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Cavity QED of a leaky planar resonator coupled to an atom and an input single-photon pulse
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In contrast to the free-space evolution of an atom governed by a multimode interaction with the surrounding
electromagnetic vacuum, the evolution of a cavity-QED system can be characterized by just three parameters:
(i) atom-cavity coupling strength g, (ii) cavity relaxation rate κ , and (iii) atomic decay rate into the noncavity
modes γ . In the case of an atom inserted into a planar resonator with an input beam coupled from the outside,
it has been shown by Koshino [Phys. Rev. A 73, 053814 (2006)] that these three parameters are determined
not only by the atom and cavity characteristics, but also by the spatial distribution of the input pulse. By an
ab initio treatment, we generalize the framework of Koshino and determine the cavity-QED parameters of a
coupled system of atom, planar (leaky) resonator, and input single-photon pulse as functions of the lateral profile
of the pulse and the length of resonator. We confirm that the atomic decay rate can be suppressed by tailoring
appropriately the lateral profile of the pulse. Such an active suppression of atomic decay opens an attractive route
towards an efficient quantum memory for long-term storage of an atomic qubit inside a planar resonator.
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I. INTRODUCTION

Cavity quantum electrodynamics (cavity QED) is a research
field that studies electromagnetic fields in confined spaces and
radiative properties of atoms in such fields. Experimentally, the
simplest example of such a system is a single atom interacting
with a single mode of a high-finesse resonator [1]. This system
bears an excellent framework for quantum communication
and information processing, in which atoms and photons are
interpreted as bits of quantum information and their mutual in-
teraction provides a controllable entanglement mechanism [2].

Remarkably, the evolution of a cavity-QED system can
be well characterized by just three parameters: (i) atom-
cavity coupling strength g, (ii) cavity relaxation rate κ , and
(iii) atomic decay rate into the noncavity modes γ . The cavity-
QED effects become manifest clearly when the atom-cavity
coupling g is much larger than the atomic decay rate γ and
the cavity relaxation rate κ , at the same time. These two
conditions define the (so-called) strong-coupling regime of
atom-cavity interaction that ensures that the energy exchange
between the constituents is reversible and develops faster than
losses due to the cavity relaxation and the atomic decay. In
the resonant regime, i.e., when the cavity resonant frequency
matches the atomic transition frequency, the reversibility of
energy exchange ensures that the coherent (unitary) part of
atom-cavity evolution is governed by the Jaynes-Cummings
Hamiltonian [3]

HJC = h̄g(cσ † + c†σ ), (1)

where c and c† denote the cavity mode annihilation and
creation operators, while σ and σ † are the atomic lowering and
raising operators, respectively. This Hamiltonian describes the
interaction of a two-level atom with a single-mode light field
that is confined inside the resonator.
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During the last decades, single-mode resonators with
typically spherical mirrors have been fabricated and utilized
in various cavity-QED experiments. It was demonstrated that
resonators with spherical mirrors can operate in the strong-
coupling regime, such that the coherent part of the atom-cavity
evolution is described by the Hamiltonian (1) [4]. Although a
planar Fabry-Perot resonator with a coupled atom is used to
illustrate the main features of cavity QED, there is an essential
difference between the resonator with spherical mirrors used in
typical cavity-QED experiments and a Fabry-Perot resonator
with two coplanar mirrors. Namely, even in the case of
perfect lossless mirrors, a planar (Fabry-Perot) resonator is
intrinsically multimode with a spectrally dense continuum
of modes. Due to this essential difference, the cavity-QED
parameters (g,κ,γ ) cannot be identified straightforwardly in
the case of an atom coupled to a planar resonator.

In recent years, however, impressive experimental progress
has been achieved in fabricating various planarlike resonators,
i.e., two-dimensional microwave circuits (circuit-QED) [5],
fiber-based (FFP) cavities [6], and diverse microcavities [7].
Triggered by this experimental progress, the recent [8–12]
and past [13–18] theoretical developments devoted to planar
cavities have acquired increasing attention. Although it is
commonly agreed that the Rabi oscillations cannot occur
in an interacting system of an atom and a planar resonator
because of a weak atom-cavity coupling, it was pointed
out in Refs. [19,20] that such system can still exhibit Rabi
oscillations, similar to those of a cavity-QED system, once
the planar resonator is excited by a coherent external beam. In
other words, provided that a light pulse penetrates the resonator
from outside with an appropriately tailored spatial distribution,
the coupling strength of an (otherwise weakly interacting)
atom-cavity system can be dramatically enhanced, leading to
Rabi oscillations.

Experimental evidence which supports the existence of
Rabi oscillations in a coupled exciton-photon system confined
in a planar microcavity and exposed to an external coherent
beam has been presented in Refs. [21,22]. Since the coherent
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part of both evolutions associated with confined exciton-
photon and atom-photon coupled systems is governed by
the Jaynes-Cummings Hamiltonian (1), these experiments
provide compelling arguments that an interacting system of
three constituents, i.e., (i) an atom weakly coupled to (ii) a
planar resonator, and (iii) a spatially tailored input pulse, is
capable of reproducing the cavity-QED evolution. Similar to
the cavity-QED system, furthermore, this (atom-cavity-pulse)
system is characterized by a set of parameters determined not
only by the atom, cavity, and reservoir characteristics, but also
by the spatial distribution of the input pulse. To the best of our
knowledge, the problem of identifying these parameters has
been addressed solely by Koshino in Ref. [20].

Using the (so-called) form-factor formalism, in this refer-
ence, the author suggested three functions which correspond
to the cavity-QED triplet (g,κ,γ ), and he showed their
dependence on the spatial distribution of the input pulse. As a
consequence of the developed formalism, it was demonstrated
how to suppress the atomic decay γ by tailoring appropriately
the spatial distribution of this input pulse. However, Koshino
introduced four simplifying assumptions in his framework,
namely, (i) the evolution of the coupled atom-cavity-pulse
system was described by an ad hoc Hamiltonian, (ii) the
light field had only one (fixed) polarization, (iii) the atom
was described by an averaged (in space) dipole, while (iv) the
planar resonator accommodated only one atomic wavelength.

In contrast to Koshino’s approach, in this paper, we develop
an ab initio theoretical framework, in which we completely
exclude the above simplifications. In this generalized frame-
work, we derive the cavity-QED parameters of a coupled
atom-cavity-pulse system and reveal the dependence of these
parameters on the atom-cavity-reservoir characteristics and
spatial distribution of the input pulse. We find explicitly the
optimal lateral profile that yields a complete vanishing of the
atomic decay rate and, thus, we also find that the atomic decay
can be efficiently suppressed by coupling of an appropriate
pulse to the resonator. Besides this optimal pulse, we consider
the situation in which a Hermite-Gaussian beam penetrates the
resonator from outside. We calculate cavity-QED parameters
for this case and reveal their dependence on the beam waist
and the cavity length.

The controllable suppression of the atomic decay opens an
attractive route towards an efficient quantum memory for long-
term storage of a single qubit that is encoded by a two-level
atom coupled to the planar resonator and an input pulse, while
the atomic decay constitutes the main source of decoherence.
Such a quantum memory poses an essential prerequisite for
quantum information processing and quantum networking
applications such as quantum repeaters [23] and quantum key
distribution [24]. In this paper, however, we address solely
the physical aspects of the suggested quantum memory, i.e.,
the cavity-QED behavior of the coupled atom-cavity-pulse
system, while a quantitative characterization of the suggested
quantum memory shall be addressed in our future works.

The paper is organized as follows. In the next section, we
analyze a leaky planar resonator and derive the quantized elec-
tromagnetic field produced inside and outside the resonator. In
Sec. II C we discuss the limit of perfect reflectivity, which is
relaxed in Sec. II D to the case of a high but finite reflectivity.
Using the total Hamiltonian of a coupled atom-cavity-pulse

system derived in Secs. III C and III D, we introduce the
form-factor formalism and identify the cavity-QED parameters
in Sec. III C. In Sec. IV A, we evaluate these parameters by
considering an optimal lateral profile that yields a suppression
of atomic decay, while an (experimentally feasible) Hermite-
Gaussian beam is considered in Sec. IV B. A summary and
outlook are given in Sec. V.

II. ONE-SIDED LEAKY CAVITY WITH PLANAR
GEOMETRY

In order to describe a two-level atom coupled to a field
confined in a planar resonator, we have to consider first
an empty resonator and determine the respective quantized
electromagnetic field. In this section, we analyze the one-sided
leaky cavity with planar geometry as shown in Fig. 1(a). This
cavity consists of a perfectly reflecting (solid) plane mirror
located at z = −� and a leaky (semitransparent) plane mirror
located at z = 0.

