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Superradiant control of γ -ray propagation by vibrating nuclear arrays
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The collective nature of light interactions with atomic and nuclear ensembles yields the fascinating phenomena
of superradiance and radiation trapping. We study the interaction of γ rays with a coherently vibrating periodic
array of two-level nuclei. Such nuclear motion can be generated, e.g., in ionic crystals illuminated by a strong
driving optical laser field. We find that deflection of the incident γ beam into the Bragg angle can be switched
on and off by nuclear vibrations on a superradiant time scale determined by the collective nuclear frequency
�a , which is of the order of terahertz. Namely, if the incident γ wave is detuned from the nuclear transition by
frequency � � �a it passes through the static nuclear array. However, if the nuclei vibrate with frequency �

then parametric resonance can yield energy transfer into the Bragg deflected beam on the superradiant time scale,
which can be used for fast control of γ rays.
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I. INTRODUCTION

Gamma rays are widely used in contemporary technologies
for material modification, food sterilization, and testing for
weak points in welded structures. Medical applications of
γ rays include the imaging technique of positron emission
tomography and radiation therapies to treat cancerous tumors
as well as detecting brain and cardiovascular abnormalities.

Since the discovery of recoilless nuclear resonance by
Mössbauer [1,2], studies of the interaction between γ rays and
Mössbauer nuclear ensembles have undergone rapid develop-
ment and have yielded many real and potential applications in,
e.g., Mössbauer spectroscopy [3] and quantum information
[4,5]. Due to their small wavelength, γ rays are naturally
suitable for achieving high spatial resolution and making small
quantum photonic circuits [6].

However, control of γ rays still remains a challenging
problem. Coherent effects, such as level-mixing-induced trans-
parency [7], electromagnetically induced transparency [8],
γ echo [9,10], phase modulation [11,12], and the nuclear
lighthouse effect [13], can be adopted to manipulate γ

radiation. Modulation of Mössbauer radiation by pulsed laser
excitation was demonstrated in [14]. The total reflection of the
grazing incidence was used to reflect γ rays, but application
of this technique is limited due to small grazing angles.
Development of the γ -ray optics led to the design of the
Laue lens [15] via nuclear Bragg diffraction [16]. It has also
been suggested that γ rays can be manipulated using Delbrück
scattering [17].

Effective control of γ rays requires further advancements
and innovations. Development of a fast switch of γ rays is im-
portant for extending the time resolution of γ -ray sources and
increasing the operating speed of γ -ray quantum information
processing. Nanosecond γ -ray switching has been realized
by magnetically manipulating nuclear excitation based on the
quantum beat in nuclear Bragg scattering [18]. Picosecond
x-ray Bragg switch utilizing laser-generated phonons was
proposed [19] and later demonstrated experimentally [20,21].

*xiwen@physics.tamu.edu

In this paper we investigate a way to control propagation
of a γ -ray beam through a crystal by controlling its collective
absorption and reemission by many nuclei. Collective sponta-
neous emission from atomic ensembles has been a subject of
long-standing interest since the pioneering work of Dicke [22].
The collective nature of light interactions yields fascinating
effects such as superradiance and radiation trapping even at the
single-photon level. Recent studies focus on collective, virtual,
and nonlocal effects in such systems [23–40]. The Josephson
effect for photons in two weakly linked microcavities is an
example of the collective physics in coupled atom-cavity
systems [41].

The interaction of light with ordered arrays of nuclei
in crystals offers new perspectives. For example, a photon
collectively absorbed by a random medium (e.g., gas) will be
reemitted in the same direction as the incident photon [23].
However, in the case of a crystal lattice, collective reemission
can occur in several directions (Bragg angles). The interaction
strength between the γ -ray beam and the crystal depends on
the detuning � of the photon frequency from the nuclear
transition. Here we show that one can redirect a γ -ray beam
into a desirable Bragg angle by making the crystal lattice
coherently vibrate with frequency �, which lies, e.g., in the
infrared region. Such lattice vibrations are in the combination
parametric resonance with the frequency difference between
two eigenmodes of the coupled light-nuclear system, which
results in resonant energy transfer from the incident γ -ray
beam to the wave propagating at the Bragg angle. This process
is analogous to the parametric frequency mixing in propagating
circuits [42].

