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Thermalized polarization dynamics of a discrete optical-waveguide system with four-wave mixing

S. A. Derevyanko*

Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
(Received 10 July 2013; published 30 September 2013)

Statistical mechanics of two coupled vector fields is studied in the tight-binding model that describes
propagation of polarized light in discrete waveguides in the presence of the four-wave mixing. The energy
and power conservation laws enable the formulation of the equilibrium properties of the polarization state in
terms of the Gibbs measure with positive temperature. The transition line T = ∞ is established beyond which
the discrete vector solitons are created. Also in the limit of the large nonlinearity an analytical expression for the
distribution of Stokes parameters is obtained, which is found to be dependent only on the statistical properties
of the initial polarization state and not on the strength of nonlinearity. The evolution of the system to the
final equilibrium state is shown to pass through the intermediate stage when the energy exchange between the
waveguides is still negligible. The distribution of the Stokes parameters in this regime has a complex multimodal
structure strongly dependent on the nonlinear coupling coefficients and the initial conditions.
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I. INTRODUCTION

The equilibrium behavior and the equipartition of energy
between various degrees of freedom in nonlinear, noninte-
grable discrete systems has attracted considerable interest
since the seminal study of Fermi, Pasta, and Ulam [1]. In
Hamiltonain systems with conserved number of excitations
(waves) the maximum entropy principle suggests that in the
final state of thermal equilibrium the statistics of the system is
given by grand-canonical Gibbs distribution with the effective
temperature and chemical potential [2–6]. However unlike the
conventional statistical mechanics the effective temperature
of this grand-canonical distribution depends on the initial
position in the phase space and for certain regions can
become negative making the distribution non-normalizable.
Such regime is commonly attributed to the emergence of stable,
localized, nonlinear structures corresponding to solitons in
continuous systems [3] and discrete breathers [4,7,8] in
discrete systems. From the point of view of the wave turbulence
theory [9,10] the resulting equilibrium distribution provides
stationary Rayleigh-Jeans spectra [9]. Also thermalization of
light in nonlinear multimode waveguides and cavities has
recently attracted attention in the context of classical optical
wave condensation [11].

Here we will study the phenomenon of thermalization
in the context of light propagation in a system of coupled
nonlinear optical waveguides but the results can have wider
applicability beyond the scope of the nonlinear optics. When
the individual waveguide modes are strongly localized the
nonlinear propagation of light is most commonly modeled by
the discrete nonlinear Schrödinger equation (DNLSE) [12].
In fact most studies of thermalization in nonlinear discrete
systems have concentrated on DNLSE in one [4–8,13] or two
[14] dimensions. Thanks to the plethora of results in the field
of DNLSE thermalization the structure of the final equilibrium
state and the thermodynamical conditions for the occurrence of
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discrete breathers are now well understood. Among numerous
discoveries in this area we would like to point the reader’s
attention to the universal correlations in one-dimensional (1D)
systems of optical waveguides predicted in Ref. [13] in the
limit when the nonlinearity dominates over the linear coupling.
In this limit the effective dimensionless temperature turns out
to be a universal constant independent of system parameters
(provided that the initial state is characterized by uniform
intensities) and the same universality is also manifested in
the shape of the field correlation function.

In this paper we would like to focus on a much less studied
model, namely, the thermalization of two coupled fields in the
presence of four-wave mixing (FWM) [12]. In the context of
nonlinear optics the situation corresponds to the propagation
of polarized light in a birefringent material [15,16] or mode
interaction from different Floquet-Bloch bands [17]. Here we
will concentrate on the first case, however, the results presented
here are quite general and can be applied to other nonlinearly
coupled systems. In order to give reference to the real-world
units we use AlGaAs as an common example of a material
with cubic symmetry and fused silica as the corresponding
example of isotropic crystal.

II. MODEL

The wave dynamics of the two orthogonally polarized fields
is given by the following pair of coupled equations [15,16]:

i
d an

dz
+ k an + C(an−1 + an+1) + γ (|an|2 + λ1 |bn|2)an

+ γ λ2 b2
n a∗

n = 0 (1a)

i
d bn

dz
− k bn + C(bn−1 + bn+1) + γ (|bn|2 + λ1 |an|2)bn

+ γ λ2 a2
n b∗

n = 0, n = 1, . . . ,N. (1b)

In the above equations, an and bn are slowly varying field
envelopes of the TE and TM polarized waves, k = k0(nx −
ny)/2 is the polarization mode dispersion constant, k0 is the
vacuum wave vector, nx − ny is the linear birefringence (nx −
ny = 1.8 × 10−4 for AlGaAs), C is the coupling constant
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(C ∼ 0.1 mm−1), γ = (k0/2)n2n(ε0/μ0)1/2 is the nonlinear
coefficient, n2 is the Kerr coefficient (n2 = 1.5 × 10−13 cm2/W
for AlGaAs), and n = nx is the linear refractive index (n = 3.3
for AlGaAs). The dimensionless constants λ1 and λ2 represent
the relative strength of cross-phase modulation and four-wave
mixing (XPM and FWM). If one puts λ1 = λ2 = 0 the system
(1) breaks into two independent scalar DNLSE equations.
We can restrict ourselves to the case of positive coupling
C > 0 since the case of negative coupling can be recovered
via a standard staggered transformation an → (−1)nan, bn →
(−1)nbn. The change of sign in the nonlinearity can be also be
compensated via a more complicated transformation, which
involves staggering, complex conjugation, and swapping:
an → (−1)nb∗

n, bn → (−1)na∗
n . Both transformations only

affect the field correlation functions and phase distributions
(and not, e.g., the intensity distributions) in a controlled way
and here without loss of generality we will also restrict
ourselves to the case of positive nonlinearity. In this paper
we assume periodic boundary conditions although in the
thermodynamic limit N → ∞ this choice is not essential.
Note in passing that continuous analogs of system (1) were
studied in Ref. [18] with regard to pulse propagation in optical
fibers.

In any chosen nonlinear medium the dimensionless XPM
and FWM constants, λ1 and λ2, are not independent and three
possible cases of interest can be envisaged [19]:

(1) Anisotropic cubic medium (e.g., AlGaAs): λ1 = 2λ2.
(2) Generic isotropic medium: λ1 = 1 − λ2.
(3) Isotropic cubic medium (e.g., fused silica): λ1 = 2/3,

λ2 = 1/3.
We will refer to cases (1) and (2), (3) as anisotropic and

isotropic correspondingly.
The system is Hamiltonian with the Hamiltonian function:

H = k
∑

n

(|an|2 − |bn|2) + C
∑

n

(ana
∗
n+1 + bnb

∗
n+1 + c.c.)

