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Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors
for the generation of squeezed states of light
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Nondegenerate forward four-wave mixing in hot atomic vapors has been shown to produce strong quantum
correlations between twin beams of light [McCormick et al., Opt. Lett. 32, 178 (2007)], in a configuration
which minimizes losses by absorption. In this paper, we look at the role of the phase-matching condition in the
trade-off that occurs between the efficiency of the nonlinear process and the absorption of the twin beams. To
this effect, we develop a semiclassical model by deriving the atomic susceptibilities in the relevant double-�
configuration and by solving the classical propagation of the twin-beam fields for parameters close to those found
in typical experiments. These theoretical results are confirmed by a simple experimental study of the nonlinear
gain experienced by the twin beams as a function of the phase mismatch. The model shows that the amount of
phase mismatch is key to the realization of the physical conditions in which the absorption of the twin beams is
minimized while the cross coupling between the twin beams is maintained at the level required for the generation
of strong quantum correlations. The optimum is reached when the four-wave mixing process is not phase matched
for fully resonant four-wave mixing.
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I. INTRODUCTION

Continuous-variable entanglement can be generated deter-
ministically with a phase-insensitive optical amplifier. For
a gain larger than 1, the system produces a two-mode
squeezed state where the signal and the idler (here referred
to as probe and conjugate, respectively) display Einstein-
Podolsky-Rosen-type entanglement [1]. Such an amplifier can
be realized using a nonlinear optical process such as parametric
down-conversion [2,3] or four-wave mixing (4WM) [4]. In
real physical systems, the presence of absorption reduces the
amount of quantum correlations which can be generated, and
although 4WM in atomic vapors can lead to large gains,
resonant atomic processes are also responsible for losses,
which limit the amount of observable squeezing. Recently,
a configuration in 4WM was found which reduces absorption
[5,6], and generates large degrees of squeezing [7–10].

There have been a number of reasons put forward to explain
this success. The main one is the nature of the nonlinearity,
which is based on coherence effects between the hyperfine
electronic ground states rather than on the saturation of a
transition of a two-level atom [6,11]. Indeed, avoiding a large
atomic population in the excited state is key to the reduction
of the noise associated with spontaneous emission. More
specifically, it was pointed out that the D1 line of alkali-
metal atoms is particularly amenable to the establishment
of a ground state coherence [12]. Phenomenological [7] and
sophisticated microscopic [13] models have also been able
to reproduce these results. We show here that the production
of squeezing is also due in great part to a judicious choice
of the parameters that most greatly influence the phase-
matching condition of the nonlinear process, specifically the
relative frequencies of the beams and the angle between
them. Maybe surprisingly, the highest levels of squeezing are
achieved when the system is not phase matched for resonant
4WM.

The paper is divided as follows. In Sec. II, we theoretically
study 4WM in an atomic vapor in a double-� configuration
where both pumps are detuned from the atomic resonance.
From the atomic susceptibilities we evaluate the impact of
the phase-matching condition on the gain and the absorption
in the forward-4WM configuration. In Sec. III, we report
on a systematic experimental study of the phase-matching
condition which confirms the findings of Sec. II. In Sec. IV,
we extend our model to take into account the Doppler effect
due to the thermal motion of the atoms. Finally in Sec. V we
discuss the impact of our theoretical and experimental findings
on the possibility of generating strong two-mode squeezing
with 4WM in a hot atomic vapor. From the model we
deduce the best parameters in terms of beam geometry and
beam detunings, and compare them to the recent squeezing
experiments of Refs. [7–10].

II. THEORETICAL MODEL OF NONDEGENERATE
FOUR-WAVE MIXING

When describing nonlinear media in the presence of off-
resonant fields, it is common to separate the response of the
system into a linear part and a nonlinear part [14]. The linear
contribution leads to an index of refraction which modifies
the linear dispersion relation for each of the individual light
fields in the medium. The nonlinear part acts as a perturbative
source term in the propagation equations. It enables energy
transfer between light fields for those configurations where the
phase-matching condition is fulfilled, that is to say, when the
total wave vector of the waves giving up energy equals the total
wave vector of the waves receiving the energy. The relevant
wave vectors are those in the medium. They are equal to the
wave vectors in vacuum times their corresponding indices of
refraction.
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FIG. 1. (Color online) Double-� scheme on the D1 line of 85Rb.
The hyperfine splitting of the excited state is not resolved due to
Doppler broadening. The � transitions, detuned by �1 and �2, are
driven by pump fields with resonant Rabi frequencies �1 and �2,
respectively. Note that the pumps can actually be a single laser beam.

In resonant media, such as atomic vapors excited close to
atomic transitions, the medium is strongly perturbed by the
presence of light. For instance, optical pumping by a strong
pump beam can affect the atomic populations in the hyperfine
levels, leading to a strong change in the index of refraction seen
by a weaker beam. In this case, the usual expansion separating
the linear and the nonlinear responses may not be appropriate.
Instead we consider an expansion of the nonlinear polarization
to first order in the electric fields of the weak beams and to all
orders in the electric fields of the pump beams [6].

We consider the double-� configuration, shown in Fig. 1,
which was used to demonstrate intensity-difference squeezing
and quadrature entanglement in a vapor of 85Rb [15,16]. A
nondegenerate 4WM parametric process drives an atom from
one of the hyperfine ground states to the other hyperfine
ground state and back to the initial state. In the process, two
pump photons are converted into two twin photons, called
probe and conjugate, with wave vectors kp and kc in vacuum,
and frequencies ωp and ωc. The nonlinearity originates
in a strong coupling between the probe and the conjugate
fields mediated by the coherence of the electronic ground
states [11]. Following the usual experimental configuration,
we further assume that the two pump photons come from
a single field, of wave vector k0 in vacuum and frequency
ω0. We denote δ the two-photon detuning of the pump and
the probe: δ = ω0 − ωp − ωHF, where ωHF is the hyperfine
splitting of the ground state. The natural linewidth of the
excited state is γ = 2π × 6 MHz. In the rest of the paper,
we vary δ by changing the frequency of the probe. The 4WM
resonance occurs roughly at δ = 0 (more on this below).

