

Vk,ege
−i(ω′

eg−ωk)t e−ik·rnCn(t). (18)

Formally integrating Eq. (18) with the initial value Ck(0) = 0,
and extending the lower bound of time integration to −∞
under the Weisskopf-Wigner approximation at the long time
limit, we get

Ck(t) = −i
∑

n

Vk,ege
−ik·rn

∫ t

−∞
e−i(ω′

eg−ωk)t ′Cn(t ′)dt ′. (19)

Substituting Eq. (19) into Eq. (17), and replacing Cn(t ′) in the
time integration by Cn(t) under the Markov approximation,
we find

Ċn(t) ≈ −Cn(t)
∑

k

V 2
k,eg

∫ t

−∞
ei(ω′

eg−ωk)(t−t ′)dt ′

−Cm(t)
∑
m�=n

[ ∑
k

V 2
k,ege

ikrnm

∫ t

−∞
ei(ω′

eg−ωk)(t−t ′)dt ′

+ i�mn
sta

]

= −�0Cn(t) −
∑
m�=n

�mnCm(t), (20)

where

�0 = γeg

2
+ i�eg, (21)

�mn = γeg

2
[D(xmn,ηmn) + iP (xmn,ηmn)] . (22)

The detailed derivation of the above equations is shown in the

Appendix. In the above formulas, γeg= d2
egω

3
eg

3πε0c3 is the standard
single-atom decay rate from |e〉 to |g〉, �eg is the dynamic
shift of single atoms, and xmn := rmn

λ0
(λ0 is the wavelength of

the resonantly emitted photon). D(x,η) and P (x,η) are two
dimensionless functions,

D(x,η) = 3

2

{
sin2 η

sin(2πx)

2πx

+ (1 − 3 cos2 η)

[
cos(2πx)

(2πx)2
− sin(2πx)

(2πx)3

]}
, (23)

P (x,η) = 3

2

{
− sin2 η

cos(2πx)

2πx

+ (1 − 3 cos2 η)

[
sin(2πx)

(2πx)2
+ cos(2πx)

(2πx)3

]}
. (24)

From Eq. (22) we can see the two dimensionless functions
D(x,η) and P (x,η) describe the influence of interaction
between atoms on the decay rate and Lamb shift, respectively.
In Fig. 2, we plot the two dimensionless functions versus x

for different angle η, where we can see both functions show
oscillatory characteristics and a strong dependence on the
direction of dipole moment. Especially when x → 0, P (x,η)
is divergent as x−3 and it can be either positive or negative
for different η. Note that D(x,η) and P (x,η) oscillate with the
largest amplitude when η = π

2 , since the radiation is strongest
in the direction perpendicular to the dipole.

The coefficients in the differential equation (20) constitute
a symmetric 3 × 3 matrix

�=

⎡
⎢⎣

�0 �12 �13

�12 �0 �23

�13 �23 �0

⎤
⎥⎦ . (25)

Now the problem is to find the complex eigenvalues �m and
eigenvectors |�m〉 of the matrix �. The eigenvalue problem of
an n × n matrix is to solve an nth degree algebraic equation,
and it is well known that there is no radical solution of high-
degree equation (above quartic equation). Here, by solving a
cubic equation, we can obtain the analytic expressions of three
eigenvalues as

�a = �0 +
√

3

3

√
�2

12 + �2
13 + �2

23

(
cos

θ

3
+

√
3 sin

θ

3

)

�b = �0 +
√

3

3

√
�2

12 + �2
13 + �2

23

(
cos

θ

3
−

√
3 sin

θ

3

)
,

�c = �0 − 2
√

3

3

√
�2

12 + �2
13 + �2

23 cos
θ

3
(26)

where θ = arccos T with T = −3
√

3�12�13�23

(�2
12 + �2

13 + �2
23)−(3/2). The expression of the eigenvectors

can be obtained, but the calculation is tedious. Basing on the
results of these eigenvalues and eigenvectors, we can know
the dynamic evolution of the system. For any initial state
|ψ(0)〉 = ∑3

m=1 am|�m〉, the wave function at time t is

|ψ(t)〉 =
∑
m

ame−�mt |�m〉. (27)

IV. DECAY RATES AND LAMB SHIFT

The three complex eigenvalues in Eq. (26) can be written
as the form

�a,b,c = γa,b,c

2
+ iδa,b,c, (28)

where γa,b,c and δa,b,c are the decay rates and the Lamb shifts
of the three eigenstates in a long time limit. With Eq. (26) we
can calculate the decay rates and Lamb shifts for any atomic
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FIG. 2. (Color online) (a) D(x,η) and (b) P (x,η) versus x with different η.

configuration of the system. Now we consider three different
cases.