+ γ

2

∑
n

[|an|4 + |bn|4+2λ1|an|2|bn|2+2λ2Re
(
a2

nb
∗
n

2)]
,

(2)

which is a natural conserved quantity in the system while the
additional integral of motion is provided by the total pulse
power (proportional to the sum of local intensities)

P =
∑

n

(|an|2 + |bn|2).

Additionally in the absence of the four-wave mixing (λ2 = 0)
the individual powers in each polarization Pa = ∑

n |an|2 and
Pb = ∑

n |bn|2 are conserved.
In the state of thermodynamic equilibrium the stationary

field distribution P ({an,a
∗
n,bn,b

∗
n}) maximizes the entropy

S = − ∫
P ln P

∏
n dan da∗

n dbn db∗
n. However the nonlinear

evolution always takes place on the shell H = const and
P = const, which introduces two constraints for the optimiza-
tion problem. The solution then represents a grand-canonical
Gibbs distribution (see, e.g., [4]):

P ({an,a
∗
n,bn,b

∗
n}) = Z−1 exp [−β(H − μP)] (3)

where the Lagrange multipliers β and μ play the roles of
the inverse temperature and chemical potential, respectively

while the normalizing factor Z has the familiar meaning of
the partition function.

The assumption of field thermalization implies that instead
of averaging the dynamics of the system (1) over a long
interval of z one can compute the same averages via the
equilibrium Gibbs measure (3). However from the point of
view of the nonlinear optical waveguides it is impractical to
use averaging over large distances since it requires optical
waveguides that are much too long. Instead the averaging can
be understood as averaging over disordered initial conditions
that can be experimentally controlled [13,14]. This brings
about the notion of the thermalization distance [14] zth after
which the information about the initial state of the system
is forgotten and the averaging over the initial conditions is
equivalent to Gibbs averaging. In our treatment we will assume
(unless otherwise specified) that the initial amplitudes for both
TE and TM components are constant |an| = a, |bn| = b while
the phases are uncorrelated uniformly distributed random
variables. Such assumption is not necessary but it simplifies the
calculation of the ensemble averages of the initial Hamiltonian
and power.

The knowledge of the partition function Z =∫ ∏
n d anda∗

n dbn db∗
n exp [−β(H − μP)] allows one to

calculate an average energy per waveguide h = H/N and
the average intensity per waveguide p = P/N . On the other
hand such averages must correspond to their initial values h0,
p0 (averaged over the disordered initial conditions) since for
each realization of the disorder these are conserved integrals
of motion. Thus, from (3) it follows that

h0 = − 1

N

∂ lnZ
∂β

+ μp0, p0 = 1

β N

∂ lnZ
∂μ

. (4)

For each set of phase-averaged initial conditions [i.e., given
pair (h0,p0)] the above two transcendental equations yield the
effective inverse temperature β and the chemical potential,
μ. As in the scalar case [4] the necessary condition for the
Gibbs distribution (3) to be normalizable is the positiveness
of the temperature, β > 0. Thus the curve β = 0 in the
(h0,p0) diagram represents a natural boundary between the
conventional thermalization region (β > 0) and the area where
β < 0 and the energy is localized in a form of discrete breathers
that have been observed experimentally [15].

It is convenient to introduce a canonical transformation
to real intensities and phases: an = √

An exp(i φ1,n), bn =√
Bn exp(i φ2,n) with δn ≡ φ2,n − φ1,n being the phase dif-

ference between the two field components. The case δn = mπ

(m integer) corresponds to the linear polarization in the nth
waveguide, δn = ±π/2, An = Bn describe circular polariza-
tion, etc. This notation corresponds to the Jones description of
polarization (see, e.g., [20]). To calculate the partition function
Z one needs to integrate the Gibbs exponential in (3) with the
Hamiltonian (2). In the new variables the integral takes the
form:

Z =
∫ ∏

n

dAn dBn dφ1,n dφ2,n exp{−β[k(An − Bn)

+HC(An,Bn,φ1,n − φ1,n+1,φ2,n − φ2,n+1)

+Hγ (An,Bn,δn)]}, (5)
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where we have collected all the nonlinear coupling terms as
well as chemical potential in the nonlinear interaction part
Hγ = ∑

n Hγ (An,Bn,δn) with

Hγ (A,B,δ) = γ

2
[A2 + B2 + 2λ1AB + 2λ2AB cos(2δ)]

−μ (A + B) (6)

while the linear waveguide coupling is given by
the Hamiltonian HC = ∑

n[
√

AnAn+1 cos(φ1,n − φ1,n+1) +√
BnBn+1 cos(φ2,n − φ2,n+1)].
The Gibbs distribution (3) is normalizable when the

partition function is finite. A close inspection of Eq. (5) reveals
that in order to achieve this not only the temperature must be
positive β > 0, but additionally the inequality

|λ1 − λ2| < 1 (7)

must hold. Already we can see a departure from the scalar
case [4] where the Gibbs distribution is always normalizable
as long as the temperature remains positive. For the isotropic
case λ2 = 1 − λ1 this corresponds to possible thermalization
for 0 < λ1 < 1 and for the anisotropic case λ2 = λ1/2 this
implies −2 < λ1 < 2. The borderline case |λ1 − λ2| = 1
(which includes the XPM without FWM λ1 = 1, λ2 = 0)
generally requires special treatment and we will not consider it
here. The non-normalizable property of the Gibbs distribution
indicates the emergence of the localized structures, i.e., the
genuine equilibrium state now consist of high-amplitude
discrete breather (or several breathers if the system has not yet
quite reached the equilibrium) interacting weakly with a small
quasilinear background thermalized at infinite temperature,
β = 0 [3,7,8]. So here the statistical mechanics provides us
with a clue as to the regions in the parameter space where the
localized structures can be observed in principle [4,6].

In this paper we will only study the thermalization regime
where the inequality (7) is fulfilled and the temperature is
positive so that Gibbs distribution (3) is always normalizable.
We leave the analysis of the localized structures for future
studies although we will comment on these in the following
section. Since it is impossible to evaluate the partition function
Z in the closed form we will study three different limiting
regimes, which for the scalar case were already analyzed in
Refs. [4,6,13]. These regimes are: (i) low-temperature limit
β → ∞, (ii) high-temperature limit β → +0 (which also
serves as a borderline for emergence of localized structures),
and (iii) the anticontinuum (high-intensity) regime when the
effective nonlinearity parameter 
 defined below in Sec. IV is
large, 
 � 1. It turns out that doubling the amount of degrees
of freedom as compared to the scalar case has a significant
impact on the statistical properties of system, (1). We start our
analysis with the first two regimes: β → ∞ and β → 0.