For simplicity, we assume that the coupling strengths of
the pump to both transitions are equal, corresponding to a
resonant Rabi frequency � = �1 = �2. Following Ref. [6],
we calculate the atomic susceptibilities at the probe and
conjugate frequencies in the limit of weak probe and conjugate
fields. The detailed calculation is developed in the Appendix.
The susceptibilities are derived by calculating the steady-state
value of the density matrix of a four-level system interacting
with the four fields of the double �. The atomic polarization at
the frequencies of the probe and the conjugate is proportional

to the average oscillating atomic electric dipole at those
frequencies and therefore to the off-diagonal components
of the density matrix corresponding to these transitions. To
first order in the probe and conjugate fields, the atomic
polarization is described by two direct susceptibilities, χpp and
χcc, and two cross susceptibilities, χpc and χcp = χ∗

pc, given by
Eqs. (A13)–(A16). The cross susceptibilities are responsible
for the 4WM.

The propagation equations for the slowly varying envelopes
of the probe and conjugate fields Ep and Ec, using the
polarization expressions (A11) and (A12), are given in steady
state by

∂

∂z
Ep = ikp

2ε0
P (ωp)e−ikp ·r, (1)

∂

∂z
Ec = ikc

2ε0
P (ωc)e−ikc ·r. (2)

Furthermore, if we consider the case of copropagating, or
nearly copropagating, beams along the z axis, these equations
read

∂

∂z
Ep = ikp

2
χpp(ωp)Ep + ikp

2
χpc(ωp)ei�kzzE∗

c , (3)

∂

∂z
Ec = ikc

2
χcc(ωc)Ec + ikc

2
χcp(ωc)ei�kzzE∗

p, (4)

where �kz is the projection of the geometric phase mismatch
�k = 2k0 − kp − kc on the z axis, and the conservation of
energy imposes the condition ωp + ωc = 2ω0.

In the low pump depletion limit, which is usually experi-
mentally the case, the pump Rabi frequency � is constant along
the vapor cell and these equations are simply first order coupled
linear differential equations. When the dynamics is dominated
by the cross terms and no conjugate field is injected, the probe
and conjugate fields grow asymptotically exponentially and
the system behaves like a phase-insensitive amplifier for a
probe input field [14,17]. At the quantum level, these cross
terms are responsible for the creation of quantum correlations
between the output probe and conjugate fields, leading to the
production of a two-mode squeezed state [1,16]. The larger
the gain of the amplifier, the greater the amount of squeezing.

The full dynamics is more complicated than pure 4WM
because of the presence of the direct terms χpp and χcc.
However, the general form of Eqs. (3) and (4) offers us
a straightforward interpretation of χpp and χcc in terms of
effective linear susceptibilities for the probe and the conjugate
fields. Note that unlike the usual linear susceptibilities, these
effective susceptibilities depend, nonlinearly, on the pump
field. Therefore they give rise to a pump-dependent complex
index of refraction for the probe and the conjugate. The real
part influences the phase matching of the process, as discussed
below. The imaginary part translates into absorption.

In the original proposal by Lukin et al. [6], the pump beams
are resonant with an atomic transition (�1 = �2 = 0). This
results in a remarkable situation where the pumps and the
twin beams fulfill the two-photon Raman resonance and enter
an electromagnetically induced transparency (EIT) condition
[18]. As a result, they see a perfectly transparent medium,
as witnessed by a vanishing imaginary part of χpp and χcc.
At the same time, the cross susceptibilities are enhanced by
the coherence of the hyperfine electronic ground states. In
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theory, it should lead to very efficient 4WM and virtually
no absorption, even for a weak pump. In practice, the EIT
effect in hot atomic vapors is limited because the Doppler
effect, the presence of multiple excited hyperfine levels, and
the finite transit time of the atoms in the laser beams all act
to increase the decoherence rate between the ground states.
This causes residual absorption of the probe field and as a
result, only low levels of squeezing have been observed in this
configuration [19].

In contrast, most recent squeezing experiments in hot
atomic vapors operate at large detuning �1/2π , typically
0.5–1 GHz, and at larger pump power [8–10,15]. In these
conditions, the susceptibilities take a different form from the
resonant case. This off-resonant form is depicted in Fig. 2, for
typical experimental parameters.

The first important property of these susceptibilities is
that the 4WM resonance is shifted from the bare two-photon
resonance (δ = 0) by the light shift created by the more
resonant pump, on the 5S1/2(F = 2) → 5P1/2 transition. For
typical experimental parameters, the shift is of the order of
−5γ . In the rest of the paper, the “blue side” of the 4WM
resonance refers to the range of detunings δ for which the
frequency of the probe is above the 4WM resonance. The
other side of the 4WM resonance is the “red side” (see Fig. 2).

The second property is that the imaginary part of χpp

[Im(χpp), dashed line] is maximum at the 4WM resonance,
due to Raman absorption. It is therefore not a good place to
observe 4WM because the medium is essentially opaque for
the probe at this detuning. On the other hand, Im(χpp) decays
much faster than the magnitude of χpc when moving away
from resonance, therefore there is a range of δ on each side
of the 4WM resonance where χpc still exhibits a substantial
magnitude, while Im(χpp) has almost completely vanished (see
Fig. 3). These regions of the two-photon detuning are better
places to observe quantum effects.