As we mentioned in the Introduction, there is an essential
difference between a resonator with spherical mirrors, used

FIG. 1. (a) Multiple-reflections method [15] for an incident plane
wave that penetrates the planar resonator from the outside. (b)
Cylindrical coordinate system in the reciprocal space. See text for
details.
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in typical cavity-QED experiments, and a planar resonator.
In the latter confinement configuration, only the normal
component of wave vector (along the kz axis) can take
discrete values inside a perfectly reflecting (lossless) planar
cavity, while the other two components propagate freely. In a
leaky planar resonator, in contrast, the semitransparent mirror
at z = 0 causes the cavity relaxation, i.e., the leakage of
cavity photons and, therefore, even the z component of wave
vector can never become completely discrete. In contrast to
Koshino’s treatment, the cavity relaxation in our approach
is not a predefined function. Instead, it is determined by the
transmissivity and reflectivity parameters of a planar resonator.
This enables us to include both the intracavity field and the field
that leaks outside (or penetrates into the resonator) in the same
framework.

A. Semitransparent dielectric-slab mirror

Following the conventional approach (see Sec. 5.C in
Ref. [25]), we model the semitransparent mirror by an
idealized (infinitesimally) thin layer of dielectric material, the
so-called dielectric slab, with the dielectric constant around
z = 0 given by

ε(z) = ε [1 + ηδ(z)] , (2)

where ε denotes the permittivity of vacuum and η is the positive
and real parameter that encodes the transparency (see below).
In Ref. [15], Dutra and Knight showed that the transmissivity
and reflectivity of such a thin dielectric slab are given by the
expressions

T⊥(k) = 2kz

2kz − ι̇ k2η
; T‖(k) = 2

2 − ι̇ kzη
, (3a)

R⊥(k) = ι̇ k2η

2kz − ι̇ k2η
; R‖(k) = ι̇ kzη

ι̇ kzη − 2
, (3b)

which fulfill the equalities

|Rα(k)|2 + |Tα(k)|2 = 1, (4a)

Rα(k)∗Tα(k) + Tα(k)∗Rα(k) = 0, (4b)

where k is the wave vector, α = ⊥ refers to the component
normal to the plane of mirror (along the z axis), and α =‖
refers to the component lying on the plane of mirror (x-y
plane).

Using Eqs. (3), one can readily check that the mirror
becomes completely transparent in the limit η → 0, while it
becomes a perfect reflector in the limit η → ∞, i.e.,

Tα(k) =
{

1, η → 0
0, η → ∞,

Rα(k) =
{

0, η → 0
mα, η → ∞,

(5)

where m⊥ = −1 and m‖ = 1. The parameter η, therefore,
determines alone the transmissivity and reflectivity of the
(leaky) mirror.

In our scheme, the leaky mirror at z = 0 ensures also that a
light pulse can penetrate the resonator from outside. The leaky
mirror, therefore, is supposed to have a high but nonperfect
reflectivity (η � 1) which, in this paper, is understood as
a small deviation from the perfect reflectivity limit. Since
Tα(k) and Rα(k) are constant in the perfect reflectivity limit
[see Eqs. (5)], we can treat (to a good approximation) the

transmissivity and reflectivity of a leaky mirror as complex
valued constants

Tα(k) ∼= Tα and Rα(k) ∼= Rα; (6a)

|Rα|2 + |Tα|2 = 1, R∗
αTα + T ∗

α Rα = 0. (6b)

On top of this, moreover, the expressions (3) imply

Re(Tα) 	 Im(Tα) and Re(Rα) � Im(Rα). (7)

The assumption (6a) together with relations (6b) and (7)
suggest that Tα and Rα can be chosen in the form

Rα = mα

√
1 − τ 2; Tα = ι̇ τ, τ 	 1 (8)

in order to describe a leaky mirror that deviates only slightly
from the perfect one. This presentation implies that the limit
of perfect reflectivity is reproduced up to the first order of
τ , i.e., Rα starts to deviate from mα to the second order of
τ . Throughout this paper, therefore, we consider the expres-
sions (8) to describe a leaky mirror, while the expressions
(3) are considered to describe an arbitrarily semitransparent
mirror or a perfectly reflecting mirror.

B. One-sided planar resonator with a semitransparent mirror

An unconfined light propagates in free space, such that the
positive-frequency part of its electric field E(r,t) is expressed
as follows [26]:

E(+)(r,t) =
∑

α

∫
d kv̂α(k)E (+)

α (k)eι̇ (k·r−kct)

≡
∫

d kE(+)(k,r)e−ι̇ kct , (9)

where k ≡ |k| denotes the modulus of wave vector, v̂α(k)
denotes the unit vector specifying the direction of a given
electric-field component, while E (+)

α (k) denotes the electric-
field amplitude. We calculate how the one-sided planar res-
onator with a semitransparent mirror modifies the plane waves
encoded by the expression E(+)(k,r). Having this modified
expression, we then insert it back into Eq. (9) along with
the quantum counterparts of the field amplitudes E (+)

α (k) and
determine the quantized electric field in the presence of the
resonator. With the help of quantized electric and magnetic
fields, furthermore, we compute the total electromagnetic
energy in the physical space that includes regions inside and
outside the cavity along with the region occupied by the leaky
mirror.

Similar to the theory of a Fabry-Perot resonator [27],
we apply the multiple-reflection approach by summing the
reflected and transmitted plane waves as depicted in Fig. 1(a).
We recall that the solid mirror is a perfectly conducting plane
that implies the transformation of the amplitudes of the electric
field

E (+)
α (k) → mαE (+)

α (k); m⊥ = −1, m‖ = 1, (10)

In contrast to the perfect mirror at z = −�, the action of
a semitransparent mirror on the incident plane waves is
determined by the reflectivity and transmissivity (3), which
imply the respective transformations of the amplitudes of the
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electric fields

E (+)
α (k) → Rα(k)E (+)

α (k); (11a)

E (+)
α (k) → Tα(k)E (+)

α (k). (11b)

Using the multiple-reflection approach with relations (10)
and (11), we compute the electric field inside (−� � z < 0)
and outside (z > 0) the planar cavity region,

E(+)
C (k,r) =

∞∑
i=1

E(+)
C,i(k,r)

= 2

[
E (+)

‖ (k)L‖(k) cos[kz(z + �)]
k

k
ẑ

− ι̇ E (+)
‖ (k)L‖(k) sin[kz(z + �)]

kz

k
ŝ

− ι̇ E (+)
⊥ (k)L⊥(k) sin[kz(z + �)]k̂⊥

]
eι̇ �k ·r,(12)

E(+)
O (k,r) = E(+)(k,r) +

∞∑
i=1

E(+)
R,i(k,r)

=
{
E (+)

‖ (k)[e−ι̇ kzz + P‖(k) eι̇ kzz]
k

k
ẑ

+ E (+)
‖ (k)[e−ι̇ kzz − P‖(k) eι̇ kzz]

kz

k
ŝ

+ E (+)
⊥ (k)[e−ι̇ kzz + P⊥(k) eι̇ kzz]k̂⊥

}
eι̇ �k ·r, (13)

where k = {kz,k,ϑ} has been expressed in the cylindrical
coordinate basis, while �k = kŝ is the (in-plane) wave vector
lying on the plane of mirror as shown in Fig. 1(b). The
orthogonal unit vectors ẑ, ŝ, and k̂⊥ ≡ ŝ × ẑ determine the
polarization of the resulting electric field, while

Lα(k) ≡ Tα(k)

1 − e2ι̇ � kzmαRα(k)
, (14a)

Pα(k) ≡ Rα(k) + Tα(k)Lα(k)mαe2ι̇ �kz (14b)

characterize the spectral response of the resonator [28].
At this point, we introduce the quantum counterpart of the

(positive-frequency) field amplitude

E (+)
α (k) =

√
2h̄ωk

ε(2π )3
aα(k), (15)

where ωk ≡ c|k| = ck, while aα(k) is the photon annihilation
operator that satisfies

[aα(k),a†
α′ (k′)] = δα,α′δ(k − k′), (16a)

[aα(k),aα′ (k′)] = 0. (16b)

In contrast to the free-space case, the above amplitude contains
an extra factor of 2 due to the perfect mirror restricting the field
to the half-space only [15]. By inserting Eqs. (12) and (13)
along with the amplitude (15) into the integral (9), we obtain
the quantized electric field inside E(+)

C (r,t) and outside the
cavity E(+)

O (r,t) region,

E(+)
• (r,t) =

∑
α

∫ ′
d k

√
2h̄ωk

ε(2π )3
Uα,•(k,z)aα(k)eι̇ (�k ·r−ωkt),

(17)

where the integration (prime symbol) is restricted to the
positive kz, while the subscript • denotes C or O depending
on the region inside or outside the cavity, respectively. In this
expression,

U⊥,C(k,z) = −2ι̇ L⊥(k) sin[kz(z + �)]k̂⊥; (18a)

U⊥,O(k,z) = [e−ι̇ kzz + P⊥(k)eι̇ kzz]k̂⊥; (18b)

U‖,C(k,z) = 2L‖(k)

(
cos[kz(z + �)]

k

k
ẑ

− ι̇ sin[kz(z + �)]
kz

k
ŝ
)