Nuclear vibrations can be generated by a driving laser pulse
and can be turned on and off on a short time scale. Gamma-ray
redirection, produced by parametric resonance, occurs on a
time scale determined by the collective nuclear frequency �a ,
which typically lies in the terahertz region. This mechanism
allows us to control propagation of high-frequency γ photons
by driving the system, e.g., with an infrared laser.

II. MODEL AND DERIVATION OF BASIC EQUATIONS

We consider a perfect crystal composed of two-level (a and
b) nuclei with transition frequency ωab as shown in Fig. 1(a).
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FIG. 1. (Color online) Illustration of the model. (a) Energy
diagram of the two-level nuclear system. (b) Present model: an
incident γ -ray plane wave interacts collectively with a recoilless
nuclear array, while the strong optical laser field produces coherent
oscillations of the nuclei with amplitude d and frequency νd .

The nuclear transition frequency ωab typically lies in the hard
x-ray or γ -ray region. Nuclei are located at positions rj and
form a periodic lattice, where the index j labels different
nuclei. Typically, the internuclei spacing is much larger than
the nuclear radiation wavelength λab = 2πc/ωab, where c is
the speed of light.

We assume that the lattice is coherently excited so that
nuclei oscillate along the direction given by a unit vector
n̂ around their equilibrium positions r0

j . The oscillation
frequency νd lies in the infrared or visible region. In ionic
crystals such oscillations can be produced, e.g., by a strong
linearly polarized driving laser pulse with frequency νd . A
typical example is potassium iodide crystal, which has a
face-centered-cubic unit cell of iodide ions with potassium
ions in octahedral holes. By applying an external driving field
one can make ions K+ and I− move in opposite directions
such that nuclei of the same species will oscillate in unison.
Both K and I have Mössbauer isotopes. Namely, 40K has a
Mössbauer transition with energy 29.8 keV and spontaneous
decay rate 	 = 2.4 × 108 s−1, while 127I has a transition with
energy 58.6 keV and 	 = 5.1 × 108 s−1.

We consider an interaction of high-frequency (x- or γ -
ray) photons with a coherently vibrating nuclear lattice of
a particular Mössbauer isotope. The presence of nuclei of
another species in the crystal is irrelevant since they have a
very different transition frequency. We assume that the motion
of each nuclei j involved in the interaction is given by

rj (t) = r0
j + n̂f (t), (1)

where

f (t) = d sin(νdt). (2)

Here νd � ωab and d � λab is the amplitude of the laser-
induced nuclei oscillations.

In our model a weak, plane, linearly polarized γ -ray wave
with the wave vector k1 and frequency ν1 = ck1 detuned from
the nuclear transition frequency ωab by an amount �1 � ωab

enters the crystal and collectively interacts with the oscillating

recoilless nuclei [see Fig. 1(b)]. For the sake of simplicity,
we consider only the interaction of the wave with the nuclei
and disregard interactions with electrons. Processes such as
internal conversion, the photoelectric effect [43], and electron
Rayleigh scattering [44,45] are neglected.