The third important property is the behavior of the real part
of χpp [Re(χpp), solid line], which is effectively responsible
for the index of refraction for the probe. Around the 4WM
resonance, Re(χpp) is the sum of a dispersive feature resulting
from the 4WM coupling and the off-resonance negative
susceptibility resulting from the one-photon transition between
ground state and excited state. These competing terms lead to a
cancellation of Re(χpp) around the bare two-photon resonance
(δ = 0).

It is legitimate to wonder if it would not be possible to
take advantage of the coherence between the ground states
to reduce the probe absorption through the EIT phenomenon,
as envisioned in the original proposal. Theoretically, for a
very low value of the ground state decoherence rate γc, it is
indeed possible to observe the transparency window at the
bare two-photon resonance, as shown in Fig. 3. In practice,
such low decoherence rates may not be achieved due to
imperfections associated with hot atomic vapors. Experimental
results reported below and in Refs. [13,20] are compatible with
values of γc higher than γ /20, for which there is no marked
transparency window. In spite of the lack of efficient EIT, the
off-resonant value of Im(χpp) is small enough compared to
the cross coupling to ensure efficient 4WM. In fact, the cross
coupling is large enough that experiments set to demonstrate
large levels of squeezing do not require special precautions
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FIG. 2. (Color online) The direct and cross susceptibilities for the
probe and conjugate fields as a function of the two-photon detuning
δ, varied by changing the probe frequency, expressed in units of the
excited state decay rate γ = 2π × 6 MHz. The solid black lines are
the real parts; the dashed red lines are the imaginary parts. The units
on the y axes are arbitrary but identical for all four susceptibilities.
The resonant Rabi frequency of the pump is � = 60γ , the detuning
of the pump is �1 = 140γ , and the decoherence rate of the excited
state is taken here to be γc = 0.2γ . The feature at δ = 150γ , visible
on χpp in the inset, corresponds to the one-photon resonance of
the probe from the F = 2 hyperfine ground state. The region of
positive Re(χpp) around the 4WM resonance is indicated with a
thicker line.
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FIG. 3. (Color online) 4WM coupling |χpc| (solid black line)
and probe absorption Im(χpp) (dashed red line) as a function of the
two-photon detuning δ, for γc = 0.2γ . The probe absorption is also
shown for γc = γ (dashed-dotted line) and for γc = 0.02γ (dotted
line). In the latter case, the transparency window around δ = 0 starts
to become visible.

with regard to decoherence sources such as stray magnetic
fields [13].

Note that these considerations do not apply to the conjugate
field, which is much further detuned from resonance than
the probe. The direct susceptibility of the conjugate χcc is
substantially smaller than the other susceptibilities and can be
regarded as zero in practice.

Now that adequate ranges of δ have been identified
for which probe losses are negligible compared to 4WM
amplification, the question is whether there is a geometric
configuration of the light fields for which 4WM is phase
matched. To answer this question, we recall from Ref. [6]
the solutions to the propagation equations (3) and (4), for a
seed Es on the input probe and no input conjugate:

Ep = Es exp(δaL)

[
cosh(ξL) + a

ξ
sinh(ξL)

]
, (5)

E∗
c = Es exp(δaL)

acp

ξ
sinh(ξL), (6)

where L is the length of the medium, apj = ikpχpj/2, acj =
ikcχ

∗
cj /2, δa = (app − acc + i�kz)/2, a = (app + acc −

i�kz)/2, ξ = √−apcacp + a2, and j = p,c. We define
the probe and conjugate intensity gains gp and gc as
|Ep|2 = gp|Es |2 and |Ec|2 = gc|Es |2.

From these expressions, we plot in Fig. 4 the probe and
conjugate gains as a function of δ and the geometric phase
mismatch �kz. One can see that for �kz � 0, the maximum
gain is obtained around δ � 0, for both the probe and the
conjugate. When �kz increases, the gain on both the probe
and the conjugate increases, while the gain resonance moves
towards the 4WM resonance (shown with the vertical dashed
line). At larger �kz, the gain resonance comes asymptotically
within γ of the 4WM resonance, and the probe intensity drops
while the conjugate intensity keeps increasing. Finally, at large
�kz, the conjugate intensity also drops.

FIG. 4. (Color online) Theoretical output probe and conjugate
gains gp and gc as a function of the two-photon detuning and the
geometrical phase mismatch. Here the decoherence rate is γc = 0.5γ ,
the atom density is N = 3 × 1012 cm−3, the length of the medium is
L = 12.5 mm and the pump Rabi frequency is � = 60γ . The dashed
lines indicate the position of the 4WM resonance.

The position of the gain resonance is the result of the 4WM
phase matching (or absence thereof), and is influenced by
the effective index of refraction seen by the probe and the
conjugate as follows. Since Re(χcc) is much smaller than the
other susceptibilities, the conjugate effectively propagates in
a medium of index 1. The situation is different for the probe,
for which the index of refraction changes sign at the 4WM
resonance and at δ � 0, as indicated in Fig. 2. The change
in sign of Re(χpp) at δ � 0 means that the probe experiences
an effective index of refraction, np, smaller than 1 for δ � 0
and larger than 1 between δ � 0 and the 4WM resonance. We
assume that the index of refraction experienced by the pump,
n0, is close to 1 since the pump tends to optically pump the
atoms towards the ground state of the off-resonant transition
5S1/2(F = 3) → 5P1/2. This assumption will be refined later.