; (18c)

U‖,O(k,z) = (e−ι̇ kzz + P‖(k)eι̇ kzz)
k

k
ẑ

+ (e−ι̇ kzz − P‖(k)eι̇ kzz)
kz

k
ŝ. (18d)

Moreover, the global mode functions

Uα(k,r) ≡ eι̇ �k ·r[Uα,O(k,z) + Uα,C(k,z)] (19)

form an orthonormal set∫
dr Uα(k,r) · U∗

α′ (k′,r) = (2π )3δα,α′δ(k − k′), (20)

where the integration over the z axis is restricted to −� < z <

∞. Using the electric field (17), we readily obtain the magnetic
field inside and outside the cavity region,

B(+)
• (r,t) =

∑
α

∫ ′
d k

√
2h̄ωk

cε(2π )3
Vα,•(k,z)aα(k)eι̇ (�k ·r−ωkt),

(21)

where

Vα,•(k,z) = 1

k

(
�k − ι̇ ẑ

∂

∂z

)
× Uα,•(k,z). (22)

Owing to the quantized electric (17) and magnetic (21)
fields, we compute the energy of the electromagnetic field
in the space that includes the regions inside and outside the
cavity together with the region occupied by the leaky mirror.
This energy is given by the free-field Hamiltonian

HF =
∫ ∞

−∞
dx dy

[∫ 0

−�

dzHC(r,t)

+
∫ ∞

0
dzHO(r,t) + lim

ξ→ 0

∫ ξ

−ξ

dzHL(r,t)
]

, (23)

where HC(r,t) and HO(r,t) are the energy densities of the
electromagnetic fields inside and outside the cavity region,
respectively, while HL(r,t) is the energy density associated
with the leaky mirror. Since the electric field vanishes inside
a perfectly reflecting mirror, there is no extra contribution
to (23). By following the approach of Ref. [28], it can
be shown that the above Hamiltonian takes the expected
form

HF =
∑

α

∫ ′
d k

h̄ωk

2
[a†

α(k)aα(k) + aα(k)a†
α(k)] (24)
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and describes the energy of an infinite set of harmonic
oscillators each characterized by the frequency ωk.

C. The limit of perfect reflectivity

In the previous section, we derived the quantized electric
and magnetic fields in the presence of a one-sided planar
resonator as displayed in Fig. 1(a) with an arbitrarily semitrans-
parent mirror. We found that the energy of the electromagnetic
field, localized inside and outside the cavity and inside the
semitransparent mirror, is given by the Hamiltonian (24). In
this section, we reconsider the obtained results in the (lossless)
limit of perfect reflectivity, i.e., when the leaky mirror at
z = 0 becomes a perfectly reflecting mirror (η → ∞). In
this case, two types of photon field operators, acting in the
intracavity region and outside region (reservoir) emerge from
the global photon operator aα(k). In the next sections, we
consider these operators for the case of a leaky cavity given by
the condition τ 	 1 and understood as a small deviation from
the perfect-reflectivity case.

In order to proceed, we express Eq. (17) in the form

E(+)
C (r,t) =

∑
α

∫ ′
d k

√
2 �h̄ωk

πε(2π )3

× Ũα,C(k,z) |Lα(k)|2ãα(k)eι̇ (�k ·r−ωkt), (25)

where we introduced Uα,C(k,z) ≡ Lα(k)Ũα,C(k,z) and

aα(k) ≡
√

�/πL∗
α(k)ãα(k). (26)

In the perfect-reflectivity limit, it was shown by Dutra and
Knight in Ref. [15] that

lim
η→∞ |Lα(k)|2 = π

�

∞∑
n=−∞

δ(kz − kz,n), (27)

where kz,n ≡ nπ/�. By inserting this expression into Eq. (25)
and integrating over kz, we obtain the electric field inside the
cavity in the limit of perfect reflectivity,

E(+)
CL(r,t) =

∑
α,n

∫
d�k

√
h̄ωn,k

ε(2π )2 �

× Ũα,C(kz,n,�k ,z) ãα(kz,n,�k )eι̇ (�k ·r−ωn,k t), (28)

where ωn,k ≡ c
√

k2
z,n + k 2 is the (quasimode) frequency, and

where the reduced mode functions Ũα,C form an orthogonal
set∫

dz Ũα,C(kz,n,�k ,z) · Ũ∗
α′,C(kz,n′ ,�k ,z) = 2�δn,n′δα,α′ (29)

with the integration being restricted to −� < z < 0.
The photon annihilation operator ãα(kz,n,�k ) in Eq. (28)

depends on the discrete values of n and continuous values of
�k . Although the expression E(+)

CL(r,t) is formally identical to
the (positive-frequency parts of) electric field inside a lossless
planar resonator (see Ref. [15]), we remind one that the
operator ãα(kz,n,�k ) has been obtained from aα(k) using the
definition (26) and the discretization of kz component. In order
to define the cavity operator acting inside the cavity region

only, we keep Eq. (28) with replacing ãα(kz,n,�k ) by operator
cα,n(�k ),

E(+)
CP(r,t) =

∑
α,n

∫
d�k

√
h̄ωn,k

ε(2π )2 �

×Ũα,C(kz,n,�k ,z)cα,n(�k )eι̇ (�k ·r−ωn,k t), (30)

where we interpret cα,n(�k ) as the cavity photon annihilation
operator that satisfies

[cα,n(�k ),c†α′,n′ (�k ′)] = δα,α′δn,n′δ(�k − �k ′), (31a)

[cα,n(�k ),cα′,n′ (�k ′)] = 0, (31b)

and is characterized by the quasimode frequency ωn,k .
In order to derive cα,n(�k ) in terms of global operator

aα(k), we multiply (scalarly) both Eqs. (17) and (30) by
Ũ∗

α,C(kz,n′ ,�k ,z) and integrate them over z from −� to 0 using
the property (29). We equate the resulting expressions and
solve them for the operator cα,n(�k ),

cα,n(�k ) = 1

2
√

π�

∫ ′
d kz

√
ωk

ωn,k

Lα(k) aα(k)

× eι̇ (ωn,k−ωk)t
∫

dz Ũα,C(kz,�k ,z) · Ũ∗
α,C(kz,n,�k ,z),

(32)

which obeys the commutation relations (31).
In a similar fashion, we derive the electric field valid outside

the cavity region only. For this, we first express E(+)
O (r,t) [see

Eq. (17)] in the limit η → ∞ [see Eq. (5)],

E(+)
OL(r,t) =

∑
α

∫ ′
d k

√
2h̄ωk

ε(2π )3
Ũα,O(k,z)aα(k)eι̇ (�k ·r−ωkt),

(33)

where the reduced mode functions

Ũα,O(k,z) ≡ lim
η→∞ Uα,O(k,z) = Ũα,C(k,z − �)

form an orthonormal set∫
dz Ũα,O(kz,�k ,z) · Ũ∗

α′,O(k′
z,

�k ,z) = 2πδα,α′ δ(kz − k′
z),

(34)
with the integration being restricted to 0 < z < ∞.

By following the same approach as before, we keep Eq. (33)
with replacing aα(k) by operator bα(k),

E(+)
OP(r,t) =

∑
α

∫ ′
d k

√
2h̄ωk

ε(2π )3
Ũα,O(k,z)bα(k)eι̇ (�k ·r−ωkt),

(35)

where we interpret bα(k) as the photon annihilation operator of
the (reservoir) modes outside the cavity. This operator satisfies
the usual commutation relations

[bα(k),b†α′ (k′)] = δα,α′δ(k − k′), (36a)

[bα(k),bα′ (k′)] = 0. (36b)

In order to find the reservoir photon operator bα(k) in terms
of aα(k), we multiply (scalarly) both Eqs. (17) and (35) by
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Ũ∗
α,O(k′

z,
�k ,z) and integrate them over z from 0 to ∞ using the

property (34). We equate the resulting expressions and solve
them for the operator bα(k),

bα(k) = 1

2π

∫ ′
d k′

z

√
ω′

k

ωk
aα(k′

z,
�k)eι̇ (ωk−ω′

k)t

×
∫

dz Uα,O(k′
z,

�k ,z) · Ũ∗
α,O(kz,�k ,z), (37)

where ω′
k ≡ c

√
k′

z + k 2 and which obeys the commutation
relations (36).