We treat the problem in a semiclassical formalism. Namely,
the electromagnetic field E(t,r) of the γ ray is described by
the classical Maxwell equation(

∇2 − 1

c2

∂2

∂t2

)
E = μ0

∂2P

∂t2
(3)

in which μ0 is the permeability of free space and the
polarization of the medium

P =
∑

j

(
dbaρ

j

ab + c.c.
)
δ(r − rj (t)) (4)

is determined by the off-diagonal elements of the nuclear
density matrix ρ

j

ab. In Eq. (4) the summation is taken over
nuclei that are treated as point particles located at positions
rj (t). Assuming that the nuclear transition matrix element dab

is real and introducing the Rabi frequency of the γ -ray field
�γ (t,r) = dabE(t,r)/h̄, we obtain(

c2∇2 − ∂2

∂t2

)
�γ (t,r)

= c2μ0|dab|2
h̄

∂2

∂t2

∑
j

(
ρ

j

ab + c.c.
)
δ(r − rj (t)). (5)

Equation (5) must be supplemented by the evolution equation
for the nuclear density matrix

∂ρ
j

ab(t)

∂t
= −iωabρ

j

ab(t) + i�γ (t,rj (t))
(
1 − 2ρj

aa

)
. (6)

We assume that nuclear excitation remains weak, so the
population of the excited state ρ

j
aa can be disregarded. We

look for a solution in the form

�γ (t,r) = �(t,r)e−iωabt + c.c., (7)

ρ
j

ab(t) = ρj (t)e−iωabt , (8)

where �(t,r) and ρj (t) are slowly varying functions of t as
compared to the fast oscillating exponentials. In the slowly
varying amplitude approximation, Eqs. (5) and (6) reduce to{

∂

∂t
+ c2

2iωab

[(
ωab

c

)2

+ ∇2

]}
�(t,r)

= i
�2

a

N

∑
j

ρj (t)δ(r − rj (t)), (9)

∂ρj (t)

∂t
= i�(t,rj (t)), (10)

where

�a =
√

c2μ0|dab|2ωabN

2h̄
=

√
3cNλ2

ab	

8π
(11)

is the collective nuclei frequency proportional to the square
root of the average nuclei density N and 	 is the spontaneous
decay rate of the nuclear transition. Physically, �a determines
the time scale of the collective resonant absorption of the

033854-2



SUPERRADIANT CONTROL OF γ -RAY . . . PHYSICAL REVIEW A 88, 033854 (2013)

incident photon by the medium [27,38,46] and typically is of
the order of terahertz. For example, for a 29.8-keV transition
of the 40K Mössbauer isotope that spontaneously decays at the
rate 	 = 2.4 × 108 s−1, if we take the nuclei density to be
N = 8 × 1021 cm−3 we obtain �a ∼ 3 × 1011 s−1.

A crystal is made up of a periodic arrangement of atoms
(Bravais lattice) that form an infinite array of discrete points
given by r0

j = m1a1 + m2a2 + m3a3, where mi (i = 1,2,3)
are any integers and ai are the primitive lattice vectors. As a
consequence,

∑
j δ(r − rj (t)) is a periodic function of r with

periods ai and thus it can be expanded in the Fourier series as∑
j

δ(r − rj (t)) = N
∑
m

eiKm·[r−rj (t)]

= N
∑
m

eiKm·[r−n̂f (t)], (12)

where Km = m1b1 + m2b2 + m3b3, b1,2,3 are the primitive
vectors of the reciprocal lattice, and N is the average nuclear
density.

We look for ρj (t) in the form

ρj (t) = ρ(t)eik1·r0
j . (13)

Multiplying both sides of Eq. (12) by eik1·r we obtain∑
j

eik1·r0
j δ(r − rj (t)) = N

∑
m

ei(k1+Km)·[r−n̂f (t)]. (14)

This sum enters the right-hand side of Eq. (9). In the Fourier
series (14) we are interested in terms that are in resonance
with the left-hand side of Eq. (9). For simplicity we assume that
only two vectors, namely, k1 and k2 = k1 + Kb, have absolute
values close to ωab/c, where Kb is a reciprocal lattice vector
(see Fig. 2). The other terms in (14) are off resonance and thus
can be disregarded. Therefore, one can write approximately∑

j

eik1·r0
j δ(r − rj (t)) ≈ Ne−ik1·n̂f (t)eik1·r + Ne−ik2·n̂f (t)eik2·r.