A. Equilateral triangle

Firstly, we consider the most symmetric case: The three
atoms are arranged as an equilateral triangle (rmn = r) and the
dipole moment is perpendicular to the plane of the three atoms
(ηmn = η = π/2). In this case, the three atoms are equivalent
and all the off-diagonal elements �mn are the same (denoted
as �1). Then Eq. (26) can be simplified as

�a = �0 + 2�1, �b = �c = �0 − �1. (29)

Note that �b and �c are the same, so the corresponding
eigenstates |b〉 and |c〉 are not unique. The three exponentially
decaying eigenstates can be written as

|a〉 = 1√
3

(|e1〉 + |e2〉 + |e3〉) ,

|b〉 = 1√
2

(|e2〉 − |e3〉) , (30)

|c〉 = 1√
6

(|e2〉 + |e3〉 − 2 |e1〉) .

Notice that the eigenstate |a〉 is the Dicke state,
|D〉 = 1√

N

∑
n |en〉 [8], of the three-atom system, where each

atom has the same probability in its excited level with the same
phase. From the matrix �, we can see that the Dicke state is
an eigenstate of the system only when all the off-diagonal
elements �mn are the same, and this condition can be satisfied
only in the special equilateral-triangle case for a three-atom
system. Previously, it was proven that the Dicke state is an
eigenstate in a two-atom system [23]. Here, we can obtain
the further conclusion that the Dicke state cannot exactly be
an exponentially decaying eigenstate in an N−atom system if
N � 4, because there is no atomic space distribution resulting
in the same interactions between any two atoms. For example,
in the system of N = 4, the four atoms can be distributed as
a regular tetrahedron, where the distances between any two
atoms are equal, but the same angle ηmn cannot be achieved,
so that the off-diagonal elements will not be equal, and the
Dicke state will not be an eigenstate for the system.

According to Eqs. (28) and (29), we can obtain the decay
rates of three eigenstates,

γa = γeg

[
1 + 2D

(
x,

π

2

)]
,

(31)
γb = γc = γeg

[
1 − D

(
x,

π

2

)]
,

where x ≡ r/λ0. The modifications of the decay rates are
completely determined by D(x,π

2 ). From Fig. 2(a), we know
that when the atomic distance is smaller than the resonant
wavelength, the value of the function D(x,π

2 ) is large, and the
interaction between atoms can greatly change the collective
decay rates of the system. Especially with the atomic distance
tending to zero, D(x,π

2 ) approaches its maximum value 1,
and consequently, the decay rate of the Dicke state |a〉 will
increase to triple the decay rate of a single atom (the limit of
three-atom super-radiance), while the decay rates of |b〉 and
|c〉 tend to zero. Note that D(x,π

2 ) can be negative at some
ranges of distance [see Fig. 2(a)], so that the Dicke state is
not super-radiant under this condition. This phenomenon can
be explained as follows. If the distance is around the odd
times of the half wavelength [the negative part of D(x,η) in
Fig. 2(a)], the emissions from different atoms are out of phase
and the destructive interference will suppress the collective
spontaneous emission; thus the Dicke state is subradiant under
this condition.

Next, we discuss the Lamb shift of three eigenstates. Similar
to Eq. (31), we can obtain

δa = �eg + γegP
(
x,

π

2

)
,

(32)
δb = δc = �eg − γeg

2
P

(
x,

π

2

)
.