The relations (29) and (34) along with the commutation
relations (31) and (36) imply that the electric fields ECP(r,t)
and EOP(r,t), along with the respective magnetic fields, enable
one to describe any physically achievable configuration of the
electromagnetic field inside and outside the planar resonator,
respectively. Except for the region filled by the semitransparent
mirror, therefore, the operators cα,n(�k ) and bα(k) cover the
entire continuum of Fock spaces spanned by the global
operator aα(k). In other words, this operator can be expanded
as

aα(k) =
∑

n

Aα,n(k)cα,n(�k ) +
∫ ′

d k′
z Bα(k,k′

z)bα(k′
z,

�k ),

(38)

where Aα,n(k) and Bα(k,k′
z) are defined by the means of

commutators

Aα,n(k) =
[
aα(k),

∫
d�k ′ c†α,n(�k ′)

]
, (39a)

Bα(k,k′
z) =

[
aα(k),

∫
d�k ′ b†α(k′)

]
. (39b)

Since the global photon operator obeys the eigenoper-
ator equation [aα(k),HF] = h̄ωkaα(k) [see Eq. (24)], the
expansion (38) can be traced back to Fano’s diagonalization
technique utilized in Ref. [29] to analyze a coupled bound-
continuum system. In the framework of cavity QED, this
technique has been exhaustively studied in Ref. [30], where
aα(k), cα,n(�k ), and bα(k) were identified as the dressed, bare
(or quasicavity), and reservoir photon operators, respectively
(see also Ref. [31]).

D. The case of a high but finite reflectivity

We found above that aα(k) can be expressed with the help
of operators cα,n(�k ), bα(k) and functions (39). This expected
result, obtained for a lossless resonator, is based on the ability
to describe any attainable electromagnetic field configuration
inside or outside the resonator using expression (30) or (35),
respectively.

In this section, we show that the expansion (38) holds true
also in the case of a high but finite reflectivity, i.e., a leaky
cavity. In order to proceed, we replace the functions Rα(k) and
Tα(k) in (30) and (35) by the expressions (8). The structure
of E(+)

CP(r,t) and E(+)
OP(r,t) implies that the reduced mode

functions Ũα,C(kz,n,�k ,z), Ũα,O(k,z), and the orthogonality
relations (29) and (34) remain unchanged. The operators
cα,n(�k ) and bα(k), in contrast, include implicitly the reflectivity
and transmissivity by means of the spectral response function

Lα(k) [see Eqs. (14)]. In the case of a leaky cavity with τ 	 1,
to a good approximation, this response function takes the form

L(ω,k) ∼= c

2 �

∞∑
n=0

−τ

ω − ωn,k + ι̇ cτ 2/(4�)
, (40)

where, without loss of generality, we replaced kz by the
(frequency valued) parameter ω divided by c. In the denom-
inator of this expression, moreover, we have imposed the k

dependence by means of the quasimode frequency ωn,k . In the
limit of vanishing k, the resulting function reduces to Eq. (9.49)
derived in Ref. [28] for the case of a one-dimensional leaky
cavity, where the contribution of continuous and unconfined
modes has been omitted.

By inserting (40) in Eqs. (32) and (37) with replacement
kz → ω/c, we compute explicitly cα,n(�k ) and bα(k),

cα,n(�k ) =
∫ ′

dω
−τ/(2

√
π�)

ω − ωn,k + ι̇ cτ 2/(4�)
aα(ω,�k ), (41)

bα(k) =
∫ ′

dω aα(ω,�k )

[
δ (ckz − ω)

+ lim
ξ→0+

1

ckz − ω − ι̇ ξ

∞∑
n=0

−τ 2/(4π�)

ω − ωn,k + ι̇ cτ 2/(4�)

]
,

(42)

where the global photon operator fulfills the relations

[aα(ω,�k ),a†
α′ (ω′,�k ′)] = cδα,α′δ(ω − ω′)δ(�k − �k ′),

[aα(ω,�k ),aα′ (ω′,�k ′)] = 0.

We show below that these operators fulfill the commutation
relations (31) and (36), respectively. Using the same arguments
as in the previous section, i.e., the possibility to describe any
configuration of the electromagnetic field using (30) and (35),
we conclude that the expansion

aα(ω,�k ) =
∑

n

An(ω,k)cα,n(�k ) +
∫ ′

d kzB(ω,kz)bα(k)

(43)
replaces Eq. (38) in the case of a leaky cavity, where

An(ω,k) = −τ/(2
√

π�)

ω − ωn,k − ι̇ cτ 2/(4�)
, (44a)

B(ω,kz) = δ (c kz − ω) + lim
ξ→0+

τ/(2
√

π �)

ckz − ω + ι̇ ξ

∞∑
n=0

An(ω,k).

(44b)

In order to show that cα,n(�k ) and bα(k) satisfy the
commutation relations, we first use Eqs. (41) and (44a), for
which the commutator (31a) reduces to the expression

δα,α′δn,n′δ(�k − �k ′)
∫ ′

dω c|An(ω,k)|2. (45)

Now we use Eqs. (42) and (44b), for which the commuta-
tor (36a) reduces to the expression

δα,α′δ(�k − �k ′)
∫ ′

dω cB(ω,k′
z)B

∗(ω,kz). (46)
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It can be readily checked that the integral in (45) is equal
to 1, while the integral in (46) is equal to δ(kz − k′

z) up to the
contribution O(τ 4), which is negligibly small due to the (leaky
cavity) condition τ 	 1.

III. FORM FACTORS AND THE CAVITY-QED
PARAMETERS

In the Introduction, we explained that an interacting system
of three constituents: (i) an atom coupled to (ii) a planar
resonator, and (iii) an input pulse that penetrates the resonator
from outside, can exhibit Rabi oscillations reproducing the
cavity-QED evolution. In Fig. 2(a) we display the experimental
setup that could realize this scenario. In this setup, an atom
at rest is located inside the planar resonator, while the single-
photon wave packet

|in〉 =
∑

α

∫
dr ψ(z)ϕα(x,y)b̃†α(r)|vac〉 (47)

FIG. 2. (Color online) (a) Schematic view of the experimental
setup that realizes the proposed scenario. (b) Series of branches which
characterize the dispersion relation ωn,k = c

√
k2

z,n + k2 associated
with the frequency of cavity quasimodes. (c) The total form factor (63)
for N = 1 and N = 19 being summed over the polarizations. See text
for details.

characterized by a nontrivial spatial distribution penetrates
the resonator at normal incidence. Here b̃α(r) denotes the
Fourier transform of bα(k), while |vac〉 is the photon field
vacuum state, such that aα(k)|vac〉 = 0. The functions ψ(z)
and ϕα(x,y) describing the spatial distribution of the light
pulse are normalized, such that∫

dz|ψ(z)|2 =
∑

α

∫
dx dy|ϕα(x,y)|2 = 1, (48)

and where |ψ(z)|2 is localized in the z > 0 region.
Similar to the standard cavity QED, the coupled atom-

cavity-pulse system is described by a set of parameters which
characterize completely the coherent (unitary) and incoherent
(nonunitary) parts of its evolution. Before we identify this
set, we formulate two criteria by which we determine these
parameters. First, this set should contain only three elements
with the same physical meaning as the cavity-QED parame-
ters (g,κ,γ ). This requirement would establish a one-to-one
correspondence to the conventional cavity-QED framework.
Secondly, these parameters have to depend not only on the
atom and cavity characteristics (as in cavity QED) but also on
the lateral profile ϕα(x,y) of the single-photon pulse (47).

The identification of these parameters, framed by the above
two criteria, was proposed by Koshino in Ref. [20]. In this
reference, the author observed that the atom-field coupling
extracted from the total Hamiltonian including an atom,
the light field, and the atom-cavity interaction encodes the
entire triplet of parameters. Using the so-called form-factor
formalism that gives a proper framework to isolate and study
various couplings of a given Hamiltonian, Koshino calculated
the cavity-QED parameters in question and demonstrated
that the atomic decay rate γ becomes considerably suppressed
once the lateral profile ϕα(x,y) of the input single-photon pulse
is appropriately tailored.

However, Koshino introduced four simplifying assump-
tions in his framework, namely, (i) the evolution of the
coupled atom-cavity-pulse system was described by an ad
hoc Hamiltonian, (ii) the light field had only one (fixed)
polarization, (iii) the atom was described by an averaged (in
space) dipole, while (iv) the planar resonator accommodated
only one atomic wavelength. In the generalized framework we
derived in the previous section, the first two simplifications
have been already excluded. In this section, we avoid the
remaining two assumptions and generalize, in this way, the
paper of Koshino.

A. Input light pulse coupled to the resonator

The light pulse (47) can be expressed in k space as

|in〉 =
∑

α

∫
d k ψ̃(kz)ϕ̃α(�k )b†α(k)|vac〉, (49)

where ψ̃(kz) and ϕ̃α(�k ) are the Fourier transforms of ψ(z) and
ϕα(x,y), respectively, and describe the frequency distribution
of the input light pulse in k space. Similar to Eq. (48), these
two functions are normalized:∫

d kz|ψ̃(kz)|2 =
∑

α

∫
d�k |ϕ̃α(�k )|2 = 1. (50)
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In the conventional approach [30,32], a single-photon state
with a nontrivial frequency distribution is typically given by
the expression |1〉 = ∫

dωk G(ωk)b†(ωk)|vac〉, where ωk is
proportional to the modulus of k. In our case, however, the
frequency distribution is given by ψ̃(kz) and ϕ̃α(�k ) depending
on different wave-vector components, while the integration is
performed over the k space.