The geometric phase-matching condition �kz = 0 is the
phase-matching condition in free space. It is fulfilled only
when the beams are rigorously copropagating, as shown in
Fig. 5(a). For the process to be efficient, the effective phase-
matching condition must be fulfilled:

2k0 − npkp − kc = 0, (7)

as shown in Fig. 5(b). This condition is identical to the
geometric phase-matching condition (�kz = 0) only when
np = √

1 + Re(χpp) = 1, which occurs around δ = 0 (Fig. 2).
When np > 1, the effective phase-matching condition (7)
imposes �kz > 0, which corresponds to having a finite angle
θ between the pump and the probe and conjugate [21]. This
occurs on the red side of the 4WM resonance, for δ � 0 (see
Fig. 2). As θ increases, the gain resonance is shifted towards
higher values of Re(χpp) and therefore towards the 4WM
resonance. A negative geometric phase mismatch �kz cannot
be fulfilled. For this reason, no effective phase matching can
happen on the blue side of the 4WM resonance, where np < 1.

Close to the 4WM resonance, the increase in Im(χpp)
accounts for the reduction in probe power with respect to the
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FIG. 5. (Color online) (a) Configuration where the geometric
phase-matching condition is fulfilled (�kz = 0); (b) configuration
where the effective phase-matching condition for an effective index
of refraction of the probe np � 1 is fulfilled. In this case, there is a
necessary geometric phase mismatch (�kz > 0). The wave vectors
in vacuum k0, kp , and kc, for the pump, probe, and conjugate,
respectively, all have nearly the same magnitude. Energy conservation
ensures that kp + kc = 2k0.

conjugate power, seen in Fig. 4. In this region, a high level of
probe absorption coupled to a large 4WM gain still produces
a strong conjugate output. At larger angle θ , the effective
phase-matching condition requires a value of δ so close to the
4WM resonance that the high probe loss prevents the 4WM
from happening at all.

III. EXPERIMENTAL VERIFICATION

In order to verify the theoretical predictions, a test was
performed, as shown in Fig. 6 in which a 750 mW pump laser
of beam waist 0.9 mm drives the D1 line at 795 nm in a 12-mm-
long cell of 85Rb vapor, heated and temperature stabilized at
∼110 ◦C. A seed beam at the probe frequency is produced
by diverting a fraction of the pump through an acousto-
optic modulator (AOM) operating at ωHF/2 � 2π × 1.5 GHz
in a double-pass arrangement. This seed beam, of power
10–20 μW and waist 0.4 mm, then intersects with the pump in-
side the cell at a small angle θ . The probe and conjugate beams
are perpendicularly polarized with respect to the pump which
is rejected at the output with a polarizing beam splitter. From

FIG. 6. (Color online) Experimental setup. The Rb cell is pumped
with a bright pump beam, in blue, and seeded at an angle θ with a
probe of power Ps , in red. Emitted is an amplified probe of power Pp ,
also red, and a conjugate of power Pc, in yellow. The three powers, Ps ,
Pp , and Pc, are monitored by photodiodes while the probe frequency
is scanned. PBS: polarizing beam splitter.

FIG. 7. (Color online) Measurement of the probe gain gp (a) and
conjugate gain gc (b) as a function of the two-photon detuning and
the probe-pump angle. The region below the dashed line is used to fit
the model to the data (see Fig. 8).

the measured input seed power Ps , output probe power Pp,
and output conjugate power Pc, the probe and conjugate gains
(gp = Pp/Ps and gc = Pc/Ps , respectively) are obtained.

A dichroic-atomic-vapor laser lock [22] is in place to
regulate the pump frequency thus maintaining a constant �1.
The angle of intersection θ between the pump and probe is set
by manually adjusting a pair of input mirrors, and δ is adjusted
by changing the AOM drive frequency. For a selection of values
of θ , δ is swept over a range of typically 2π × 60 MHz, where
noticeable gains gp and gc are observed. The angular range
used, from 0◦ to 1◦, satisfies the condition that there must be a
full overlap of the beams over the cell length (this is achievable
for θ up to 5◦). Figure 7 shows the contour plots of gp and gc

as a function of δ and θ .
The general features of Fig. 4 are reproduced, including the

shift of the gain peaks towards the 4WM resonance when θ is
increased, as well as the crossover between probe power and
conjugate power. The crossover is the value of θ for which
the peak conjugate power is equal to the peak probe power.
The main discrepancy between the experimental data and the
theoretical prediction is the measured drop in probe and conju-
gate power for θ > 0.6◦. This leads to peak gains for both the
probe and the conjugate which are well below the theoretical
prediction. There are two main reasons for this behavior. First,
for a finite θ , the Doppler effect due to the thermal motion
of the atoms does not cancel between the pump and the twin
beams. For θ = 1◦, the residual Doppler effect on δ reaches 2γ ,
which is roughly the width of the gain peak itself. This results
in a broadening of the gain resonance at larger angles θ , when
compared to the resonance given by the theoretical model.

Secondly, and perhaps more importantly, when θ is in-
creased past 0.5◦, the probe beam is subject to a strong
effective cross-Kerr interaction with the pump around the gain
resonance. This is due to the fact that as the gain peak moves
closer to the 4WM resonance the effective index of the probe
is resonantly enhanced, as shown by the behavior of Re(χpp)
in Fig. 2. As a result, the transverse intensity variation of the
pump realizes a strong lens for the probe, causing it to emerge
from the cell with an angle of divergence comparable to or
larger than θ itself [23].