III. TEMPERATURE BOUNDARIES
AND THERMALIZATION REGION

The limit of β → ∞ corresponds to the configuration
that minimizes the Hamiltonian (2) subject to the given
conserved pulse intensity per waveguide p. If we restrict our
search to a solution with constant amplitudes, phase shifts,
and locked state of polarization (i.e., fixed δ) the minimal
configuration is achieved by the following field distribution:
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=
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FIG. 1. (Color online) The different regions in (h,p) parameter
space. The ratio k/C = 2 was assumed.

an = √
A exp(i π n), bn = √

B exp(iπ n + iπ/2) where the
amplitudes A and B as well as chemical potential (i.e., the
corresponding Lagrange multiplier), μ, are given by:

A = p

2
− k

γ

1

1 − λ1 + λ2
, B = p

2
+ k

γ

1

1 − λ1 + λ2

μ = 1

2
p γ (1 + λ1 − λ2). (8)

This solution exists only for not too low intensities, i.e., for
p > (2k/γ )(1 − λ1 + λ2)−1 and provides a low bound for the
energy per waveguide:

hmin = − 2pC + (1 + λ1 − λ2)γ

4
p2 − k2

γ (1 − λ1 + λ2)
. (9)

In the limit of zero birefringence, XPM and FWM, λ1 = λ2 =
k = 0 we get the energy as a sum of energies of two identical
scalar DNLSEs with the average intensity per waveguide p/2,
which corresponds to the result of Ref. [4]. In Fig. 1 (which is
an analog of Fig. 1 of Ref. [4]) we plot a phase diagram in the
(h,p) space for a specific case of 16 waveguides with λ1 = 1,
λ2 = 0.5. Both h and p have been rescaled to the dimensionless
multiples of C2/γ and C/γ respectively. One can see that
Eq. (9) provides an excellent low bound approximation even
below the critical intensity for which the solution of (8) exists
(which is p = 8 for the chosen parameters). Let us now turn
to the opposite case of high temperatures β → 0 assuming
that the product βμ < 0 remains finite. We will use the
method similar to that of Ref. [6] applied earlier to the scalar
case. In this limit one can neglect the linear coupling energy
HC in the exponent of (5) together with the birefringence
contribution k(An − Bn). The partition function is then given
by Z = [4π2y(β,μ)]N with

y(β,μ) =
∫ ∞

0
dA

∫ ∞

0
dBI0 [βγλ2AB]

× exp

[
−βγ

2
(A2 + B2 + 2λ1AB)−β|μ|(A+B)

]
.

Next we assume that limβ→0(βγ ) = 0 and write approxi-
mately

y(β,μ) =
∫ ∞

0
dA

∫ ∞

0
dB exp[−β|μ|(A + B)]

×
(

1 − γβ

2
(A2 + B2 + 2ABλ1)

)
+ O((βγ )2),
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where we have used the fact that the product β|μ| is fixed
while βγ tends to zero. The answer is

y(β,μ) = 1

(βμ)2
− βγ (2 + λ1)

(βμ)4
+ · · · .

Finally from Eqs. (4) we obtain in the leading approximation:

lim
β→0

(βμ) = −2/p, hmax = γ (2 + λ1)

4
p2. (10)

The parabola hmax(p) provides the upper boundary β = 0 for
the thermalization region in the plane of parameters (h,p)
(see Fig. 1). Interestingly enough it does not depend on the
four-wave mixing constant λ2.

IV. NONLINEARITY-DOMINATED REGIME

In the following, we will adopt normalized units where the
propagation distance is measured in units of coupling length
z → C z. We will also assume that the intensities of both TE
and TM components are uniform An(0) = A0, Bn(0) = B0.
We can also normalize the intensities of both components by
the half of the initial intensity p0/2 so that A0 + B0 = 2. In
the new dimensionless units one must simply substitute k/C

for k, 1 for C in the original coupled equations (1), and instead
of the nonlinear coefficient γ one now has a dimensionless
nonlinearity parameter 
 = γp0/(2C). Since in most common
nonlinear materials and waveguide geometries the ratio k/C is
in the order of unity the parameter 
 indeed gauges the relative
strength of nonlinearity [13,14].

In this section we will be interested in the highly nonlinear
regime, 
 � 1. The motivation for this is twofold. Firstly,
this regime permits almost full analytical treatment, which
is always helpful when studying the general properties of
any nonlinear system and secondly, in Ref. [13] it was
shown that in the scalar case this limit corresponds to the
reciprocal temperature β that does not depend on the value
of parameter 
 and is a universal constant (in dimensionless
units). The universality of the temperature in turn gives rise to
a universal shape of the field correlation function. Therefore
it is interesting to see how this result changes in the vector
case. One should expect that the dynamics and statistics in
the vector case are much richer due to the doubled number of
interacting degrees of freedom. Here we will show that this is
indeed the case.

Our main objects of interest will be the statistics of the
intensity and polarization state of each waveguide as well as
the distribution of the phase differences (i.e., phase gradients
in the continuous limit) between the same components (e.g.,
TE) of the adjacent waveguides together with the field
correlation functions. It turns out that in the strongly nonlinear
regime the statistics of the phase gradient is decoupled from
those of the intensity and polarization. The latter are most
conveniently described by using a popular alternative to the
Jones description of polarization, namely by introducing the
four Stokes parameters {Si}3

i=0 [18–20]. Each waveguide has
its own set of Stokes parameters, which are related to the Jones

parameters via

Sn
0 = An + Bn

Sn
1 = An − Bn

Sn
2 = 2

√
An Bn cos(δn)

Sn
3 = −2

√
An Bn sin(δn)

3∑
i=1

(
Sn

i

)2 = (
Sn

0

)2
. (11)

The vector 	Sn = (Sn
1 ,Sn

2 ,Sn
3 ) is called a Stokes vector on a

Poincaré sphere of radius Sn
0 . The components of the Stokes

vector for each waveguide are related to the polarization
state of the waveguide while its magnitude provides the total
intensity carried by both field components. For example,
linear polarization corresponds to the equatorial plane Sn

3 = 0
while the circular clockwise and anticlockwise polarizations
correspond to the north and south poles 	Sn = (0,0,±Sn

0 ). In
what follows we will use both Jones and Stokes descriptions
whichever is more convenient.

A. Statistical properties of the field in the anticontinuum
limit (k = C = 0)

We will start our analysis with the anticontinuum limit
when one can completely neglect both linear coupling and
birefringence in Eqs. (1). As will be seen later this corresponds
to the initial stages of evolution of field distribution towards
the final state of equilibrium. The absence of linear waveguide
coupling makes field dynamics in each waveguide independent
from the rest. Therefore instead of considering the system of
coupled field equations (1) one can analyze the dynamics in a
single waveguide. In particular the first three Stokes parameters
obey the following equations (the waveguide index has been
omitted for convenience):

dS1

dz
= 2 
 λ2 S2 S3,

dS2

dz
= −
(1 + λ2 − λ1) S1 S3, (12)

dS3

dz
= 
(1 − λ2 − λ1) S1 S2.