Using (42) and (44), we express (49) in the form

|in〉 = 1

c

∫
dω ψ̃(ω)d†(ω,ϕ̃)|vac〉, (51)

which is similar to the conventional single-photon state
|1〉 shown above, and where we introduced the pulse
operator

d(ω,ϕ̃) ≡
∑

α

∫
d�k ϕ̃ ∗

α (�k )

×
[

1 + ι̇ τ

√
π

�

∞∑
n=0

A∗
n(ω,k)

]
aα(ω,�k ), (52)

which depends on the lateral profile ϕ̃α . This operator,
moreover, fulfills the commutation relations

[d(ω,ϕ̃),d†(ω′,ϕ̃)] = cδ(ω − ω′); (53a)

[d(ω,ϕ̃),d(ω′,ϕ̃)] = 0, (53b)

and exhibits the properties

d†(ω,ϕ̃)|vac〉 = ψ̃∗(ω)|in〉, (54a)

d(ω,ϕ̃)|in〉 = ψ̃(ω)|vac〉. (54b)

These properties suggest that d†(ω,ϕ̃) creates a single-photon
state (49) weighted by ψ̃∗(kz), while d(ω,ϕ̃) annihilates the
respective state resulting in the vacuum state weighted by
ψ̃(kz). In order to complete the derivations in this section,
we invert the relation (52)

aα(ω,�k ) = ϕ̃α(�k )

[
1 − ι̇ τ

√
π

�

∞∑
n=0

An(ω,k)

]
d(ω,ϕ̃), (55)

where we used Eq. (50) along with the relation

ι̇ τ

√
π

�
|An(ω,k)|2 = A∗

n(ω,k) − An(ω,k). (56)

B. Atom coupled to the resonator

In this section, we derive the Hamiltonian that governs the
evolution of the intracavity field coupled to a two-level atom by
using the electric field (30) and the photon field operator (41)
of a leaky cavity. We consider an atom at rest inside the
resonator as displayed in Fig. 2(a). The internal structure of
the atom is completely characterized by the states |g〉 (ground)
and |e〉 (excited), which fulfill the usual orthogonality and
completeness relations. We recall that the cavity quasimodes
are characterized by the frequency ωn,k that has both discrete
and continuous contributions. These quasimodes are grouped
by branches indexed by n as can be seen in Fig. 2(b), where
ωc ≡ ω1,0 = ckz,1 defines the lower cut-off frequency. We

assume that the atomic transition frequency ωa is equal or
above this lower cut-off frequency, such that the atom couples
at least to one quasimode of the resonator.

We choose the position of atomic center-of-mass r′ =
{0,0,−�/2} and switch to the Schrödinger picture, in which
the electric field (30) is time independent. In the dipole
approximation, the Hamiltonian (n = 1, . . . ,N)

HAC = −Q r · [E(+)
CP(r′) + E(–)

CP(r′)]

= −D(σ † + σ )
N∑
α,n

∫
d�k

√
h̄ωn,k

ε(2π )2�

×
[
ρ̂ · Ũα,C

(
kz,n,�k,−�

2

)
cα,n(�k) + H.c.

]
(57)

describes the electric-dipole coupling between a two-level
atom and N cavity quasimodes, where N is the number of
intersection points between ωa and the branches of ωn,k [see
Fig. 2(b)]. In the above Hamiltonian, Q is the electric charge,
and σ = |g〉〈e| is the atomic (excitation) lowering operator.
We also introduced the notation 〈g|Qr|e〉 ≡ Dρ̂ with D being
the (real) dipole matrix element of the atomic transition and ρ̂

being the unit real vector that determines the polarization of
transition.

In the rotating-wave approximation, we express the Hamil-
tonian (57) in the form

HAC = h̄

N∑
α,n

∫
d�k[λα,n(�k )σ †cα,n(�k ) + H.c.], (58)

where we introduced the atom-field coupling

λα,n(�k ) ≡ −D
√

ωn,k

ε(2π )2�h̄
ρ̂ · Ũα,C

(
kz,n,�k ,−�

2

)
. (59)

Using (24) and (58), we compose the total Hamiltonian

HT = HF + HA + h̄

N∑
α,n

∫
d�k[λα,n(�k )σ †cα,n(�k ) + H.c.]

(60)

that governs the evolution of a coupled atom-field system,
and where HA = h̄ωaσz/2 denotes the atomic Hamiltonian.
Using (41) and (44a), furthermore, the above Hamiltonian
takes the (first) equivalent form

HT = HF + HA + h̄

N∑
α,n

∫ ′
dω d�k[λα,n(�k )

×A∗
n(ω,k) σ † aα(ω,�k ) + H.c.]. (61)

Using Eqs. (55) and (56), finally, we express the above
Hamiltonian in the (second) equivalent form

HT = HF + HA + h̄

N∑
α,n

∫ ′
dω d�k[λα,n(�k )ϕ̃α(�k )

×An(ω,k) σ †d(ω,ϕ̃) + H.c.]. (62)
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C. Form factors and the cavity-QED parameters

Following the approach of Koshino, we define the total
form factor

FT(ω,N ) ≡ 1

c3h̄2

∑
α

∫
d�k|〈vac,e|HTa†

α(ω,�k )|vac,g〉|2

= 1

c

∑
α

∫
d�k

∣∣∣∣∣
N∑
n

λα,n(�k )A∗
n(ω,k)

∣∣∣∣∣
2

(63)

that isolates the coupling between the atom and global photon
field aα(ω,�k ).

Assuming that the atomic dipole ρ̂ lies in the plane parallel
to the mirrors, i.e., ρ̂ · ẑ = 0, we calculate analytically the total
form factor (63)

FT(ω,N ) = D2ω3
c

επ2h̄c3

N∑
n,odd

(
n2 + ω2

ω2
c

)

×
(

1

2
+ 1

π
arctan

[
4π

τ 2

(
ω

ωc

− n

)] )
(64a)

≡ D2ω3
c

επ2h̄c3
F ◦

T

(
ω

ωc

,N

)
, (64b)

that has the units of frequency, while the summation over n is
only over the odd and positive integer values. We display in
Fig. 2(c) the total form factor FT(ω,N ), for N = 1, N = 19
and τ = 10−3. It is clearly seen that the total form factor
depends on the square of ω and has a steplike behavior at
the points ω = nωc (n = 1,3,5, . . .). This figure displays the
spectral mode density of a lossless [one-dimensional (1D)
confined] planar resonator [7,28,33] and, therefore, it reveals
the physical meaning of the total form factor.

The chosen value of τ = 10−3 is compatible with the
assumptions of Sec. II A, by which a leaky mirror deviates only
slightly from a perfect one. Throughout this paper, therefore,
we consider this specific value to evaluate various expressions
involving τ . We remark, moreover, that the total form factor
derived by Koshino [see Eq. (15) in Ref. [20]] is propor-
tional to FT (ω,1), however, with an excluded contribution
of ω2/ω2

c since the ‖ component of light polarization was
disregarded.

Although we assumed that an input light pulse penetrates
the cavity as shown in Fig. 2(a), the total form factor (64a)
is independent of the lateral profile ϕα(x,y). We observe,
however, that the total Hamiltonian expressed in the form (62)
contains two operator pairs σd†(ω,ϕ̃) and σ †d(ω,ϕ̃), such that

σd†(ω,ϕ̃)|vac,e〉 = ψ̃∗(ω)|in,g〉, (65a)

σ †d(ω,ϕ̃)|in,g〉 = ψ̃(ω)|vac,e〉. (65b)

These properties along with the atom-field coupling
λα,n(�k )ϕ̃α(�k )An(ω,k) suggest that, for an appropriately
tailored ϕ̃α(�k ) [equivalently ϕα(x,y)], the atom-field
evolution governed by the Hamiltonian (62) can resemble the
evolution of a cavity-QED system, that is,

e−(ι̇ /h̄)HTt |in,g〉 = |vac,e〉, (66)

where the photon field (52) plays the role of cavity photon field
in cavity QED [see (1)]. In other words, if the single-photon
pulse (47) penetrates a planar resonator with an atom in the

ground state, then (after a certain time interval t) this pulse
can be completely absorbed by the atom.