The good agreement between the theoretical model and
the measurements at angles where the probe focusing is
negligible gives us the opportunity to extract the values
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of those parameters which are not readily measurable, in
particular the pump Rabi frequency �, the atom density N ,
and most importantly the decoherence rate γc. Moreover, as
explained in the Appendix, we can also introduce the effect
of the index of refraction of the pump on the phase-matching
condition by replacing the geometric phase mismatch with
�kz = 2n0k0 − kp cos θ − kc cos θ , where n0 = 1 − ε is the
pump index of refraction. This index is less than 1 for the pump
on the blue side of the atomic resonance. Although all these
parameters enter the model in an intricate way, their respective
influences on the gain map as represented in Fig. 7 follow
simple trends: � controls both the magnitude of the gain and
the position of the gain feature along the δ axis, N controls
the overall magnitude of the gain, γc controls the ratio of the
probe gain over the conjugate gain, and ε controls the position
of the gain feature along the θ axis.

By fitting the model to the data for the values of θ smaller
than 0.5◦, as shown in Fig. 8, we find that � = 58γ , N =
2.6 × 1012 cm−3, and ε = 8 × 10−6. Unlike these parameters,

FIG. 8. (Color online) Fit of the model to the experimental data of
Fig. 7 at small angles, both for the probe gain gp (a) and the conjugate
gain gc (b). The thick black lines show the theoretical model; the thin
red lines show the data. The fitting procedure assumes the same set of
parameters for all the curves except for the decoherence rate γc which
is allowed to vary from angle to angle and is plotted in Fig. 9. The
fit is of good quality except for the smallest angle, where the probe
and conjugate power measurements are polluted by pump leakage
through the output polarizer. For θ > 0.5◦, the model predicts gains
much larger than those measured.

FIG. 9. (Color online) Fitted decoherence rate γc as a function of
the probe-pump angle θ . The other parameters (�, N , and ε) have
fixed values, given in the text. The uncertainties on γc are estimated
from the uncertainties on these parameters.

the decoherence rate γc is allowed to depend on θ and is
plotted in Fig. 9. For this data set, the pump detuning was
determined to be �1 = 140γ by calibrating the position of the
4WM gain against a Rb spectroscopy spectrum. We estimate
the uncertainties on the values of the fitting parameters by
observing how they fluctuate when fitting for the different
values of θ independently. The full relative spreads are found
to be ±3% for �, ±5% for N , and ±20% for ε.

It can be seen in Fig. 9 that γc increases with θ , under the
influence of the residual Doppler broadening [24], the Kerr fo-
cusing of the probe, or possibly the transverse inhomogeneity
of the pump intensity. The value of γc at small angles, below
0.05γ , gives an indication of the intrinsic decoherence rate of
the process. In our experiment the relatively low temperature
leads to a low atomic density and therefore to negligible
collisional decoherence. The measurable decoherence rate is
most likely limited by the finite transit time of the atoms
through the beams. The theoretical estimate of 500 kHz
reported in Ref. [13] is compatible with our inferred γc, given
that our beams are 50% wider. Note that the predominance
of finite transit time over atomic collisions in the reduction of
ground state coherence depends on the specific experimental
conditions, in particular, the temperature. In typical squeezing
experiments, e.g., in Ref. [7], the gain and the squeezing drop
for temperatures larger than 120 ◦C. This is compatible with
the observation by Siddons et al. [25] that collision-driven
decoherence dominates at those temperatures.

One can check that the parameters extracted from the
fit are broadly consistent with the estimated experimental
conditions. Our pump beam parameters lead to a peak intensity
of 60 W cm−2, which results in a resonant Rabi frequency
� = 80γ for a mean electric dipole d = 1.47 × 10−29 C m
[26]. From the vapor pressure data summarized in Ref. [26],
the number density of 85Rb at 100 ◦C is N � 4 × 1012 cm−3.
The estimate on N is relatively poor because unlike in more
direct and accurate methods [25], we do not have a good
knowledge of the average electric dipole moments involved
in the 4WM. Finally the index of refraction for the pump,
evaluated for ground state populations of 6% in the lower
hyperfine state and 94% in the upper hyperfine state, as given
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FIG. 10. (Color online) Probe gain as a function of the two-photon
detuning at low angle θ and fit to the data including the Doppler
broadening in the model. The discrepancy in the width of the Doppler-
broadened single-photon absorption dip is caused by the presence
of two excited hyperfine levels separated by 60γ . The model only
considers two excited states which are degenerate in energy (Fig. 11).

by Eqs. (A17)–(A20), and for the electric dipole value given
above, is n0 = 1 − 1.6 × 10−5.

IV. DOPPLER BROADENING

The model developed above does not directly take into
account the Doppler broadening caused by the thermal motion
of the atoms in the cell. The good agreement between the
model and the experimental data suggests that considering
only average values of the single-photon detunings �1 and �2

captures most of the physics at play. However, considering that
the probe is typically tuned to the edge of the Doppler profile, it
is legitimate to wonder what level of absorption this causes. It
turns out that although the EIT has a limited impact, the pump
field is highly saturating at resonance and causes a wide Autler-
Townes splitting for those atoms resonant with the probe field.
This renders even the resonant part of the atomic vapor highly
transparent for the probe as long as the optical depth is not
too large. In practice, noticeable levels of squeezing can be
observed for �1/2π as low as 500 MHz [7], which is well
inside the Doppler profile at our operational temperature.

In order to verify these assumptions, we extended the above
model to include the full Doppler distribution of detunings. The
result, fitted to the gain curve of the probe as a function of δ,
is shown in Fig. 10. The small discrepancy in the width of the
single-photon resonance is due to the fact that the model does
not include the hyperfine structure of the excited state, whose
main effect is to broaden the apparent Doppler profile.