(15)

ω ab
/c

n̂ bK

2k

1
k

FIG. 2. (Color online) Two-dimensional reciprocal lattice of the
crystal shown by dots. The incident γ -ray beam with the wave vector
k1 is detuned from the nuclear transition frequency ωab. The incident
wave is coupled with the Bragg wave that has wave vector k2 =
k1 + Kb, where Kb is a reciprocal lattice vector.

This approximation implies that the incident wave k1 is
coupled only with one Bragg wave k2.

Equation (15) suggests that one can look for a solution for
�(t,r) in the form of a superposition of these coupled waves

�(t,r) = �1(t)eik1·r + �2(t)eik2·r. (16)

Then Eqs. (9) and (10) yield the following equations for �1(t),
�2(t), and ρ(t) (we take into account that eik1·r0

j = eik2·r0
j ):(

∂

∂t
+ i�1

)
�1(t) = i�2

ae
−ik1·n̂f (t)ρ(t), (17)

(
∂

∂t
+ i�2

)
�2(t) = i�2

ae
−ik2·n̂f (t)ρ(t), (18)

∂ρ(t)

∂t
= i�1(t)eik1·n̂f (t) + i�2(t)eik2·n̂f (t), (19)

where

�1,2 = c2k2
1,2 − ω2

ab

2ωab

≈ ν1,2 − ωab (20)

are detunings of the two coupled waves from the nuclear
transition frequency ωab. Taking the time derivative of both
sides of Eqs. (17) and (18) and using Eq. (19), we obtain
evolution equations for two γ -ray waves �1(t) and �2(t):(

∂

∂t
+ ik1 · n̂ḟ

)(
∂

∂t
+ i�1

)
�1

+�2
a(�1 + �2e

−i(k1−k2)·n̂f (t)) = 0, (21)(
∂

∂t
+ ik2 · n̂ḟ

)(
∂

∂t
+ i�2

)
�2

+�2
a(�2 + �1e

i(k1−k2)·n̂f (t)) = 0. (22)

Equations (21) and (22) constitute one of our main findings.
These equations describe two coupled harmonic oscillators
whose parameters periodically change in time. The varying of
the parameters drives the system. Namely, nuclei vibrations
modulate coupling between two oscillators as indicated by
the �2

ae
±i(k1−k2)·n̂f (t) terms and, in addition, they periodically

modulate the oscillator’s frequency by means of the Doppler
shift ik1,2 · n̂ḟ .

It is known that parametric oscillators can have parametric
resonances when the system’s parameters are periodically
modulated, which can lead to exponentially growing oscil-
lations. An interesting question appears in this context: Can
Eqs. (21) and (22) yield exponentially growing solutions,
which would imply that the high-frequency γ -ray field is
being generated at the expense of the energy stored in the
low-frequency nuclear vibrations? In the Appendix we show
that the answer to this question is that nuclear vibrations cannot
excite nuclear transitions in the present model. Specifically, we
show that the sum of the energy of the high-frequency field
�(t,r) and that stored in the nuclear excitation is conserved no
matter how nuclei move.

Nevertheless, parametric resonance can be useful in the
present problem. Namely, it can substantially speed up energy
transfer from one coupled oscillator to another, that is, from
the incident γ -ray beam to the deflected one. This mechanism
can be used to control propagation of γ rays on a short time
scale, which we discuss next.
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III. BEAM DEFLECTION BY COHERENT
LATTICE VIBRATION

A. Deflection by a static lattice

First we consider the interaction between the γ -ray field and
a static nuclear array. In this case there is no nuclear motion,
so f = 0 and Eqs. (17)–(19) can be solved analytically. In
particular, if �1 = �2 = � the solution satisfying the initial
conditions �1(0) = A, �2(0) = 0, and ρ(0) = 0 reads