Furthermore, we define the second form factor

FC(ω,ϕ̃,N ) ≡ 1

c3h̄2 |〈vac,e|HTd†(ω,ϕ̃)|vac,g〉|2, (67)

to which we refer below as the cavity form factor, since it
contains the coupling between an atom and the (ϕ̃α-dependent)
photon field (52) that might reproduce the cavity-QED
evolution (66). By inserting the total Hamiltonian (62) into
the expression (67), we readily obtain

FC(ω,ϕ̃,N ) = 1

c

∣∣∣∣∣
N∑
n,α

∫
d�k λα,n(�k )ϕ̃α(�k )An (ω,k)

∣∣∣∣∣
2

. (68)

The cavity-QED-like behavior (66), exhibited by the
atom-cavity-pulse system with an appropriate input pulse,
suggests that the cavity form factor (68) plays the role of
the spectral mode density corresponding to the completely
three-dimensional (3D) confined light. In a cavity-QED system
with reasonable small losses, in turn, this density produces
a resonance peak centered around ω◦ and described by the
Lorentzian

L(ω) = κ

2π

g2

(ω − ω◦)2 + κ2/4
, (69)

where its area and the half-width are identified with g2 and
κ , respectively [7,28,33]. Using this analogy and provided
that the cavity form factor resembles a sharply peaked
resonance, we identify the atom-field coupling strength with
the expression

g(ϕ̃,N ) ≡
(∫

dω FC(ω,ϕ̃,N )

)1/2

, (70)

while the cavity relaxation ratio κ(ϕ̃,N ) is identified with the
half-width of FC(ω,ϕ̃,N ).

We notice that in contrast to the total form factor (63), the
modulus in (68) is moved outside the integral. With the help of
Cauchy-Schwarz inequality, this feature leads to the relation

FC(ω,ϕ̃,N ) � FT (ω,N ). (71)

Since the resonance peak (69) describing the spectral mode
density of a cavity-QED system is below the (quadratically
growing) curve given by Eq. (64a) and corresponding to the
spectral mode density of a planar resonator, both above form
factors are in perfect agreement with the relation (71) and the
present discussion.

The above relation suggests the third form factor,

FN (ω,ϕ̃,N ) ≡ FT (ω,N ) − FC(ω,ϕ̃,N ), (72)

to which we refer below as the noncavity form factor, since
it gives the difference between the spectral mode densities of
(i) the (1D confined) atom-cavity system and (ii) the atom-
cavity-pulse system that behaves as a (3D confined) cavity-
QED system with losses. Since the cavity form factor (68)
satisfies the relation (71) and encodes g(ϕ̃,N ) and κ(ϕ̃,N ), we
identify the expression (72) with the atomic decay rate,

γ (ω,ϕ̃,N ) ≡ FN (ω,ϕ̃,N ). (73)
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In accordance with the two criteria we formulated in
the beginning of this section, we defined three form factors
characterizing the coherent and incoherent parts of evolution
of the coupled atom-cavity-pulse system. Being defined in
a similar fashion as in the conventional cavity QED, these
form factors enable us to compare the overall performance
of our setup to an arbitrary cavity-QED system. We recall
that the input state (51) is a single-photon state with a
nontrivial frequency distribution ψ̃(ω), where the parameter
ω contributes to all the form factors, while the lateral profile
ϕ̃α(�k ) contributes only to the cavity and noncavity form
factors. In order to enhance the atom-field interaction, in the
next section, we determine the optimal frequency distribution
ψ̃opt and the optimal lateral profile ϕ̃

opt
α , for which the atomic

decay rate vanishes.

IV. ANALYSIS OF LATERAL PROFILES

In the previous sections, we identified the cavity-QED
parameters which characterize both coherent and incoherent
parts of the evolution of a coupled atom-cavity-pulse system
with losses. We also suggested that the setup displayed
in Fig. 2(a) can reproduce the cavity-QED evolution once
an appropriately tailored single-photon pulse and a proper
frequency distribution are provided at the input. In this
section, we demonstrate that a coupled atom-cavity-pulse
system behaves as a cavity-QED system and we evaluate
the cavity-QED parameters by considering several predefined
pulses.

A. Optimal spatial distribution

Before we evaluate cavity-QED parameters for a predefined
single-photon pulse, we determine first ϕ̃

opt
α and ψ̃opt, for

which the atomic decay rate vanishes. According to the
definition (73), we require the vanishing of the left part of (72).
This leads to the equation

FT (ω,N ) = FC

(
ω,ϕ̃ opt

α ,N
)
, (74)

which is an extreme case of Eq. (71). Using Eq. (50) and the
cavity form factor (68), we solve the above equation for the
lateral profile. The obtained solution

ϕ̃ opt
α (�k ,f,N ) =

N∑
n

λ∗
α,n(�k )A∗

n (f,k)√
cFT (f,N )

(75)

fulfills Eq. (50) and depends on the parameters f and N .
We insert the above optimal profile back into Eq. (68) and

obtain the optimal cavity form factor

F
opt
C (ω,f,N ) = 1

c

∣∣∣∣∣
N∑
n,α

∫
d�k λα,n(�k )ϕ̃ opt

α (�k ,f,N )An (ω,k)

∣∣∣∣∣
2

.

(76)

Considering, as before, that the atomic dipole ρ̂ lies in the plane
parallel to the mirrors, we calculate analytically the optimal
cavity form factor (76), which takes the form

F
opt
C (ω,f,N ) = D2ω3

c

επ2h̄c3

(
τ

2π

)4
∣∣F ◦

C

(
ω
ωc

,
f

ωc
,N

)∣∣2

F ◦
T

(
f

ωc
,N

) , (77)

FIG. 3. (Color online) (a) The cavity (solid curve) and the total
(dashed curve) form factors for N = 1 and f = ωa . The cavity form
factor resembles a nice Lorentzian bounded by the total form factor.
(b) The noncavity form factor for N = 1 and f = ωa . See text for
details.

where F ◦
T (u,N ) has been defined in (64b), while

F ◦
C(u,v,N )

=
N∑

n,odd

⎛⎝n2
ι̇ 2π2 + 4π arctanh

[
4π(n− u+v

2 )
2π(v−u)+ι̇ τ 2

]
2 π (v − u) + ι̇ τ 2

+
ι̇ 2π2v2 + π (u + v)arctanh

[
4π(n− u+v

2 )
2π(v−u)+ι̇ τ 2

]
2π (v − u) + ι̇ τ 2

⎞⎠ . (78)

In Fig. 3(a), we display F
opt
C (ω,ωa,1) by a solid curve

that corresponds to the situation, in which the resonator
accommodates just one wavelength associated with the atomic
transition frequency, that is, � = cπ/ωa . This implies that
only one quasimode couples to the atom, that is, ωa = ωc

and N = 1. It is clearly seen that the solid curve resembles a
nice Lorentzian, while the peak of this Lorentzian is bounded
by the total form factor FT (ω,1) (dashed curve) in agreement
with the relation (71). This figure confirms the identification of
the cavity form factor (68) with the spectral mode density of a
cavity-QED system with losses. Moreover, this figure reveals
the role of parameter f in Eq. (77), and namely, this parameter
sets the central frequency of the resulting Lorentzian (solid
curve). In Fig. 3(b), furthermore, we display the noncavity
form factor FT (ω,1) − F

opt
C (ω,ωa,1) that is identified with the

(optimal) atomic decay rate γ ◦
1 (ω). It can be clearly seen that

the atomic decay is efficiently suppressed in the region ω � ωc.
This restriction, in turn, suggests the profile of the frequency
distribution ψ̃opt(ω).
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We conclude that our system in Fig. 2(a) behaves as a
cavity-QED system once the optimal single-photon pulse

|opt1〉 =
∑

α

∫
d k ψ̃ opt

ω◦ (kz) ϕ̃ opt
α (�k ,ωa,1)b†α(k)|vac〉

is provided at the input, where ψ̃
opt

ω◦ (ω) can be modeled by a
narrow-band Gaussian distribution with the central frequency
ω◦, such that ω◦ � ωc. Without this input pulse, the spectral
mode density describes an atom being weakly coupled to the
photon field confined in a planar resonator as seen Fig. 2(c)
[18,19].

We assume now that the central frequency ω◦ matches the
atomic transition frequency ωa(=ωc) and we calculate g◦

1, κ◦
1 ,

and γ ◦
1 (ωa) using the atomic data

λa = 852 nm; D = 4.48Qa0, (79)

which correspond to the D2 transition of a cesium atom [34],
and where a0 is the Bohr radius. This atomic data, along with
the Lorentzian (69) plotted in Fig. 3(a), yields the cavity-QED
parameters[

g◦
1,κ

◦
1 ,γ ◦

1 (ωa)
] = 2π (49,125,0.2 × 10−16) MHz. (80)

We see that the cavity relaxation rate oversteps notably the
atom-field coupling strength, while the atomic decay rate is
negligibly small if compared to both g◦

1 and κ◦
1 .

The values (80) are obtained in the case when the resonator
accommodates just one atomic wavelength, such that the atom
is coupled to one single cavity quasimode, or equivalently,
ωa = ωc and N = 1. We stress that the suppression of
atomic decay for ω◦ < ωc in a resonator accommodating
just one atomic wavelength was expected, since there are
no available quasimodes below the cavity cut-off frequency
to which an input pulse can couple in order to facilitate the
atomic emission. We show below, however, that the inhibition
of atomic emission occurs in our setup even for ω◦ > ωc

in a resonator that accommodates more than one atomic
wavelength. This result cannot be explained by the lack of
available cavity quasimodes and constitutes a peculiar feature
of the coupled atom-cavity-pulse system shown in Fig. 2(a).