V. OPTIMIZING FOR QUANTUM NOISE REDUCTION

The observation of large levels of intensity-difference quan-
tum noise reduction requires a near-perfect phase-insensitive
amplifier with a gain of at least a few units. In the case of
4WM in a hot atomic vapor, this means that the absorption
of the twin beams must be kept to a minimum while ensuring

that efficient 4WM can take place. As pointed out previously,
the two-photon detuning which fulfills those two conditions
is δ � 0, and not the 4WM resonance in itself. Firstly,
this is because away from the 4WM resonance the probe
susceptibility responsible for the absorption drops faster than
the cross susceptibility responsible for the 4WM gain, and
secondly because the ground state coherence reduces the probe
absorption at that detuning [27].

From the previous discussion, at a detuning δ � 0, effective
phase matching of the 4WM process requires geometric phase
matching �kz = 0. When corrected for the index of refraction
for the pump, this condition corresponds to the introduction
of a small angle θ � 1◦ between the pump and the probe
beams. This is indeed how the best levels of squeezing have
been experimentally observed [7–10]. This also justifies the
implicit geometric phase-matching condition used in previous
theoretical studies [13]. The production of squeezed light by
nondegenerate 4WM in a hot vapor therefore benefits from
two favorable circumstances. First, the optimum angle θ is
small enough that the residual Doppler effect acting on the
nearly copropagating beams is much smaller than the width of
the gain peak. Second, the same angle is large enough that the
beams participating in the 4WM can be spatially separated at
the output of the vapor cell.

It is worth noting that in certain conditions, a small amount
of loss on the probe beam can be beneficial. For instance,
for a probe seed containing a large amount of classical noise,
it is useful to have twin beams of equal powers in order to
ensure proper rejection of the classical noise in the balanced
detection [7,28]. In particular, the existence of points in the
(δ,θ ) parameter space where the probe and conjugate powers
are perfectly balanced has allowed the detection of 8 dB
of intensity-difference squeezing at frequencies as low as
2.5 kHz, despite the presence of substantial technical noise
on the input probe [7].

VI. CONCLUSION

We have shown that it is possible to phase match 4WM in a
hot atomic vapor so that absorption is reduced to a level where
quantum effects could manifest themselves. Most reports of
large squeezing generated by nondegenerate forward 4WM
in hot vapors to date have indeed used a similar arrangement
as the one presented here, with nearly identical atomic and
beam parameters. Furthermore, the model we have developed
appears very accurate for small angles between beams, even in
its simple form neglecting both the Doppler effect and the Zee-
man substructure. It allows the robust extraction of parameters
which would be difficult to determine by direct measurement,
such as the decoherence rate of the ground states.

By providing further insight into the mechanism of the
process, the present results may lead to the realization of
different configurations or different regimes amenable to the
production of interesting quantum states of light, such as
multi-spatial-mode phase-sensitive amplifiers [29].
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APPENDIX: EXPRESSIONS FOR THE SUSCEPTIBILITIES

1. Derivation of the susceptibilities
for the probe and the conjugate

In this Appendix we derive the dynamics of the double-�
configuration described in the paper. The response of an atomic
system to an optical field is determined by the polarization
of the medium, which acts as the driving term in the
wave equation. For a medium that consists of noninteracting
particles, such as a dilute atomic vapor, the polarization of the
medium is of the form [14]

P = N 〈d̂〉,
where N is the number density of the atomic medium and d̂
is the atomic dipole moment operator. The polarization of the
medium can be written in terms of the atomic eigenstates, such
that it takes the form

P = N
∑
n,m

dmnσnme−iωf,nmt ,

where the sum is over all the involved atomic transitions, ωf,nm

is the frequency of the field that couples the transition between
levels n and m, σnm is the density matrix element between
levels n and m in a rotating frame at frequency ωf,nm, and dmn

is the dipole matrix element between levels n and m. For an
isotropic medium, the polarization of the atomic medium at a
particular frequency is given by

P(ωf,nm) = Ndmnσnm.

Thus, the response is completely determined by the atomic
coherence of the corresponding transition.

The equations of motion for the density matrix elements in
the rotating frame can be shown to be of the form [14]

σ̇nm = i(�nm − γnm)σnm

+ i

h̄

∑
ν

[dnν · E(r,t)σνme−i(ωf,νm−ωf,nm)t

− σnνdνm · E(r,t)e−i(ωf,nν−ωf,nm)t ] for n 
= m,

σ̇nn = i

h̄

∑
ν

[dnν · E(r,t)σνne
−iωf,νnt

− σnνdνn · E(r,t)e−iωf,nν t ]

+
∑

Em>En

�nmσmm −
∑

Em<En

�mnσnn,

where �nm is the detuning of the field at frequency ωf,nm from
the transition between levels n and m, �mn is the population
decay rate from level n to level m, γnm = (�n + �m)/2 + γ c

nm

is the dipole dephasing rate, �n is the total decay rate out of
level n, and γ c

nm is the dipole dephasing rate due to any other
source of decoherence.