This system is completely integrable and its various special
cases and generalizations (e.g., the inclusion of the birefrin-
gence terms ∼k) have been extensively studied in literature
both with connection to the nonlinear polarization dynamics
[21] in general and the dynamics of the polarization-locked
vector solitons [18,19] in particular. The complete integrability
of system (12) is due to the existence of two integrals of motion
of which the first is just the intensity, i.e., the zeroth Stokes
parameter, S0, and the second, R, is related to the Hamiltonian
of the original system [21]:

S2
0 = S2

1 + S2
2 + S2

3 ,

R =
{

(3λ1/2 − 1)S2
2 − (1 − λ1/2) S2

3 , anisotropic
S3, isotropic

. (13)

In other words the dynamics of the system takes place on
the intersection of the Poincaré sphere of radius S0 and a
hyperbolic (or elliptic) cylinder in the anisotropic case or a
plane in the isotropic case given by the equation R = const.
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FIG. 2. (Color online) Marginal probability density functions for different Stokes parameters evaluated for the nonlinearity parameter

 = 50 at distance z = 10 (in units of coupling lengths). Top row corresponds to the initial equipartition of intensity between the components
A0 = B0 = 1 while the bottom row shows the case when A0 = 1.5 and B0 = 0.5. (a) and (d) correspond to anisotropic case with λ1 = 1,
λ2 = 1/2, (b) and (e) assume isotropic case with λ1 = 2/3, λ2 = 1/3. Marginal PDF P (S1) is plotted in (c) and (f).

One can obtain an autonomous equation for S1, which has
the form of a Duffing oscillator equation in the anisotropic
case [21] and harmonic oscillator equation in the isotropic case
[19] (see also Appendix). The other two Stokes parameters are
recovered from Eqs. (12) and (13) while the phase of the TE
component can be determined by simple integration of the
original field equations. Since the system in the anticontinuum
limit is completely integrable it does not thermalize, i.e.,
formula (3) is inapplicable. Instead one must use the exact
solution for the Stokes vector 	S(z) and average it directly over
the initial conditions.

As mentioned earlier we will assume that all waveguides
initially have the same set of intensities, A0, B0, S0 = A0 +
B0 = 2 and random, independent phases. From the definition
of the Stokes parameters (11) it follows that that initial value
S1(0) = A0 − B0 is fixed while the points [S2(0),S3(0)] are
uniformly distributed on a circle of radius 2

√
A0 B0. In Fig. 2

we show the evolution of the marginal probability density
functions (PDFs) P (S2,S3) and P (S1) for the anisotropic and
anisotropic cases obtained by averaging the solution of system
(12) over the initial phase distribution. The parameters λ1,2

were chosen to correspond to the AlGaAs compounds in the
anisotropic case and fused silica for the isotropic case. One
can see that the structure of the histograms is very sensitive
to both the values of λ coefficients and the symmetry of
the initial condition. For example when the initial intensity
is equally distributed between the components, i.e., A0 =
B0 = 1, S1(0) = 0 the marginal distribution P (S2,S3) shown in
Fig. 2(a) is four modal. It is largely confined to the initial circle
of radius S0 = 2 and the four maxima are at the points (0,±S0),
(±S0,0). At the same time the marginal PDF for the first Stokes
parameter S1 is sharply centered at zero [Fig. 2(c)], i.e., for
most initial realizations the symmetry between the components
is preserved A(z) ≈ B(z). We have also checked this property

for different runs with different distances, z (not shown).
This means that in the anticontinuum limit for the anisotropic
cubic crystal (e.g., AlGaAs) each given waveguide evolves
into either linear or circular state of polarization, despite that
no such preference existed in the initial conditions (the phase
distributions were uniform on a circle). In the isotropic case
one can observe that although the distribution of P (S1) is
still sharply peaked around zero [Fig. 2(c)] the distribution
of the two remaining Stokes parameters Fig. 2(b) is only
bimodal (and not four modal as in the anisotropic case) with the
two maxima at (0,±S0) corresponding to circular polarization
only. The positions of the maxima in both cases can be easily
explained by considering the two integrals of motion (13).
As we have seen in both cases for most realizations one
can neglect the value of S1 and the PDF P (S1,S2) therefore
remains confined to the circle of radius S0 = 2 for all values
of z. Next if one looks at the distribution of the second
integral of motion in (13), namely R, then for the initial values
[S2(0),S3(0)] uniformly distributed on a circle of radius 2 one
can see that the distribution of R is bimodal with the two
maxima at R− = −4(1 − λ1 + λ2) and R+ = 4(λ1 + λ2 − 1)
in the anisotropic case and R± = ±2 in the isotropic case. The
intersection points of the pair of curves R(S2,S3) = R± with
the circle in the (S2,S3) plane are exactly the four observed
maxima in the anisotropic case and the two in the isotropic
one.

In the case when initially the symmetry between the field
components is broken (bottom row in Fig. 2) the situation is
much more complex owing to the multimodal features of the
distribution of the parameter S1, see Fig. 2(f). Each maximum
of the P (S1) gives rise to at least two maxima in the distribution
P (S2,S3) producing complex crownlike shapes shown in
Figs. 2(d) and 2(e). Each of the maxima now corresponds
to a certain elliptically polarized state, which varies from
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waveguide to waveguide. Note also that the positions of the
maxima remain fixed with the propagation distance z while
their widths experience weak periodic oscillations (not shown).
The full theoretical analysis of these multimodal distributions
requires further study, which is beyond the scope of this paper.

B. Structure of final thermal state:
Regime of universal temperature

We have seen above that in the anticontinuum limit when
the birefringence and the linear waveguide coupling can be
neglected completely the system is integrable and instead of
reaching thermal equilibrium it experiences periodic oscilla-
tions that can be averaged directly over the initial conditions
to produce multimodal distribution for the established state of
polarization. The question then arises as to what will happen
if both the birefringence and the coupling are taken into
account. One can expect that at the initial stages of evolution
when the distance is less than the thermal length, zth, the
evolution of the system is close to anticontinuum limit and
the state of polarization follows the statistics described in the
previous subsection. For z � zth however, the nonintegrability
of the system becomes essential. The linear coupling between
the waveguides leads to energy and power exchange between
the waveguides so that eventually most of the initial peaks
in the marginal PDF P (S2,S3) are destroyed and the final ther-
mal distribution sets in. This final distribution is characterized
by the Gibbs statistics (3) with the partition function given
by (5).