In order to proceed, we consider the resonator that ac-
commodates three atomic wavelengths, such that the atom
is coupled to three quasimodes, or equivalently, ωa = 3ωc

and N = 3. In Figs. 4(a) and 4(b), we display the cavity
(solid curve) and noncavity form factors, respectively. As in
the previous case, the cavity form factor resembles a nice
Lorentzian bounded by the total form factor (dashed curve),
while the atomic decay rate is suppressed inside a small
window centered at ω = 3ωc. Using the atomic data (79) along
with the Lorentzian (69) plotted in Fig. 4(a), we calculate g◦

3,
κ◦

3 , and γ ◦
3 (ωa), which take the values[

g◦
3,κ

◦
3 ,γ ◦

3 (ωa)
] = 2π (21,38,0.3 × 10−16) MHz. (81)

If we compare these values to (80), we conclude that the
cavity relaxation rate oversteps slightly the coupling strength
g◦

3, while the atomic decay rate γ ◦
3 (ωa) remains negligibly

small.
To reveal the dependence of g◦ and κ◦ on N , we consider the

case when the resonator accommodates N atomic wavelengths,
that is, � = Ncπ/ωa . This implies that the atom is coupled to

FIG. 4. (Color online) (a) The cavity (solid curve) and the total
(dashed curve) form factors for N = 3 and f = 3ωc. The cavity
form factor resembles a nice Lorentzian bounded by the total form
factor. (b) The noncavity form factor for N = 1 and f = 3ωc.
(c) Cavity-QED parameters g◦

N and κ◦
N as functions of N . See text for

details.

N cavity quasimodes, such that ωa = Nωc. With this in mind,
the optimal pulse

|optN 〉 =
∑

α

∫
d k ψ̃ opt

ωa
(kz) ϕ̃ opt

α (�k ,ωa,N )b†α(k)|vac〉

penetrates the resonator, where the central frequency ω◦
matches the atomic transition frequency. As before, the cavity
form factor yields a nice Lorentzian centered at ω = ωa . In
Fig. 4(c), we display g◦

N/2π (dashed curve) and κ◦
N/2π (solid

curve) as functions of N , where the cavity length is bounded by
N = 100. This restriction corresponds to the length of typical
macroscopic resonators used in cavity-QED experiments in the
optical domain. It is clearly seen that in the region N > 10,
the cavity relaxation rate becomes slightly smaller than the
respective g◦

N parameter leading, therefore, to the atom-field
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evolution characterized by the inequality g◦
N > κ◦

N � γ ◦
N (ωa).

This regime ensures that the energy exchange in the coupled
atom-field system develops faster than the losses due to the
cavity relaxation and the atomic decay. We remark that one
reason why the curves in Fig. 4(c) drop with growing N , is
the fact that the cut-off frequency that appears in Eqs. (63)
and (77) drops with growing �, which itself is proportional
to N .

To summarize this section, we determined the optimal
lateral profile of the input pulse that ensures vanishing of
the noncavity form factor identified with the atomic decay
rate. Using the cavity form factor associated with the optimal
input pulse |optN 〉, we studied the dependence of cavity-
QED parameters on the cavity length that is proportional to
the number of cavity quasimodes coupled to the atom. We
confirmed that the atomic decay rate becomes dramatically
suppressed once the central frequency of pulse matches the
atomic transition frequency. In contrast to the atomic decay
for N = 1, which is suppressed for a rather large window
associated with frequency distribution ψ̃ opt(ω), the respective
window for N > 1 is much smaller and, therefore, hardly
accessible in practice.

B. Hermite-Gaussian beam

In the previous section, we exploited the vanishing of
the atomic decay rate in order to determine the optimal
input pulse |optN 〉 that implies a dramatic suppression of
atomic decay rate. For an appropriately large cavity length,
moreover, this optimal pulse leads to an atom-field evolution
with g◦

N > κ◦
N � γ ◦

N (ωa). Although the parameter window for
N > 1, in which γ ◦

N (ωa) becomes efficiently suppressed, is
rather small to be accessible in practice, the results we obtained
provide us with relevant insights about the cavity-QED-like
behavior of the coupled atom-cavity-pulse system shown in
Fig. 2(a).

Apparently, the lateral profile (75) has a complicated shape
that makes the experimental generation of the respective spatial
profile ϕ

opt
α (x,y,f,N ) very challenging. This conclusion along

with a small parameter window for N > 1, in which the atomic
decay becomes suppressed, suggest us to consider a specific
input pulse that can be easily tailored in an experiment. In
this section, we consider the Hermite-Gaussian beams TEM1,0

and TEM0,1 of the waist w, which we identify with the ‖
and ⊥ polarization components of ϕG

α (x,y,w), respectively.
Using these beams, we analyze the cavity-QED parameters as
functions of w and the number of quasimodes coupled to the
atom N .

We observe that the dependence in (75) on the radial part
of �k [see Fig. 1(b)] poses the main difficulty concerning the
generation of this lateral profile in practice. The dependence
on the angular part of �k , in contrast, is simple and is encoded
in the atom-field coupling (59)

λ‖,n(�k ) = λ◦
‖,n(k) cos ϑ ; λ⊥,n(�k ) = λ◦

⊥,n(k) sin ϑ,

where the dipole orientation assumption ρ̂ · ẑ = 0 and the ex-
plicit form of mode functions (18) have been used. Motivated
by this simple angular dependence (preserved by the Fourier

transform), we suggest the identification

ϕG
‖ (x,y,w) = 1√

2
F1(x,w)F0(y,w) [TEM1,0]; (82a)

ϕG
⊥ (x,y,w) = 1√

2
F0(x,w)F1(y,w) [TEM0,1], (82b)

where

Fn(z,w) =
(

2

π

)1/4
√

1

2n+(1/2)n!w
Hn

(
z

w

)
e−z2/2w2

. (83)

The lateral profiles (82) are the simplest and experimen-
tally most feasible beams which exhibit the same angular
dependence in physical space as the Fourier transform of
ϕ̃

opt
α (�k ,f,N ). These beams depend on the waist w and fulfill

the normalization condition (48). The corresponding input
pulse, therefore, takes the form

|HG〉 =
∑

α

∫
d k ψ̃ opt

ω◦ (kz)ϕ̃
G
α (�k ,w)b†α(k)|vac〉, (84)

where ψ̃
opt

ω◦ was defined in the previous section, while

ϕ̃G
α (�k ,w) = w2k

ι̇
√

π
e−w2k2/2(cos[ϑ]δα,‖ + sin [ϑ] δα,⊥) (85)

satisfies the normalization condition (50). We insert this lateral
profile into Eq. (68) and obtain

FG
C (ω,w,N ) = 1

c

∣∣∣∣∣
N∑
n,α

∫
d �k λα,n(�k )ϕ̃G

α (�k ,w)An (ω,k)

∣∣∣∣∣
2

,

(86)
which becomes after the evaluation

FG
C (ω,w,N ) = D2ω3

c

επ2h̄c3

(
τ 2w4ω4

c

4π2c4

) ∣∣∣∣F •
C

(
ω

ωc

,
w ωc

c
,N

)∣∣∣∣2

,

(87)

with the notation

F •
C(u,v,N ) =

N∑
n

sin

[
3πn

2

]

×
∫ ∞

n

√
s(s2 − n2)(n + s) e−(v2/2)(s2−n2)ds

u − s − ι̇ τ 2/(4π )
.

(88)

We recall that only in the case when the cavity form factor
resembles a sharply peaked function, it plays the role of
spectral mode density in a cavity-QED system with losses.
We have checked that, in contrast to the optimal cavity
form factor (77), the form factor (87) yields only deformed
Lorentzians for small beam waists w. However, the larger
the waist we consider, the less deformed the peaks we
obtain. Considering the resonator that accommodates only
one atomic wavelength, for instance, in Figs. 5(a) and 5(b)
we display FG

C (ω,w,1) (solid curves) for w = 100 m and
500 μm, respectively, where the condition ωc = ωa along with
the atomic data (79) have been used. The dashed curves depict
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FIG. 5. (Color online) The cavity form factor (solid curve) and the
associated Lorentzian (dashed curve) for N = 1 and (a) w = 100 μm
and (b) w = 500 μm. See text for details.

the Lorentzians obtained as the best fit to the respective solid
curves. It is seen that the solid curve in Fig. 5(a) is notably
deformed with regard to the dashed one, while both curves in
Fig. 5(b) almost coincide.