We now specialize the above equations to our 4WM process
in the double-� configuration, shown in Figs. 1 and 11, with
a single pump field, E0. For this case the total electric field is

Δ2

δ
, Ω1

Δ1

E0

, Ω2E0

, ΩpEp

, ΩcEc
1

2

3 4

FIG. 11. (Color online) Double-� scheme with a single pump
field E0. States |3〉 and |4〉 are orthogonal linear combinations of
magnetic states of the excited hyperfine levels.

of the form

E(r,t) = E0e
i(k0·r−ω0t)ε0 + Ece

i(kc ·r−ωct)εc

+ Epei(kp ·r−ωpt)εp + c.c.,

where E0, Ep, and Ec are the field amplitudes for the pump,
the probe, and the conjugate, respectively, and εi are unit
vectors describing the polarization of the fields. We assume
that the pump couples the transitions |1〉 → |3〉 and |2〉 → |4〉,
the probe couples transition |2〉 → |3〉, the conjugate couples
transition |1〉 → |4〉, and that the transitions |1〉 → |2〉 and
|3〉 → |4〉 are not dipole allowed. With these assumptions
and using the rotating-wave approximation, the equations of
motion for the density matrix elements take the form

σ̇11 = i

2
(�∗

1e
−ik0·rσ31 + �∗

pe−ikp ·rσ41 − �1e
ik0·rσ13

−�peikp ·rσ14) + �13σ33 + �14σ44, (A1)

σ̇22 = i

2
(�∗

ce
−ikc ·rσ32 + �∗

2e
−ik0·rσ42 − �ce

ikc ·rσ23

−�2e
ik0·rσ24) + �23σ33 + �24σ44, (A2)

σ̇33 = i

2
(�1e

ik0·rσ13 + �ce
ikc ·rσ23 − �∗

1e
−ik0·rσ31

−�∗
ce

−ikc ·rσ32) − �3σ33, (A3)

σ̇44 = i

2
(�peikp ·rσ14 + �2e

ik0·rσ24 − �∗
pe−ikp ·rσ41

−�∗
2e

−ik0·rσ42) − �4σ44, (A4)

σ̇43 = i

2
(�2e

ik0·rσ23 + �peikp ·rσ13 − �∗
1e

−ik0·rσ41

−�∗
ce

−ikc ·rσ42) + (i�2 − i�1 − γ43)σ43, (A5)

σ̇42 = i

2
(�2e

ik0·rσ22 + �peikp ·rσ12 − �ce
ikc ·rσ43

−�2e
ik0·rσ44) + (i�2 − iδ − γ42)σ42, (A6)

σ̇41 = i

2
(�2e

ik0·rσ21 + �peikp ·rσ11 − �1e
ik0·rσ43

−�peikp ·rσ44) + (i�2 − γ43)σ41, (A7)
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σ̇32 = i

2
(�ce

ikc ·rσ22 + �1e
ik0·rσ12 − �ce

ikc ·rσ33

−�2e
ik0·rσ34) + (i�1 − iδ − γ32)σ32, (A8)

σ̇31 = i

2
(�ce

ikc ·rσ21 + �1e
ik0·rσ11 − �1e

ik0·rσ33

−�peikp ·rσ34) + (i�1 − γ31)σ31, (A9)

σ̇21 = i

2
(�∗

ce
−ikc ·rσ31 + �∗

2e
−ik0·rσ41 − �1e

ik0·rσ23

−�peikp ·rσ24) + (iδ − γ21)σ21, (A10)

where �1 and �2 give the Rabi frequencies for the two
transitions coupled by the single pump, �p gives the Rabi
frequency for the transition coupled by the probe, and �c gives
the Rabi frequency for the transition coupled by the conjugate.
In order to completely eliminate the explicit time dependence
when doing the rotating-wave approximation, the frequencies
of the pump, probe, and conjugate fields need to satisfy the
relation

2ω0 = ωp + ωc,

which is just the energy conservation condition for the 4WM
process.

In order to solve the above equations and obtain analytical
expressions, we assume that the probe and conjugate fields
are weak fields, such that we only keep terms to first order
in �p and �c. In this case, the polarization of the medium at
frequency ωi (where i indicates probe or conjugate frequency)
can be divided into two different terms, one that is proportional
to the field at frequency ωi and one that is proportional to the
field at frequency 2ω0 − ωi , such that

P (ωp) = ε0χpp(ωp)Epeikp ·r + ε0χpc(ωp)E∗
c ei(2k0−kc)·r,

(A11)

P (ωc) = ε0χcc(ωc)Ece
ikc ·r + ε0χcp(ωc)E∗

pei(2k0−kp)·r.
(A12)

In doing this, we have introduced the susceptibility of
the atomic medium χij , which completely characterizes
the response of the atomic system for a given field. The
direct susceptibilities χpp,cc act as the effective linear sus-
ceptibilities for the probe and conjugate, respectively; the
cross susceptibilities χpc,cp are responsible for the 4WM
process.

In addition to the approximations mentioned above, we
assume the dipole moments for the two pump transitions to be
equal, such that �1 = �2 ≡ �. Under these approximations
we can solve the density matrix equations (A1)–(A10) to all
orders in the pump field (�) and in steady-state condition for
σ41 and σ32 to find that

χpp = iN |d23|2ξ ∗
41

ε0h̄D∗

[
ξ ∗

21

ξ ∗
42

σ22,44 + ξ ∗
43

ξ ∗
31

σ11,33

−
(

ξ ∗
21 + ξ ∗

43

ξ ∗
41

+ ξ ∗
21ξ

∗
43

|�|2/4

)
σ22,33

]
, (A13)

χcc = iN |d14|2ξ ∗
32

ε0h̄D

[
ξ43

ξ ∗
42

σ22,44 + ξ21

ξ ∗
31

σ11,33

−
(

ξ21 + ξ43

ξ ∗
32

+ ξ21ξ43

|�|2/4

)
σ11,44

]
, (A14)

χpc = iNd14d23ξ
∗
41�

2

ε0h̄D∗|�|2
[
ξ ∗

21

ξ31
σ11,33 + ξ ∗

43

ξ42
σ22,44

+
(

ξ ∗
21 + ξ ∗

43

ξ ∗
41

)
σ11,44

]
, (A15)