�1(t) = Ae−i�t

2

(
ω+eiω−t − ω−eiω+t√

�2 + 8�2
a

+ 1

)
, (23)

�2(t) = Ae−i�t

2

(
ω+eiω−t − ω−eiω+t√

�2 + 8�2
a

− 1

)
, (24)

ρ(t) = − Ae−i�t√
�2 + 8�2

a

(eiω−t − eiω+t ), (25)

where

ω± = 1
2

(
� ±

√
�2 + 8�2

a

)
. (26)

Equations (23)–(25) yield that on resonance (� = 0)

�1 = A cos2(�at/
√

2), (27)

�2 = −A sin2(�at/
√

2), (28)

ρ = iA√
2�a

sin(
√

2�at). (29)

That is, energy is periodically transferred back and forth
between two coupled waves on a time scale given by the col-
lective nuclear frequency �a , which is proportional to the
square root of the nuclear density. Typically 1/�a is of the
order of picoseconds. Amplitudes of the γ -ray beams undergo
collective oscillations [27,38] with frequency

√
2�a , as shown

in Fig. 3(a).
According to Eq. (29), nuclei become excited during the

energy transfer between two γ waves. Namely, the incoming
γ wave is partially absorbed by the nuclear array. Absorption is
followed by the superradiant spontaneous emission of photons
into the coupled wave. In contrast, if the wave frequency is off
resonance, i.e., � � �a , the energy transfer between beams
�1 and �2 occurs over a much longer time

t0
tr = π

|ω−| ≈ π |�|
2�2

a

, (30)

as shown in Fig. 3(b).
One should mention that energy oscillations between two γ -

ray modes, referred to as the temporal Pendellösung effect due
to different hyperfine transition frequencies at different nuclear
sites, have been discussed in [47]. In Ref. [18] the Bragg
switching of the γ -ray beam was realized using manipulation
of nuclear spin states. In our mechanism, oscillations appear
due to the collective nature of the interaction between light and
the nuclear ensemble. Next we investigate how nuclear motion
affects energy transfer between the two coupled γ -ray waves.

B. Beam deflection by an oscillating lattice

Here we assume that the nuclear array coherently vibrates
with frequency νd and consider the transformation of the

FIG. 3. (Color online) Time evolution of coupled γ -ray waves
�1(t) and �2(t) produced by interaction with a static nuclear
array. Initially �2(0) = 0 and nuclei are in the ground state. The
solid line represents |�1(t)| and the dashed line indicates |�2(t)|.
(a) The wave frequency is in resonance with the nuclear transition.
Energy is transferred back and forth between �1(t) and �2(t) with
collective frequency

√
2�a , which typically lies in the terahertz range.

(b) Off-resonance interaction with frequency detuning � = 250�a .
The energy transfer occurs on a much longer time scale π�/2�2

a .

incoming wave k1 into the deflected wave k2. We assume that
both waves are equally detuned from the nuclear transition, that
is, �1 = �2 = �. We also assume that nuclei vibrate with
amplitude d along the direction n̂ perpendicular to k1 − k2,
as indicated in Fig. 2. Then k1 · n̂ = k2 · n̂. Introducing the
dimensionless modulation amplitude

κ = dk1 · n̂, (31)

Eqs. (21) and (22) reduce to

�̈1 + i(� + F )�̇1 + (
�2

a − �F
)
�1 + �2

a�2 = 0, (32)

�̈2 + i(� + F )�̇2 + (
�2

a − �F
)
�2 + �2

a�1 = 0, (33)

where

F (t) = κνd cos(νdt) (34)

is a function that describes the modulation produced by nuclear
motion. The amplitude of the nuclei vibrations d is much
smaller than the spacing a between nuclei. However, since the
wavelength of the nuclear transition is also small compared to
a the modulation amplitude κ could be of the order of 1.