We have checked, furthermore, that the total form fac-
tor gives the major contribution to the atomic decay rate
γ G

w (ω) = FT (ω,1) − FG
C (ω,w,1). This leads to an efficient

suppression of the atomic decay only in the region ω < ωc

[see Fig. 2(c)]. Using the Lorentzians (dashed curves) from

Figs. 5(a) and 5(b), we calculate the cavity-QED parameters[
gG

w ,κG
w ,γ G

w (0.99ωa)
] = 2π (57,879,0.5 × 10−4) MHz,

(89a)[
gG

w ,κG
w ,γ G

w (0.99ωa)
] = 2π (35,89,0.5 × 10−4) MHz,

(89b)

for the beam waists w = 100 and 500 μm, respectively, where
the central frequency of input pulse is slightly detuned from
the atomic transition frequency, that is, ω◦ = 0.99ωa . These
parameters suggest that the cavity relaxation rate drops for a
larger waist of the beam, while the atomic decay rate remains
negligible if compared to other parameters. We stress, however,
that a large waist w of the input beam requires a large surface
size of the resonator which, from an experimental point of
view, is likely incompatible with a small-volume resonator
that accommodates just one atomic wavelength.

Before we turn to a big-volume resonator that accommo-
dates N atomic wavelengths, we remark that, in contrast to the
optimal form factor (77) that produces a single peak at ω = f ,
the form factor (87) produces a series of peaks at ω = nωc (n =
1,3,5, . . .), which resemble nice Lorentzians only for large
waists w. To illustrate this feature, we consider the resonator
that accommodates five atomic wavelengths, that is, ωa = 5ωc

and N = 5. In Fig. 6(a), we display FG
C (ω,500 μm,5) (solid

curves) using the atomic data (79). As in the previous figure,
the dashed curves depict the Lorentzians obtained as the best
fit to the respective solid curves.

It can be seen that the cavity form factor produces three
different peaks at ω/ωc = 1,3, and 5, while only the peak
at ω = ωa resembles an almost perfect Lorentzian. The three
Lorentzians (dashed curves) in Fig. 6(a) yield[

gG
w ,κG

w ,γ G
w (0.99ωc)

] = 2π (2,175,0.4 × 10−5) MHz, (90a)[
gG

w ,κG
w ,γ G

w (3.99ωc)
] = 2π (6,68,0.8) MHz, (90b)[

gG
w ,κG

w ,γ G
w (4.99ωc)

] = 2π (10,45,4.8) MHz, (90c)

FIG. 6. (Color online) (a) The cavity form factor (solid curve) and the associated Lorentzian (dashed curve) for N = 5 and w = 500 μm.
The last peak resembles an almost ideal Lorentzian. (b)–(d) Cavity-QED parameters gG

w (dashed curve), κG
w (solid curve), and γ G

w (dotted curve)
as functions of w for N = 1, 15, and 29, respectively. See text for details.
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DENIS GONŢA AND PETER VAN LOOCK PHYSICAL REVIEW A 88, 033853 (2013)

corresponding to central frequencies of the input pulse which
are slightly detuned from ωc, 3ωc, and 5ωc, respectively. We
see that the last peak resembles not only an almost perfect
Lorentzian, but also implies a higher gG

w and a smaller cavity
relaxation rate κG

w than those parameters associated with the
other two peaks. The atomic decay rate γ G

w , in contrast,
increases due to the major contribution of the total form factor
that vanishes in the region ω < ωc.

After we pointed out the main features of the cavity form
factor (87) for N = 1 and N = 5, let us consider a resonator
that accommodates N = 1, 15, and 29 atomic wavelengths and
attempt to reveal the dependence of cavity-QED parameters
on the beam waist w. Although we noticed that a large
waist of the input beam is likely incompatible with a small
cavity size, for completeness, we include the case N = 1 in
our considerations. From the case N = 5 analyzed above,
we learned that the form factor produces (N + 1)/2 peaks,
such that the last peak (that matches the atomic transitions
frequency) resembles the most perfect Lorentzian. Motivated
by this essential requirement (that justifies our approach), we
calculate below the cavity-QED parameters associated with
this last peak, where the central frequency of pulse is slightly
detuned from the atomic transition frequency.

In Figs. 6(b)–6(d), we display gG
w/2π (dashed curve),

κG
w /2π (solid curve), and γ G

w /2π (dotted curve) as functions
of w for the above-mentioned three values of N . Although
in all three figures the cavity relaxation rate is efficiently
suppressed for large w, it still remains notably higher than the
atom-field coupling strength gG

w . The atomic decay rate that is
negligibly small for N = 1 oversteps slightly gG

w for N > 1,
which is in agreement with the observations we already made
[see (90)]. It is clearly seen, furthermore, that the atom-field
evolution for N = 1 implies κG

w > gG
w � γ G

w (0.99ωa). For
N > 1 and small w, in contrast, the atom-field evolution
implies κG

w > γ G
w (0.99ωa) > gG

w , while for a reasonably high
w the same evolution implies γ G

w (0.99ωa) > κG
w > gG

w .
To summarize this section, we considered the Hermite-

Gaussian input pulse (84) instead of the optimal pulse
|optN 〉. Using the cavity form factor (87) associated with
this (experimentally feasible) input pulse, we studied the
dependence of cavity-QED parameters on the beam waist
and the number of cavity quasimodes coupled to an atom.
In contrast to the results we obtained in the previous section,
the atomic decay rate becomes dramatically suppressed only
for N = 1 and the central frequency that is slightly detuned
from the atomic transition frequency. For N > 1, however,
the atomic decay rate becomes non-negligible and it oversteps
the atom-field coupling strength, while for a reasonably large
waist of the beam, the atomic decay rate oversteps both the
atom-field coupling strength and the cavity relaxation rate.
We conclude, therefore, that an input beam that reproduces
only the angular part of the optimal lateral profile ϕ̃

opt
α , is

insufficient to achieve the cavity-QED evolution, such that the
atom-field energy exchange develops faster than the losses due
to the cavity relaxation and the atomic decay.

V. SUMMARY AND OUTLOOK

In this paper, we generalized the framework of Ref. [20]
by means of (i) an ab initio derivation of the atom-cavity-

pulse Hamiltonian, (ii) including the ‖ component of light
polarization, (iii) treating the cavity relaxation as a function
of transmissivity and reflectivity, (iv) considering a realis-
tic (nonaveraged) atomic dipole, and by (v) analyzing the
resonators which accommodate N � 1 atomic wavelengths.
Using this generalized framework, we derived the cavity-QED
parameters and revealed their dependence on the atom and
cavity characteristics, number of cavity quasimodes coupled
to the atom, and the spatial distribution of the input pulse.
The optimal spatial distribution that yields vanishing of the
atomic decay rate was determined. We calculated cavity-QED
parameters for this optimal distribution and found that the
atomic decay is efficiently suppressed once this optimal pulse
with a proper frequency distribution penetrates the resonator.
We demonstrated that the suppression of atomic decay occurs
even for a central frequency that is larger than the cut-off
frequency in a larger resonator.

Besides this optimal pulse, the scenario in which a Hermite-
Gaussian beam penetrates the resonator was considered. We
discussed in detail this scenario and revealed the dependence
of the cavity-QED parameters on the beam waist and the cavity
length. In contrast to the results obtained for an optimal pulse,
the atomic decay becomes suppressed only in a resonator that
accommodates one single atomic wavelength. We concluded
that an input pulse that reproduces only the angular part of
the optimal spatial distribution is insufficient and so, also the
radial profile has to resemble the respective profile associated
with the optimal pulse.

We found that the spatial distribution of the input pulse
determines the radiative properties of an atom coupled to
a planar resonator. By providing the coupled atom-cavity
system with an input pulse that resembles the optimal pulse
or the spatial distribution that maximizes the noncavity form
factor, one can either suppress completely the atomic decay or
enhance the spontaneous emission on demand. This property
suggests that our system can act as a quantum memory for
long-term storage of a single qubit, where the two-level atom
inserted into the resonator is interpreted as a qubit, while
the (controlled) atomic decay constitutes the main source of
dephasing and decoherence. Besides the storage of a qubit,
a quantum memory should also provide reliable write-in
and read-out mechanisms, which together with a quantitative
characterization of the memory itself shall be addressed in our
future works.

To conclude, we showed that our atom-cavity-pulse system
can behave as a cavity-QED system exhibiting the spectral
mode density of a completely (3D) confined system with
losses. We remark, however, that our system is a typical
1D confined system, in which only one component of the
photon field is confined, while the two remaining components
propagate in free space. On the other hand, although an
efficient and deterministic atom-light coupling in free space
poses a serious experimental challenge [35–37], an atom-light
interface in free space may open a route towards scalable
quantum networking due to a moderate demand of physical
resources. The remark above suggests that the studied atom-
cavity-pulse system can be interpreted as a system that
combines both cavity-QED and free-space features. Indeed,
by making the mirrors of the planar resonator completely
transparent, we would (effectively) reproduce the interaction

033853-14



CAVITY QED OF A LEAKY PLANAR RESONATOR . . . PHYSICAL REVIEW A 88, 033853 (2013)

of an atom and an input pulse in free space. We stress that,
although justification of the results obtained in this paper relies
on the restriction τ 	 1 [see (8)], in principle, this restriction
can be reasonably relaxed at the expense of introducing
nonorthogonal modes in our framework [38].
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