As mentioned above, �eg is the dynamic shift of single atoms,
and its concrete form is shown in the Appendix. Here we
mainly focus on the shifts that come from the interaction
between atoms (the collective Lamb shift), represented by the
second terms in Eq. (32). Note that the Lamb shifts of |b〉 and
|c〉 are the same, i.e., the two states are degenerated due to the
symmetry. The energy differences between the Dicke state and
the other two states are

δa − δb = δa − δc = 3

2
γegP

(
x,

π

2

)
. (33)

This tells us that the splitting between the states is determined
by P (x,π

2 ), which describes the dipole-dipole interaction
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FIG. 3. The schematic description of the atomic configuration of
a straight line.

arising from the real and virtual photon exchange between
the atoms. This kind of interaction results in the collective
Lamb shift which is significantly dependent on the distances
between the atoms and will change its sign with the distance
increasing; see Fig. 2(b).

B. Straight line

Now we consider the configuration where three atoms are
arranged in a straight line, as shown in Fig. 3. Here we fix
ηmn = π/2. According to Eqs. (26) and (28), we plot the decay
rates of the three eigenstates γa,b,c as a function of x23 with
different x12 in Fig. 4.

From Figs. 4(a)–4(d), we can see that the decay rate of
the super-radiant state reaches its maximum at different x23.
For large x12 (comparable to or larger than the wavelength),
the maximum decay rate is at x23 = 0 [see the blue solid line
in Fig. 4(a)], because the dipole-dipole interaction between
the first and second (and third) atoms is weak and the three-
atom system reduces to the two-atom system consisting of
the second and third atoms where the strongest super-radiance
happens at x23 → 0, plus the single first atom (weak coupled).
With x12 decreasing, the distance x23 at which we have the
maximum decay rate approaches x23 = x12 [see the blue solid
line in Figs. 4(c) and 4(d)]. That is to say, the super-radiance
also depends on the details of atom configuration (distribution).

FIG. 5. The schematic description of the atomic configuration
of a general triangle. Here x13 = 0.1, h = 0.05, and �x is the
displacement related to the central vertical line. All the distances
are in units of λ0.

In order to approach the limit of Dicke super-radiance 3γeg ,
we not only need the short enough total length x13, but we also
need the symmetry distribution x23 = x12.

C. General triangle: The effect of symmetry

Next, we investigate the influence of symmetrical distribu-
tion on the super-radiance of the system by considering the
general-triangle configuration where the first and third atoms
are fixed as the base and the second atom stays at a different
position around the central vertical line, as shown in Fig. 5.

We select a short distance between the first and third
atom and a short height of the triangle, x13 = 0.1, h =
0.05, respectively, which guarantees the strong dipole-dipole
interaction among the three atoms. With this configuration
and ηmn = π/2, we discuss the influence of symmetry on
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FIG. 4. (Color online) The decay rates of the three eigenstates as a function of x23 with (a) x12 = 0.5, (b) x12 = 0.2, (c) x12 = 0.1, and
(d) x12 = 0.01. Here ηmn = π/2 and all the distances are in units of λ0.
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FIG. 6. (Color online) The decay rates of three eigenstates as a
function of �x. Here ηmn = π/2.

the super-radiance by changing �x. In Fig. 6, we plot three
eigendecay rates as a function of displacement �x. It is clear
that the maximal decay rate of super-radiance is obtained at
symmetrical distribution �x = 0 (x23 = x12). Actually, from
the perspective of the matrix [Eq. (25)], the general-triangle
configuration is similar to the straight-line configuration where
the three off-diagonal elements have different values, but when
x23 = x12, two of them are equal.

To explain the symmetric effect that occurred in the straight-
line and general-triangle configurations, we go back to the
matrix in Eq. (25). When x23 = x12, the corresponding off-
diagonal elements have �12 = �23. The analytic expressions
of three eigenvalues in Eq. (26) can be simplified as

�a = �0 +
�13+

√
�2

13 + 8�2
12

2
,

�b = �0 − �13, (34)

�c = �0 +
�13 −

√
�2

13 + 8�2
12

2
.

When the distances between the three atoms are all
smaller enough than the wavelength, the real parts of
the three off-diagonal elements are approximately equal
to 1, see Fig. 2(a), while the imaginary parts, the
function P (x,η), is divergent when x → 0, so we can
make the assumption that P (x12,η12) � P (x13,η13) � 1 and
D(x12,η12) = D(x13,η13) = 1. Consequently, we can estimate
that

√
�2

13 + 8�2
12 ≈ 2

√
2�12, and according to Eq. (28), we

have

γa ≈ γeg

(
1 + 1+2

√
2

2

)
≈ 2.91γeg,

γb ≈ 0, (35)

γc ≈ γeg

(
1 + 1 − 2

√
2

2

)
≈ 0.09γeg.