The initial conditions for Eqs. (32) and (33) are �1(0) = A

and �2(0) = 0. We assume that initially there is no nuclear
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excitation [ρ(0) = 0], which, according to Eqs. (17) and (18),
yields �̇1(0) = −i�A and �̇2(0) = 0.

Equations (32) and (33) have the integral of motion

�1 = �2 + Ae−i�t . (35)

Plugging this into Eq. (33) and introducing �̃2 according to

�2 = e−i�t

(
�̃2 − A

2

)
, (36)

we obtain the following equation for �̃2:

d2�̃2

dt2
+ i(F − �)

d�̃2

dt
+ 2�2

a�̃2 = 0, (37)

which is an equation of the parametric oscillator. Equation (37)
has a solution in terms of special functions, however, such
a solution is not very insightful. Instead, we derive an
approximate solution that clearly shows the physics behind
the parametric speedup of the energy transfer. Introducing the
function u(t),

d�̃2

dt
= exp

(
− i

∫ t

0
(F (t ′) − �)dt ′

)
u(t), (38)

one can rewrite Eq. (37) as

du

dt
= −2�2

a exp

(
i

∫ t

0
(F (t ′) − �)dt ′

)
�̃2. (39)

Next we expand the exponential factor into the Fourier series

exp

(
i

∫ t

0
(F (t ′) − �)dt ′

)
= e−i�t eiκ sin(νd t)

= e−i�t [J0(κ) + 2iJ1(κ) sin(νdt)

+ 2J2(κ) cos(2νdt) + · · · ],

(40)

where Jn(κ) are the Bessel functions. We assume that νd is
close to �, while �̃2 and u are slowly varying functions of
time on the scale 1/νd . Then in the Fourier expansion (40)
one can keep only the slowly varying term and approximately
write

exp

(
i

∫ t

0
(F (t ′) − �)dt ′

)
≈ J1(κ)ei(νd−�)t . (41)

As a result, Eqs. (38) and (39) reduce to

d�̃2

dt
= J1(κ)e−i(νd−�)t u, (42)

du

dt
= −2J1(κ)�2

ae
i(νd−�)t �̃2, (43)

which can be solved analytically. Plugging this solution into
Eqs. (35) and (36), we finally obtain

�1 = Ae−i�t

2

(
ω+e−iω−t − ω−e−iω+t√
(νd − �)2 + 8J 2

1 (κ)�2
a

+ 1

)
, (44)

�2 = Ae−i�t

2

(
ω+e−iω−t − ω−e−iω+t√
(νd − �)2 + 8J 2

1 (κ)�2
a

− 1

)
, (45)

where

ω± = 1
2

[
νd − � ±

√
(νd − �)2 + 8J 2

1 (κ)�2
a

]
. (46)

When νd = � we find

�1 = Ae−i�t cos2

(
J1(κ)√

2
�at

)
, (47)

�2 = −Ae−i�t sin2

(
J1(κ)√

2
�at

)
. (48)

Equations (47) and (48) show that the rate of energy transfer
between two coupled waves depends on the amplitude of the
nuclear vibrations. The optimum value of the modulation
amplitude κ corresponds to maximum of J1(κ), that is,
κ = 1.841, which gives J1(κ)/

√
2 = 0.411. For larger κ the

transfer rate oscillates following J1(κ).
For κ � 1 one can use the expansion J1(κ) ≈ κ/2. Then

Eq. (48) yields the energy transfer time between two waves

ttr =
√

2π

κ�a

. (49)

In Fig. 4 we plot �2(t) for different values of the modulation
amplitude κ obtained by numerical solution of Eqs. (32)
and (33). Our analytical result (48) gives essentially the same
curves.

When the incident γ wave �1 is off resonance with the
nuclear transition, the time it takes for the energy to transfer
from �1 into the deflected wave �2 can substantially vary
with or without nuclear vibrations. This can be used for fast
switching of the wave propagation that can be achieved in the
regime κ� � �a . If the γ -wave detuning � is large enough
then the wave will pass through the static crystal without
deflection. However, if the nuclear vibrations are suddenly
turned on with νd = � the incident γ wave will be deflected
on a time scale given by Eq. (49), which could be a few
picoseconds.