We now wish to calculate the partition function and the
probability distributions in this final state still assuming strong
nonlinearity 
 � 1 but now taking into account the linear
coupling and birefringence as well. Let us first assume a priori
that the initial conditions are such that the system thermalizes
into a state with finite temperature, i.e., β → const as 
 → ∞.
We will shortly see that this is only possible for a very special
choice of the initial conditions. Then the dominating part of
the exponent in (5) is the nonlinear interaction term Hγ . Other
terms (including the phase-dependent coupling energy) are
relatively slow functions of the amplitudes and do not therefore
contribute to the partition function. However it is important to
retain the chemical potential term since as we shall see below
μ ∼ 
 always. When calculating the partition function (5) one
can resort to the saddle point approximation in γ = 
, which
implies that at large values of 
 the main contribution to the
integral comes from absolute minimum of Hγ (An,Bn,δn). This
minimum is achieved for the values

A∗ = B∗ = μ


(1 + λ1 − λ2)
, δ∗ = ±π/2. (14)

In other words the absolute minimum of the interaction
Hamiltonian subject to given total power is achieved by a
circularly polarized state, the most symmetric of all. This
minimum is also degenerate; for a system of N waveguides
there are 2N possible choices of polarization orientation.
This degeneracy is drastically reduced however if one takes
into account the coupling term Hc. This term favors the
configuration where the phase difference δn is uniform across
the waveguides, which leaves only two possibilities: either all
fields are clockwise polarized or they are all anticlockwise
polarized. These states also correspond to the two maxima

of the distribution function P (A,B,δ) [or P (S1,S2,S3) in
Stokes parameters] one for each direction of rotation. As
previously we assume here that |λ1 − λ2| < 1, which ensures
the convergence of the integrals for positive temperature. The
minimal value of the interaction energy (at fixed power) is
given by

Hγ (A∗,B∗,δ∗) = − μ2


(1 + λ1 − λ2)
.

If we assume uniform initial amplitudes A0 and B0 (A0 + B0 =
2) and neglect the terms that are not proportional to 
 in the
limit 
 � 1 the average energy per waveguide is given by:

h0 = 


[
A2

0 + B2
0

2
+ A0B0(λ1 + λ2〈cos(2δ0)〉)

]
. (15)

The energy is always bound from below by hmin = 
(1 +
λ1 − λ2) > 0. In the spirit of saddle-point approximation we
can now plug An = A∗, Bn = B∗, δn = δ∗ from Eq. (14)
into linear coupling prefactor exp(−βHC) when calculating
the partition function. The integration over the phases φ1,n

of the TE component is reduced then to calculation of the
partition function of the 1D classical XY model (see Refs. [4]
or [22] for details). In the thermodynamic limit (N → ∞) the
contribution of this linear coupling term to the logarithm of the
partition function (i.e., free energy) is −N ln I0{4βμ/[
(1 +
λ1 − λ2)]}. Note incidentally that in Ref. [22] it was shown
that in the same limit the difference between different types
of boundary conditions (free boundary or periodic boundary
conditions) amounts to terms of the order O(1) in the free
energy that can be safely neglected. The remaining Gaussian
integration over the fluctuations around the minimum of Hγ

Eq. (14) is trivial. Inserting the resulting expression for the
partition function Z into the system of equations (4) after
some simple algebra we obtain the following transcendental
equation for the inverse temperature β:

h0 − hmin = 3

2β
− 4I1(4β)

I0(4β)
, μ = 
(1 + λ1 − λ2). (16)

with h0 given by Eq. (15). For the consistency of our
approximation we must demand that the inverse temperature β

remains finite as 
 goes to infinity (as is the case in the scalar
DNLSE [13]). But this is achieved only when h0 = hmin so that
the left-hand side vanishes, which means that the initial input
must be circularly polarized: A0 = B0 = 1, δ0 = ±π/2. In
other words, in order to obtain a universal (i.e., 
-independent)
temperature constant, similar to the scalar case, the initial state
must necessarily be the one that minimizes the nonlinear part
of the Hamiltonian, Hγ subject to the intensity constraint
A0 + B0 = 2. The system then becomes effectively scalar
and thermalization occurs only in the distribution of the
TE phase differences θn = φ1,n − φ1,n+1 while the field in
each waveguide remains locked in its original clockwise or
anticlockwise circular state of polarization. As in Ref. [13] the
Gibbs distribution can be approximately factorized so that the
intensity of each waveguide Pn = An + Bn = Sn

0 has a narrow
distribution close to Gaussian centered around the conserved
mean value of 2. The results of the numerical simulations of
universal correlations in the vector case of N = 64 waveguides
are presented in Fig. 3. As prescribed, we have started from
a symmetric initial configurations A0 = B0 = 1 and uniform,
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FIG. 3. (Color online) The statistics of the final thermal state in
the limit of large nonlinearity when the initial field in each waveguide
is circular clockwise polarized. (a), (b) The marginal distribution
of Stokes parameters P (S2,S3) for anisotropic and isotropic case
respectively. (c), (d) The statistics of the intensity and phase difference
(of the TE component) respectively for different values of the
nonlinearity parameter. (e) Cross- and self-field correlation functions
for the TE and TM components. (f) The evolution of the intensity
PDF with distance. The thermalization length zth is determined as a
point where the distribution stabilizes.

uncorrelated phase distribution for the TE components. To
ensure constant circular polarization locking the phases of
the TM component were obtained by those of the TE by
adding π/2 (corresponding to the clockwise field rotation).
In all the figures (unless otherwise specified) the values of the
parameters are: k = 2, 
 = 50 and the propagation length is
z = 10 (all in the normalized units). In Figs. 3(a) and 3(b) we
show numerical simulations of the marginal PDF P (S2,S3) for
the anisotropic (λ1 = 1,λ2 =1/2) and isotropic (λ1 =2/3, λ2 =
1/3) cases respectively. One can see that both distributions
have narrow maxima at the point (0,−2

√
A∗B∗) = (0,−2)

corresponding to clockwise circular polarization (as in the
initial state). We have found very little qualitative difference
between the anisotropic and isotropic cases so Figs. 3(c)–3(f)
feature only the former. In Fig. 3(c) we can see that the intensity
PDF becomes more and more narrowly centered around the
average value of 2 and the distribution is close to Gaussian
with the variance proportional to (β
)−1. As for the PDF
for the TE phase difference, P (θ ), the theoretical prediction
P (θ ) = [2π I0(4β)]−1 exp(−4β cos θ ) is clearly corroborated
by the numerics shown in Fig. 3(d): one can observe a perfect
data collapse for different values of 
. Similar to universal
correlations in the scalar case, one can obtain universal
filed correlations in the vector case. In Fig. 3(e) we plot the
field correlation functions defined as Cqq ′ (k) = 〈Re[qnq