Note that the approximate results of super-radiant decay rate
2.91γeg are close to the limit of 3γeg and coincident with the
maximum decay rate of super-radiance in Fig. 6.

From the above analysis, we can see that the symmetric
effect is universal for a strong coupling three-atom system.

The physical interpretation is that when the three atoms
are distributed symmetrically, the photons can be uniformly
exchanged among them and as a whole they can display the
strong super-radiance. The symmetric effect of the distribution
in the three-atom system can extend to a multiatom system:
The uniform distribution of atoms is beneficial to realizing
the strong super-radiance of the system. The physical inter-
pretation is the same as that in the three-atom system. Note
that in the above latter two atomic configurations, we do not
discuss the Lamb shift and the influence of direction of dipole
moment. Next, we study these by the emission spectra.

V. SPECTRUM

The probability of the detector absorbing a photon from the
field at position R and time t is proportional to the Glauber’s
first-order correlation function [28],

G1(R,t) = 〈ψF | E(−)(R,t)E(+)(R,t) |ψF 〉
= |〈0|E(+)(R,t)|ψF 〉|2, (36)

where |ψF 〉 = ∑
k Ck(∞) |1k〉 is the final state. The value of

Ck(∞) can be obtained from Eq. (18), and we have

Ck(∞) = −i
∑

n

Vk,ege
−ik·rn

∫ ∞

0
e−i(ω′

eg−ωk)tCn(t ′)dt ′. (37)

For an initial state |ψ(0)〉 = ∑
m am |�m〉, we already know

its time evolution |ψ(t)〉 = ∑
m ame−�mt |�m〉 [Eq. (27)], and

consequently, we have

Cn(t) = 〈en| ψ(t)〉
=

∑
m

ame−�mt 〈en| �m〉 =
∑
m

amb(m)
n e−�mt . (38)

Here b(m)
n = 〈en| �m〉 is the projection of the eigenstate |�m〉

on the single-atom excited state |en; 0〉. Substituting Eq. (38)
into Eq. (37), we get

Ck(∞) = −i
∑

n

Veg,ke
−ik·rn

∫ ∞

0
e−i(ω′

eg−ωk)t

×
∑
m

amb(m)
n e−�mtdt ′

= −i
∑

n

∑
m

Veg,ke
−ik·rn

amb(m)
n

�m − i(ωk − ω′
eg)

. (39)

Then we have

〈0| E(+)(R,t) |ψF 〉
= 〈0|

∑
k

√
ωk

2ε0V
bkêke

−iωkt+ik·R ∑
k

Ck(∞) |1k〉

= −iV

(2π )3

∫
d�

∫
k2dk

√
ωk

2ε0V
êke

−iωkt+ik·R

×
∑

n

∑
m

Vk,ege
−ik·rn

amb(m)
n

�m − i(ωk − ω′
eg)

= −i

2ε0(2π )3
e−iωktωeg

∫
k2dk

∫
d�êk(êk · d̂eg)eik·Rn

× 2ωeg

ωeg + ωk

∑
n

∑
m

amb(m)
n

�m − i(ωk − ω′
eg)

, (40)
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FIG. 7. The schematic description of the relation between the
detector and the three atoms.

where Rn ≡ R − rn. The relations between the detector and
the three atoms are schematically plotted in Fig. 7.

Note that the detector is far away from the atoms in
experiment (R � λ0). The optical mode whose wave vector
is not parallel to R̂n leads to negligible contributions to the
detector, so k̂ is replaced by R̂n. Meanwhile, we use the
approximation Rn ≈ R and R̂n ≈ R̂ except for the phases of
the exponential function. The integral over the angle � of the
electromagnetic modes can be written as∫

d�êk(êk · d̂eg)eik·Rn

=
∫

d�[d̂eg − k̂(k̂ · d̂eg)]eik·Rn

≈ [d̂eg − R̂n(R̂n · d̂eg)]
∫ 2π

0
dϕ

∫ π

0
eikRn cos θ sin θdθ

≈ [R̂ × (d̂eg × R̂)]
2π

ikR
(eikRn − e−ikRn ). (41)