Figure 5 demonstrates the effect for a medium with �a =
0.8 THz, assuming that the incident wave is detuned from
the nuclear transition by � = 250�a . For a static crystal the
fields �1 and �2 are shown by dashed lines. Without nuclear

FIG. 4. (Color online) Time evolution of the deflected γ wave
|�2(t)| obtained by numerical solution of Eqs. (32) and (33) for
different values of the modulation amplitude κ = 0.21, 0.14, and
0.07. In simulations we set νd = � = 250�a . The transformation
time between two γ waves �1 and �2 is ttr ≈ √

2π/κ�a .
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FIG. 5. (Color online) Illustration of the γ -ray switch operation.
The incident γ wave �1 is detuned from the nuclear transition by
� = 250�a . The dashed lines show the transformation of �1 into �2

for a static crystal and the solid lines are for a nuclear array vibrating
with frequency νd = � and modulation amplitude κ = 0.21.

vibrations it takes t0
tr = 491 ps for the wave �1 to convert

into �2. If the crystal size is smaller than ct0
tr = 15 cm the

incident wave passes through. However, if the nuclear array
vibrates with modulation amplitude κ = 0.21 the conversion
time becomes ttr = 26 ps and thus the wave will be deflected
at a length of 0.8 cm (solid lines in Fig. 5).

One should note that the γ -ray switch can also operate in
the on-resonance regime. Namely, when the incident wave is
on resonance with the nuclear transition it converts fast into the
deflected wave on a time scale π/

√
2�a . Turning on nuclear

vibrations would destroy the resonant interaction and make the
wave pass through the crystal.

IV. DISCUSSION

The physics behind the speedup of the energy transfer
between two waves can be understood as a parametric
resonance in a system of coupled oscillators. A single oscillator
whose frequency is periodically modulated provides a simple
example of parametric resonance. The motion of such an
oscillator is described by the Mathieu equation

ẍ + ω2
0[1 + δ cos(νdt)]x = 0, (50)

where δ is the modulation amplitude. If δ = 0 then the system
has two natural frequencies ±ω0. If the system’s parameters
vary with frequency νd equal to the difference between natural
frequencies, that is, νd = 2ω0, the oscillator phase locks to the
parametric variation and undergoes a parametric resonance
absorbing energy at a rate proportional to the energy it
already has.

A similar situation takes place if the system has several
natural frequencies (normal modes). To achieve parametric
resonance the modulation frequency νd must match the
difference between two normal mode frequencies [48]. This
is known as the difference combination resonance [49]. In

the present problem the natural frequencies of the coupled
light-nuclear system are determined from the solution (23)
and (24) obtained for the static lattice. Thus, if the frequency
of the nuclear vibrations matches the frequency difference,
namely, νd = ω+ − ω− = √

�2 + 8�2
a , the system undergoes

parametric resonance, which speeds up the energy transfer
between two γ waves. This phenomenon is analogous to
parametric frequency mixing in propagating circuits [42], in
which power can flow back and forth between the two coupled
circuits if the coupling reactance variation frequency matches
their frequency difference.

Combination parametric resonance at the frequency dif-
ference between two normal modes of the coupled light-
atom system is the essence of the QASER [50], a device
that can generate high-frequency (e.g., XUV) coherent light
by driving an atomic medium with a low-frequency (e.g.,
infrared) field [51]. Contrary to the laser, the QASER does
not require any atomic population in the excited state and
yields high-frequency light amplification. In the case of the
QASER the external field drives the atomic transition, which
produces modulation of the atom-field coupling strength and
yields gain at high frequency. In the present model, unlike the
QASER, modulation is produced by the nuclear motion, which
does not yield amplification of the high-frequency (γ ) field.
However, parametric resonance and collective effects of the
light interaction with a nuclear array enhance the rates of the
radiation absorption and reemission. As a result, energy trans-
fer between two γ waves occurs on a much shorter superradiant
time scale determined by the collective nuclear frequency
�a , which is of the order of terahertz. The combination of
the Dicke superradiance, Bragg diffraction, and combination
parametric resonance introduces interesting features to our
problem and allows us to achieve fast manipulation of the
γ -ray propagation.