′∗
n+k]〉

where q,q ′ denote different components of the field, TE or TM,
and the average is taken both over the waveguide position, n,
and the initial conditions. Since in the thermal equilibrium
the TE and TM components are always π/2 out of phase the
cross-field correlation Cab(k) is always zero while the self-field
correlation functions have identical universal shape:

Caa(k) = Cbb(k) = ηk, η = 〈cos θ〉 = − I1(4β)

I0(4β)
. (17)

This is illustrated in Fig. 3(e), where all three components are
plotted together with the theoretical fit. Finally, Fig. 3(f) illus-
trates how quickly the final thermal distribution is achieved.
The initial δ peak in intensity distribution quickly broadens
and settles to a stationary, almost Gaussian distribution of the
type shown in Fig. 3(c) already at the point z ≈ 0.3 (in units of
the coupling length) that naturally serves as the thermalization
length zth. One can see that thermalization here occurs over
just a fraction of the coupling length, i.e., on the scale of
0.15 mm for a typical AlGaAs waveguide system. Of course
one can come up with a more rigorous quantitative definitions
of zth, by looking, e.g., at the saturation of the temperature
defined from the simulated data via equipartition theorem [14]
but for the purposes of this paper we can restrict ourselves to
the crude estimate above. All other distributions also stabilize
at the same length.

As for the value of the universal temperature constant,
β, one might think that it can be obtained from Eq. (16)
by putting the left-hand side to zero. Unfortunately this is
not so since the resulting value of β differs from the one
observed in the numerics (β ≈ 0.26) by the factor of almost 2.
The reason for such a discrepancy is that the vanishing left-
hand side of Eq. (16) generally represents the main terms of
approximation (∼
). As these terms have now canceled each
other the universal temperature β ∼ 1 is given by the balance
of the next terms in the expansion that are of the order of unity.
But it turns out that the neglected terms in the saddle-point
approximation of the partition function being of the order
O(1/
) have nevertheless the contribution to its logarithmic
derivative that are in the order of 1, which affects the value of
the reciprocal temperature β. Therefore in principle one has
to consider the next terms in the saddle-point approximation
of (5). However we have opted for a different approach,
namely, we have evaluated the logarithmic derivatives of the
integral of exp(−βHγ ) numerically and the obtained solution
of system (4) provided us a value of β, which fitted well
the dependencies shown in Figs. 3(d)–3(e) [and also the
intensity PDFs in Fig. 3(c)]. From a few separate runs (not
shown) it appears also that not only the found universal value
β ≈ 0.26 is independent of 
 (when 
 � 1) but it is apparently
independent of the material parameters λ1,2 as well. The latter
observation however requires further thorough verification.

C. Structure of final thermal state: General case

In the above section we have shown that if one ensures
that the initial field components are locked in the same
circular state of polarization for each waveguide, the reciprocal
temperature is a universal numerical constant β, independent
of the nonlinearity parameter 
, which implies universal
shape of the intensity and phase PDFs as well as the field
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correlation functions. Let us now turn to the more general
case when the initial field does not have any preferred state of
polarization, i.e., although both TE and TM components have
constant intensities A0, B0 (A0 + B0 = 2) their phases are
always independent and uniformly distributed. It turns out that
although the final thermal state is still given by the constrained
minimum of the nonlinear energy corresponding to the circular
polarization given by (14), the value of the temperature β is
no longer a universal constant but depends on the nonlinearity.
Also there is a drastic increase in the thermalization length,
sometimes by up to three orders of magnitude. However we
shall see below that in this general case the universality is
not altogether lost. Rather it is the product β
 and not the
temperature itself that is universal so instead of, e.g., universal
field correlations as in the scalar case [13] one has universal
intensity distribution P (S0) that is not affected by the value
of the nonlinearity parameter 
. The width of this distribution
(i.e., the variance of the intensity fluctuations) is of the order
of β
 ∼ 1. It turns out, however, that this new constant β


is less universal than the temperature in the above-considered
case of initial circular polarization inasmuch as it exhibits
strong dependence on parameters λ1,2.

We start by noticing that from Eq. (16) it follows that if the
initial fields are not circularly polarized, i.e., (h0 − hmin) ∼

 �= 0 the reciprocal temperature β must necessarily be of
the order 
−1 � 1 to balance the large terms in the left-
hand side. Of course (16) was obtained in the saddle-point
approximation, which strictly speaking no longer applies when
the product β
 is in the order of unity. But as we shall
presently see the relation β 
 ∼ 1 also follows from the exact
scaling dependence of the partition function valid beyond
the saddle-point approximation. We will introduce the new
notations for the rescaled temperature β̃ = β
, and chemical
potential μ̃ = μ/
 that are now both in the order of 1. One
can notice that in this regime since β scales as 
−1 one can
neglect the coupling energy, HC [as well as the birefringence
term k(An − Bn)] in (5), which simplifies the calculations
somewhat. In fact this assumption is similar to the one used in
Sec. III when we determined the infinite temperature boundary
β = 0 with the only difference being that now one cannot
expand exp(−βHγ ) in powers of the argument (since the latter
is in the order of unity).

Regardless of the applicability of the saddle-point ap-
proximation the numerical simulations demonstrate that a
single waveguide probability density function factorizes into
the product of the PDF of the phase differences in the TE
polarization, P (θn) and the PDF for the remaining three Jones
parameters, P (An,bn,δn), with:

P (θ ) = 1

2π I0(4β̃μ̃/hmin)
exp(−4 β̃ μ̃ cos θ/hmin),

P (A,B,δ) ∝ e−βHγ (A,B,δ). (18)

Note that since hmin ∼ 
 while β̃ ∼ μ̃ ∼ 1 the phase PDF
P (θn) is (i) nonuniversal (i.e., depends on the nonlinearity)
and (ii) approaches the uniform distribution as 
 → ∞ [unlike
the scalar case where it remains fixed, cf. Fig. 3(d)]. The
intensity distribution is no longer narrow and has a finite width
proportional to β̃−1/2.

It is convenient at this stage to change variables from Jones
to Stokes parameters (A,B,δ) → (S1,S2,S3) according to the

definition (11). The Jacobian of this transformation is equal to
(2S0)−1 and the marginal PDF for the Stokes parameters has
the form:

P (S1,S2,S3) ∝ S−1
0 exp

[
−β̃

(
1

2
S2

1 + 1 + λ1

4

(
S2

2 + S2
3

)

+ λ2

4

(
S2

2 − S2
3

) − μ̃ S0

)]
, (19)

and S0 =
√

S2
1 + S2

2 + S2
3 .