Substituting Eq. (41) into Eq. (40), and only retaining the
outward wave with the phase factor ei(kRn−ωt) [28], we get

〈0|E(+)(R,t)
∑

k

Ck(∞) |1k〉

= −ωeg[R̂ × (d̂eg × R̂)]

iε0(2π )2Rc2

∫
ωkdωk

ωeg

ωeg + ωk

e−iωkt

×
∑

n

∑
m

eikRnamb(m)
n

�m − i(ωk − ω′
eg)

=
∫

dωke
−iωktBR(ωk), (42)

where

BR(ωk) = R̂ × (d̂eg × R̂)

4iε0π2Rc2

ω2
egωk

ωeg + ωk

×
∑

n

∑
m

eikRnamb(m)
n

�m − i(ωk − ω′
eg)

. (43)

The spectrum detected by the detector at R is given by [23]

SR(ωk) ∝ |BR(ωk)|2

∝
∣∣∣∣∣R̂ × (d̂eg × R̂)

∑
n

∑
m

eikRnamb(m)
n

�m − i(ωk − ω′
eg)

∣∣∣∣∣
2

, (44)
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FIG. 8. (Color online) The total spectrum (in arbitrary units) for
the equilateral-triangle configuration with the initial state of which
only the first atom is excited. x is the side length of the triangle and
ηmn = π/2.

which is the spectrum in a particular direction. Sometimes the
total spectrum integrated over all detector directions is more
important, which is the average of the spectra detected by all
detectors in each direction [23].

Integrating the spectrum over all the detector directions,
one obtains the total spectrum

S(ωk) =
∫

d�RSR(ωk) =
∑
n,n′

fn (k) f ∗
n′ (k) Tnn′ (k), (45)

where

fn(k) =
∑
m

amb(m)
n

�m − i(ωk − ω′
eg)

, (46)

Tnn′ (k) =
∫

d�R[R̂ × (d̂eg × R̂)]2eikrnn′

=
{

8π/3 (n′ = n)

4πD(xnn′ ,ηnn′ ) (n′ �= n)
. (47)

ηnn′ is the angle between rnn′ and d̂eg , and D(xnn′ ,ηnn′ ) is the
function defined in Eq. (23).

As the spectrum depends on the initial state of the system,
we first assume the first atom initially in the excited state
and the other two in the ground states, |ψ0〉 = |e1; 0〉. By
using Eq. (45), we can plot the total spectrum of the three-
atom system. First, we study the spectrum for the atomic
configuration of the equilateral triangle. We define the detuning
as δk ≡ ωk − ωs

eg , where ωs
eg = ω′

eg + �eg is the single atomic
transition frequency including the Lamb shift [23]. From
Eqs. (32) and (46), we know that the spectrum will have two
peaks at δk = γegP (x,π

2 ) and δk = − γeg

2 P (x,π
2 ). In Fig. 8, we

plot the total spectra of this special case, where we can see
that when the atoms are placed very near to each other, the
interaction between the atoms splits the spectrum into two
peaks (see the blue solid and green dash curves in Fig. 8, for
x = 0.07, 0.1 respectively); the wide one (corresponding to
super-radiance) relates to the eigenstate |a〉 and the narrow
one (subradiance) relates to the degenerate eigenstates |b〉 and
|c〉. As the distance increases, the two peaks merge into one
peak (see red dash dot curve), and finally the spectrum tends to
be the single-atom Lorentzian peak. If the three-atom system
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FIG. 9. (Color online) The total spectrum (in arbitrary units) for the case where three atoms are arranged in a straight line with different
direction of dipole moment (a) ηmn = π/2 and (b) ηmn = 0. Here x12 = 0.1.

is initially prepared in the Dicke state, that is, the eigenstate
|a〉 in this case, the spectrum will have only one peak.