If the incident γ wave is far detuned from the nuclear
transition by the amount � � �a then the light-nuclear
interaction is weak and the γ wave passes through the static
nuclear array. We found that if we make the nuclei vibrate
coherently with frequency � then the combination parametric
resonance effectively enhances the light-nuclear interaction
strength. As a result, the incident γ wave undergoes deflection
into a wave propagating at the Bragg angle on a short
superradiant time scale. The maximum energy transfer rate is
achieved for the amplitude of nuclear oscillations d ∼ λab/2π ,
where λab is the wavelength of the nuclear transition. Since
λab is typically much smaller than the spacing between nuclei
in crystals the required nuclear vibrations are also small.
Such nuclear motion can be realized, e.g., in ionic crystals
illuminated by a strong driving optical laser field. Our findings
could be used for manipulation of the propagation direction of
γ rays on a picosecond time scale.
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APPENDIX: CONSERVATION OF THE HIGH-FREQUENCY
ENERGY COMPONENT DURING LIGHT INTERACTION

WITH VIBRATING NUCLEI

We start from Eqs. (9) and (10) describing light propagation
through a moving crystal lattice{

∂

∂t
+ c2

2iωab

[(
ωab

c

)2

+ ∇2

]}
�(t,r)

= i
�2

a

N

∑
j

ρj (t)δ(r − rj (t)), (A1)

∂ρj (t)

∂t
= i�ωab(t)ρj (t) + i�(t,rj (t)). (A2)

In Eq. (A2) we introduced an additional time-dependent fre-
quency shift �ωab(t) to include possible external modulation
of the nuclear transition frequency. Multiplying both sides of
Eq. (A1) by �∗(t,r), we obtain

�∗(t,r)

{
∂

∂t
+ c2

2iωab

[(
ωab

c

)2

+ ∇2

]}
�(t,r)

= i
�2

a

N

∑
j

ρj (t)�∗(t,rj (t))δ(r − rj (t)). (A3)

While Eq. (A2) yields

iρj (t)�∗(t,rj (t)) = −ρj (t)ρ̇j∗(t) − i�ωab(t)|ρj (t)|2. (A4)

Plugging Eq. (A4) into Eq. (A3) gives

�∗(t,r)

{
∂

∂t
+ c2

2iωab

[(
ωab

c

)2

+ ∇2

]}
�(t,r)

+ �2
a

N

∑
j

ρj (t)ρ̇j∗(t)δ(r − rj (t))

+ i�ωab(t)
�2

a

N

∑
j

|ρj (t)|2δ(r − rj (t)) = 0. (A5)

Adding to Eq. (A5) its complex conjugate, we obtain

∂

∂t
|�(t,r)|2 + c2

2iωab

∇[�∗(t,r)∇�(t,r) − c.c.]

+ �2
a

N

∑
j

δ(r − rj (t))
∂

∂t
|ρj (t)|2 = 0. (A6)

Integrating Eq. (A6) over space and taking into account that
for weakly excited nuclei |ρj |2 = ρ

j
aa , where ρ

j
aa is the excited

state population of the nucleus j , we find∫
dr|�(t,r)|2 + �2

a

N

∑
j

ρj
aa(t) = const. (A7)

Equation (A7) shows that the sum of the energy of the high-
frequency field �(t,r) and that stored in nuclear excitation
is conserved no matter how nuclei move. This implies that
nuclear motion cannot amplify high-frequency field.
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