The marginal probability for the intensity as well as
the overall normalization, the temperature and the chemical
potential can be established by introducing the spherical
coordinates on the Poincaré sphere of radius S0 and integrating
out the angular variables. The result reads:

P (S0) = y−1
1 S0 eμ̃ β̃S0−β̃S2

0 /2
∫ 1

0

dy√
1 − y

I0

[
β̃

λ2

4
S2

0 y

]

× eβ̃S2
0 (1−λ1)y/4. (20)

Here y1 is the normalization constant related to the overall
partition function of Eq. (5) via Z = (2πy1)N (as both
linear coupling and the birefringence can be neglected).
The full analytical form of the intensity PDF P (S0) cannot
be obtained in the general case but one can see that it is
(i) asymmetric and (ii) has a Gaussian asymptote P (S0) ∝
S−1

0 exp[β̃μ̃S0 − (β̃/4)(1 + λ1 − λ2)S2
0 ] as S0 → ∞. Again

the condition |λ1 − λ2| < 1 ensures the convergence. The
normalized inverse temperature β̃ and the chemical potential
μ̃ can then be determined in a standard way from Eqs. (4).
By closely inspecting the normalization integral y1 one can
infer that it has a self-similar form (and so does the partition
function):

y1(β̃,μ̃) = 1

β̃
F

(
μ̃

√
β̃
)
,

where the explicit form of the function F is given below.
Plugging this ansatz into (4) and excluding the terms contain-
ing the derivative of ln F we obtain the relation between the
(normalized) chemical potential and the temperature:

μ̃ = h0



− 1

β̃
. (21)

The temperature is then to be obtained from a single transcen-
dental equation:

F ′(f0 β̃1/2 − 1/β̃1/2) = 2β̃1/2 F (f0 β̃1/2 − 1/β̃1/2), (22)

where the derivative is taken with respect to the argument, and
f0 = h0/
 is determined via Eq. (15). As for the function
F (x), it is generally only available in quadratures as

F (x)=1

2

∫ ∞

0
dz ex

√
z−z/2

∫ 1

0

dy√
1 − y

I0

[
λ2

4
zy

]
e(1−λ1)yz/4.

The solution of the transcendental equation (22), β̃ = β


is universal inasmuch as it does not depend on the value of
nonlinearity, 
. For given choice of λ1,2 it depends only on the
average normalized initial energy f0 and as long as the latter is
not very close to its minimal value hmin/
 (which corresponds
to the universal regime considered in the previous section) the
solution always exists an is in the order of 1.

In our numerical simulations shown in Fig. 4 we have cho-
sen a symmetric initial condition with completely randomised
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FIG. 4. (Color online) The statistics of the final thermal state
in the limit of large nonlinearity and no initial phase correlation.
(a)–(d) The marginal distribution of Stokes parameters P (S2,S3)
for anisotropic (a), (b) and isotropic (d), (e) cases respectively. (a)
and (c) show numerical simulations while (b) and (d) demonstrate
theoretically calculated profiles. (e), (f) The statistics of the intensity
for anisotropic (e) and isotropic (f) cases for different values of
nonlinearity parameter 
. The phase difference distribution P (θ )
for anisotropic (g) and isotropic (h) cases for different values of the
nonlinearity parameter.

phases: A0 = B0 = 1, 〈cos δ〉 = 0. From (15) this corresponds
to the value f0 = 1 + λ1. For the anisotropic case (AlGaAs)
the numerical solution of (22) yields β̃ = 2.32 while for the
isotropic one (fused silica) one gets β̃ = 4.41. We have found
that unlike in the case of universal correlations observed in
Sec. IV B (or the scalar case), the thermalization length now
depends on the temperature (which is directly proportional
to the nonlinearity). Generally, the higher the temperature,
the longer it takes for the system to reach equilibrium. For
the highest level on nonlinearity achieved in our simulations
(
 = 200) the thermalization length was of the order zth ∼ 500
units of coupling length. This is of course an extreme limit

and lower values of nonlinearity (i.e., temperature) produce
lower values of the thermalization length (typically ∼10).
In Figs. 4(a)–4(d) we can see marginal distribution of two
Stokes parameters P (S2,S3) for 
 = 50. Theoretical profiles
[Figs. 4(b) and 4(d)] were obtained by integrating out S1 in
the (normalized) distribution (19) while the parameters β̃ and
μ̃ were determined via (21) and (22). One can observe a good
agreement between theory and numerics [23]. The distribution
is bimodal but the peaks (corresponding to circular clockwise
and anticlockwise polarization) are quite wide (the width is in
the order of β̃−1/2 ∼ 1). Figures 4(e) and 4(f) compare theoreti-
cal prediction given by (20) with the numerics. One can see that
for different values of the nonlinearity 
 the product β̃ = β 


[and hence the intensity PDF P (S0)] indeed remains the same
and instead of universal correlation functions observed in the
scalar case or the case of circular initial polarization [Fig. 3(c)]
one now has universal intensity distribution as given by (20).
The opposite case occurs with regards to the angle distribution
P (θ ), Figs. 4(g) and 4(h). Whereas in the the scalar case
and in the case of circular polarization [Fig. 3(d)] this PDF
remains invariant, now, according to the theoretical prediction
(18) the distribution becomes closer and closer to uniform
as 
 increases since hmin scales as 
 while β̃ and μ̃ remain
constant. In some respect the results of [Figs. 4(e)–4(h)] are
complementary to those for the circular polarization, Figs. 3(c)
and 3(d), and the scalar case (Fig. 2 of Ref. [13]) with the
angular and intensity distribution trading places.

The universal nature of the intensity PDF P (S0) can also be
explained by means of energy conservation arguments (similar
to those put forward in Ref. [13] for the scalar case). In the limit
of large 
 most of the energy concentrates in the nonlinear part
Hγ , which is a sum of on-site components given by (6). We
can introduce the standard deviation for intensities as σ 2(z) =
〈(A + B)2〉 − 4 (where angular brackets denote both averaging
over the initial conditions and over waveguides) and rewrite the
nonlinear energy in terms of σ 2. Then the following average
integral of motion exists:


σ 2(z) + 
〈(λ1 − 1)AB + λ2AB cos(2δ)〉 + O(1) = const,

(23)

where the term O(1) collectively denotes the contribution from
the linear coupling and birefringence. The value of the constant
is determined by the initial conditions and since initially all
waveguides have the same amplitudes, A0, B0, (A0 + B0 = 2)
and random uncorrelated phases the initial variance vanishes
σ 2(0) = 0 and one obtains the following relation:

σ 2(z)= − 〈(λ1−1)(AB−A0B0) + λ2AB cos(2δ)〉+O (1/
) .