Next, we study the spectra for general atomic configuration.
As mentioned above, the general-triangle configuration is
similar to the straight-line configuration, so we just discuss
the spectra for the latter one. Like the study of decay rate,
we focus on the strong coupling system, so we select a small
distance between the left two atoms x12 = 0.1 (please refer to
Fig. 2), then change the position of the third one. Here, we
still choose |ψ0〉 = |e1; 0〉 as the initial state of the system. In
Fig. 9, we plot the total spectra for this case with three different
values of x23. Meanwhile we also want to see the influence of
the direction of dipole moment on the collective Lamb shift,
so we select ηmn = π

2 and ηmn = 0; see Figs. 9(a) and 9(b),
respectively.

When the three atoms are placed in a short distance, the
emission spectra have three peaks; see the blue solid and green
dash curves in Fig. 9. The wide peak corresponds to the super-
radiant state, and the other two narrow ones come from two
subradiant states. With the third atom being put far away from
the left two atoms along the line, the coherence between it
and the other two atoms weakens, so the collective Lamb shift
is receded. When the third atom is far enough away from
the other two, the three-atom system reduces to the two-atom
system which has a two-peak spectrum (see the red dash dot
curve). Note that the collective Lamb shift always increases
with decreasing the distance x23, and it is mainly dependent
on the shortest distance of the three atomic distances. This is
different from the decay rate [see Fig. 4(c)], and there is no
symmetric effect for the collective Lamb shift.

In Fig. 9(a), when η = π
2 , the super-radiant state (corre-

sponding to the widest peak) is blueshifted while in Fig. 9(b),
when η = 0, the super-radiant state is redshifted. This η

dependence of the shift can be explained with the function
P (x,η) in Fig. 2(b). In a short distance, P (x,η = π

2 ) stands
for a repulsive interaction, while P (x,η = 0) stands for an
attractive interaction. As a result, the super-radiant state will
have higher energy (blueshift) when η = π

2 , and lower energy
(redshift) when η = 0.

VI. SUMMARY

In this paper, we investigate the cooperative spontaneous
emission of the system consisting of three identical multi-

level atoms in vacuum field by the optical vector method.
The problem of dynamic evolution is transformed to the
eigenvalue problem of a 3 × 3 matrix, and we obtain the
analytic expression of the three eigenvalues and apply it
to the equilateral-triangle, straight-line, and general-triangle
atomic configurations. The Dicke state for a three-atom system
(i.e., the W entangled state) is an exponentially decaying
eigenstate only for the equilateral-triangle configuration. For
a multiatom system (N > 3), the Dicke state could not exactly
be an exponentially decaying eigenstate, no matter what
the configuration is. The atomic configuration (distribution)
has great influence on the super-radiance. To obtain strong
super-radiance requires not only the distances among the three
atoms to be much shorter than the wavelength, but to also have
symmetrical distribution. However, the symmetry has little
effect on the collective Lamb shift. Large collective Lamb
shift mainly depends on the shortest distance of three atomic
distances. The emission spectrum normally has three peaks and
the spectral structure also depends on the direction of the dipole
moment. For the equilateral-triangle configuration, there are
only two peaks due to the symmetry of the configuration.
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APPENDIX: CALCULATION OF THE MATRIX
ELEMENTS IN EQ. (20)

We rewrite Eq. (20) here,

Ċn(t) ≈ −Cn(t)
∑

k

V 2
k,eg

∫ t

−∞
ei(ω′

eg−ωk)(t−t ′)dt ′

−Cm(t)
∑
m�=n

[ ∑
k

V 2
k,ege

ikrnm

∫ t

−∞
ei(ω′

eg−ωk )(t−t ′)dt ′

+ i�mn
sta

]
= −�0Cn(t) −

∑
m�=n

�mnCm(t), (A1)

033856-8



COOPERATIVE SPONTANEOUS EMISSION OF THREE . . . PHYSICAL REVIEW A 88, 033856 (2013)

where

�0 =
∑

k

V 2
k,eg

[
πδ(ω′

eg − ωk) + iP
1

ω′
eg − ωk

]
, (A2)

�mn =
∑

k

V 2
k,ege

ik·rnm [πδ(ω′
eg − ωk)] + i

(
�mn

sta + P
∑

k

V 2
k,ege

ik·rnm
1

ω′
eg − ωk

)
. (A3)

In the above equation, we have used the integral formula
∫ t

−∞ dt ′eix(t−t ′) = πδ(x) + iP 1
x

, where P stands for principal part.
Detailed calculation gives

�0 =
∑

k

V 2
k,eg

[
πδ(ω′

eg − ωk) + iP
1

ω′
eg − ωk

]
= d2

egω
2
eg

6π2ε0c3

∫ ∞

0
ωk

4ω2
eg

(ωk + ωeg)2

[
πδ(ω′

eg − ωk) + iP
1

ω′
eg − ωk

]
dωk

≈ d2
egω

2
eg

6π2ε0c3

∫ ∞

0
ωk

4ω2
eg

(ωk + ωeg)2

[
πδ(ωeg − ωk) + iP

1

ωeg − ωk

]
dωk

= 1

2

d2
egω

3
eg

3πε0c3
+ i

d2
egω

2
eg

6π2ε0c3 P

∫ ∞

0

ωk

ωeg − ωk

4ω2
eg

(ωk + ωeg)2
dωk = γeg

2
+ i�eg, (A4)

where

�eg = d2
egω

2
eg

6π2ε0c3 P

∫ ∞

0

ωk

ωeg − ωk

4ω2
eg

(ωk + ωeg)2
dωk (A5)

is the dynamic shift of single atoms. Note that we approximate ω′
eg ≈ ωeg and ignore the nondynamic shift for single atoms in

Eq. (A5), because this part is negligible compared with the dynamic shift [21]. The real part of �mn is

Re (�mn) =
∑

k

V 2
k,ege

ik·rmn [πδ(ωeg − ωk)]

= d2
egω

2
eg

6πε0c3

∫ ∞

0

[
2ωeg

(ωeg + ωk)

]2

ωkD (krmn/2π,ηmn) δ(ωeg − ωk)dωk,

= γeg

2
D (xmn,ηmn) , (A6)

where we change the summation over k to an integration (see Ref. [6], p.7),

∑
k

g2
k,ege

ik·rmn → d2
egω

2
eg

6π2ε0c3

∫ ∞

0
ωkD (krmn/2π,ηmn) dωk. (A7)

D (xmn,ηmn) is defined in Eq. (23). The imaginary part of �mn is

Im (�mn) =
(

�mn
sta + P

∑
k

V 2
k,ege

ik·rmn
1

ω′
eg − ωk

)

= 1

4πε0

[
d(m)

eg · d(n)
ge

r3
mn

− 3
(
d(m)

eg · rmn

)(
d(n)

ge · rmn

)
r5
mn

]
−

∑
k

2g2
k,egξk,eg

ωk

(2 − ξk,eg)eik·rmn + P
∑

k

V 2
k,ege

ik·rmn
1

ω′
eg − ωk

= 1

4πε0

[
d(m)

eg · d(n)
ge

r3
mn

− 3
(
d(m)

eg · rmn

)(
d(n)

ge · rmn

)
r5
mn

]
− d2

egω
2
eg

6π2ε0c3

∫ ∞

0

2(ωk + 2ωeg)ωk

(ωeg + ωk)2
D(krmn/2π,ηmn)dωk

+ d2
egω

2
eg

6π2ε0c3 P

∫ ∞

0

ωk

(ωeg − ωk)

4ω2
eg

(ωeg + ωk)2
D(krmn/2π,ηmn)dωk

= 1

4πε0

[
d(m)

eg · d(n)
ge

r3
mn

− 3(d(m)
eg · rmn)(d(n)

ge · rmn)

r5
mn

]
+ d2

egω
2
eg

6π2ε0c3 P

∫ ∞

−∞

ω2
k

ω2
eg − ω2

k

D (krmn/2π,ηmn) dωk

= d2
eg

4πε0r3
mn

(1 − 3 cos2 ηmn) + γeg

2

3

2

{
− sin2 ηmn

cos(2πxmn)

2πx
+ (1 − 3 cos2 η)

[
sin(2πxmn)

(2πxmn)2
+ cos(2πxmn) − 1

(2πxmn)3

]}

= γeg

2
P (xmn,ηmn), (A8)

where the principal value integral P
∫ ∞
−∞

ω2
k

ω2
eg−ω2

k

D (krmn/2π,ηmn) dωk D (xmn,ηmn) has three poles on the x axis, ±ωeg and 0,

which can be shown by contour integration. P (xmn,ηmn) is defined in Eq. (24).
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