This means that beyond the thermalization distance zth

the first term in the right-hand side becomes a stationary

-independent constant of the order of unity and so does
the variance of the intensity distribution as clearly seen in
Fig. 4(e). The situation changes however if one starts from
the locked circular polarization state for each waveguide as in
Sec. IV B. Then the first term in the right-hand side of the above
changes to −〈(λ1 − 1)(AB − 1) + λ2AB[1 + cos(2δ)]〉. But
the distribution in this case centres narrowly on the extremal
values A∗ = B∗ = 1, δ∗ = ±π/2 so that the average vanishes
and in this regime the variance scales inversely proportional
to 
 as is indeed seen in Fig. 3(c).
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FIG. 5. (Color online) The evolution of the marginal PDF P (S2,S3) with distance. Initial amplitudes are equal A0 = B0 = 1 and all the
phases are uniformly distributed and uncorrelated. (a) The initial uniform distribution on a circle z = 0 (b) a four-modal distribution is formed
initially z = 1 and is later gradually destroyed (c) at z = 9.4 and the final two-modal Gibbs state sets in (d) (z = 50).

Finally it is instructive to see how the distribution of the
polarization state P (S2,S3) evolves with distance z, passing
from the initial isotropic state through the integrable regime
described in Sec. IV A and eventually relaxing towards the
equilibrium Gibbs distribution. The successive snapshots of
such evolution are given in Fig. 5 for the anisotropic case
and 
 = 50. One can see all successive stages: from the
uniform distribution on a circle of radius 2 onto the four-modal
distribution that occurs in a transient anticontinuum regime
when the energy exchange between the waveguides is still
negligible [cf. Fig. 2(a)] and finally towards the thermal
equilibrium state, which is achieved when the weak linear
interwaveguide coupling provides uniform mixing between
all the degrees of freedom.

V. CONCLUSIONS

In this paper we have considered field thermalization in
discrete birefringent waveguide systems. We have defined
the exact boundary in the space of the integrals of motion
separating the thermal phase with positive temperature from
that corresponding to localized excitations (discrete breathers).
We have shown that in the limit of high nonlinearity depending
on the choice of the initial conditions the marginal PDF for
the second two Stokes parameters, P (S2,S3) relaxes either to a
universal, broad, bimodal distribution (with the maxima corre-
sponding to clockwise or anticlockwise circular polarization)
or (if initially all waveguides are locked in the same circular
polarization) a narrow-peaked one, corresponding to the ther-
mal fluctuations around the initial state. In both cases either the
effective temperature constant β is universal (i.e., does not de-
pend on the nonlinearity parameter 
) or, generally, the product
β
 remains fixed as one increases the value of the nonlinearity.

Also in the limit of strong nonlinearity before reaching the
final thermal state the system passes through the state where
its dynamic is integrable, corresponding to the anticontinuum
limit of the nonlinear polarization dynamics. In this regime
the probability distribution of finding a system in a certain
polarization state has a complicated multimodal structure.
As the thermalization sets in the different modes of the
distribution gradually disappear leaving only the two maxima
corresponding to the circularly polarized state achieving the
global minima of the nonlinear coupling energy subject to
fixed total power.

As a possible continuation of this research one may suggest
a more detailed study of the material dependence of the final
thermal state (here only two specific choices of λ1,2 were

considered) as well as a full statistical analysis of the breather
region of the phase space as done by Rumpf [7,8] for the
scalar case.
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APPENDIX: DYNAMICS OF STOKES PARAMETERS
IN THE ANTICONTINUUM LIMIT

In this section we recall the exact results for the dynamics
of the system of Stokes parameters (12) (see Refs. [18,21]).
By differentiating the first Eq. in (12) and using the other two
we arrive at the following system:

S ′′
1 + ω2 S1 = 0 Isotropic case

(A1)
S ′′

1 + α S1 + β S3
1 = 0 Anisotropic case

with

α = −
2

2

[
(3λ1 − 2)(λ1 − 2)S2

1 (0) + λ1(2 − 3λ1)S2
2 (0)

+ λ1(λ1 − 2)S2
3 (0)

]
β = 1

2

2 (2 − λ1)(2 − 3λ1), ω = 2γ (1 − λ1) S3(0)

with the initial values S1(0), and S ′
1(0) = 2
λ2S2(0)S3(0).

The coefficient β should not be confused with the reciprocal
temperature as defined in other sections. Thus in the isotropic
case we get an equation for a harmonic oscillator while in the
anisotropic case the equation is that of the nonlinear Duffing
oscillator.

The solution in the isotropic case is simple:

S1(z) = S1(0) cos(ω z) + S2(0) sin(ωz). (A2)

In the anisotropic case the form of the solution depends on
the sign of the coefficient β as well as the Duffing oscillator
energy:

E = S ′2
1

2
+ α

2
S2

1 + β

4
S4

1 = 1

8

2

[−S2
1 (−2 + λ1) + 2λ1S

2
2

]
× [

2λ1S
2
3 + S2

1 (−2 + 3λ1)
]
. (A3)

Here we will only consider the case when 2/3 < λ1 � 2
so that we have simultaneously β < 0, α > 0, and E > 0.
For AlGaAs we have λ1 = 1, which corresponds exactly to
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this regime. Moreover in this case the potential energy has
two symmetric maxima with the values E∗ = −α2/4β and
one can prove that for any choice of the initial conditions
{S1(0),S2(0),S3(0)} the difference

E − E∗ = 
2λ2
1

[
S2

3 (0)(−2 + λ1) + S2
2 (0)(−2 + 3λ1)

]2

8
(
4 − 8λ1 + 3λ2

1

) < 0.

The effective particle oscillates in the valley between the two
maxima. The solution is expressed via Jacobi elliptic function:

S1(z) = S∗
1 sn

[
F (S1(0)/S∗

1 ,κ) +
√

α

1 + κ2
z,κ

]
,

(A4)

S∗
1 =

√
α

|β|

√
2κ√

1 + κ2
, κ =

√
E∗
E

−
√

E∗
E

− 1 � 1.

Here S∗
1 is the maximal reachable amplitude of the oscillations,

sn(x,κ) is the elliptic sine function and F (x,κ) is the
incomplete elliptic integral of the first kind:

F (x,κ) =
∫ x

0

dt√
(1 − t2) (1 − κ2t2)

.

Now using either the two integrals of motion of the main
system, i.e., Eqs. (13) or integrating the system (12) directly,
one can restore the remaining Stokes parameters, S2(z) and
S3(z). In the anticontinuum limit the averaging over the initial
conditions amounts to averaging either (A2) or (A4) for S1

and using the integrals of motion to obtain the marginal PDF
P (S2,S3).
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