χcp = iNd14d23ξ
∗
32�

2

ε0h̄D|�|2
[
ξ43

ξ31
σ11,33 + ξ21

ξ42
σ22,44

+
(

ξ21 + ξ43

ξ ∗
32

)
σ22,33

]
, (A16)

where we have defined

D = (ξ43 + ξ21)(ξ ∗
32 + ξ41) + ξ ∗

32ξ41ξ43ξ21

|�|2/4
,

the population differences

σ11,33 ≡ σ11 − σ33 = |ξ31|2
|�|2 + |ξ31|2 + |ξ42|2 , (A17)

σ11,44 ≡ σ11 − σ44 = |ξ31|2
|�|2 + |ξ31|2 + |ξ42|2 , (A18)

σ22,33 ≡ σ22 − σ33 = |ξ42|2
|�|2 + |ξ31|2 + |ξ42|2 , (A19)

σ22,44 ≡ σ22 − σ44 = |ξ42|2
|�|2 + |ξ31|2 + |ξ42|2 , (A20)

and the complex decay rates

ξ43 = i(�2 − �1) − γ, ξ42 = i(�2 − δ) − γ

2
,

ξ41 = i�2 − γ

2
, ξ32 = i(�1 − δ) − γ

2
,

ξ31 = i�1 − γ

2
, ξ21 = iδ − γc.

In deriving these equations, we have assumed that the total
decay rate out of the excited states are the same and with
equal branching ratios to the two ground states; that is, �4 =
�3 ≡ γ and �14 = �24 = �13 = �14 = γ /2. In addition, we
assume that the additional dipole dephasing term γ c

ij is only
significant for the ground state coherence, such that γ c

ij 
=12 = 0
and γ c

12 ≡ γc.
It is notable that within the approximation of first-order

expansion of the susceptibilities in �p and �c, the atomic
populations in Eqs. (A17)–(A20) only depend on the pump
Rabi frequency. In other words, the atomic dynamics is
dominated by the pumping mechanism and is independent
from the level of seeding. Experimentally we have verified
that gain and squeezing levels are indeed independent from the
input probe power up to 200 μW, only limited by the amount
of seed optical power that was experimentally available.

2. Index of refraction for the pump

In the above derivation of the susceptibilities for the probe
and the conjugate, we have implicitly set E0, the amplitude
for the pump electric field, to be a constant throughout the
medium. This assumes that the pump is neither dephased nor
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absorbed. In practice, the pump detuning is large enough to ne-
glect absorption, but even a small index of refraction may have
a substantial impact on the phase-matching condition of the
4WM process. The effect of refraction on the pump is to multi-
ply E0 (and therefore �) by a running phase factor as the pump
propagates. This can be taken into account by simply replacing
k0 in �k by n0k0, where n0 is the index of refraction. The index
of refraction created by the population Ni of the ground state

i can be estimated to be n0 = √
1 + χ � 1 + χ/2 with

χ = −Nid
2

ε0h̄

�i

�2
i + γ 2/4

,

where d is the dipole matrix element of the transition for large
detunings and �i is the detuning, which is taken to be much
larger than the hyperfine splitting of the excited state.
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D. F. Phillips, A. S. Zibrov, and M. D. Lukin, Science 301, 196
(2003).

[20] V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, Phys.
Rev. Lett. 99, 143601 (2007).

[21] As the angle between the pump and the probe, θ , is small and
np is close to 1, the angle between the pump and the conjugate
is very close to θ .

[22] K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E.
Wieman, Appl. Opt. 37, 3295 (1998).

[23] The full Kerr action of the pump on the probe is the compound
effect of the change of magnitude of the index of refraction at
resonance and the frequency shift of the resonance due to the
light shift caused by the pump.

[24] P. R. S. Carvalho, L. E. E. de Araujo, and J. W. R. Tabosa, Phys.
Rev. A 70, 063818 (2004).

[25] P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, J. Phys. B 41,
155004 (2008).

[26] D. A. Steck, Rubidium 85 D Line Data, http://steck.us/alkalidata
(revision 2.1.5).

[27] It is not exactly δ = 0 due to the light shift created by the pump
beam on the 5S1/2(F = 3) → 5P1/2 transition.

[28] We consider here only the case where the detector is perfectly
balanced, with equal electronic gains on both inputs.

[29] N. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, Opt.
Express 19, 21358 (2011); N. V. Corzo, A. M. Marino, K. M.
Jones, and P. D. Lett, Phys. Rev. Lett. 109, 043602 (2012).

033845-10

http://dx.doi.org/10.1103/PhysRevA.40.913
http://dx.doi.org/10.1103/PhysRevLett.59.2555
http://dx.doi.org/10.1103/PhysRevLett.68.3663
http://dx.doi.org/10.1103/PhysRevLett.68.3663
http://dx.doi.org/10.1103/PhysRevLett.86.4267
http://dx.doi.org/10.1364/OL.20.000982
http://dx.doi.org/10.1103/PhysRevLett.81.2675
http://dx.doi.org/10.1103/PhysRevA.78.043816
http://dx.doi.org/10.1103/PhysRevA.78.043816
http://dx.doi.org/10.1103/PhysRevA.84.053826
http://dx.doi.org/10.1364/OE.19.003765
http://dx.doi.org/10.1364/OE.19.003765
http://dx.doi.org/10.1364/OL.37.003141
http://dx.doi.org/10.1103/PhysRevLett.55.1288
http://dx.doi.org/10.1103/PhysRevLett.55.1288
http://dx.doi.org/10.1364/OE.17.016722
http://dx.doi.org/10.1103/PhysRevA.82.033819
http://dx.doi.org/10.1103/PhysRevA.82.033819
http://dx.doi.org/10.1364/OL.32.000178
http://dx.doi.org/10.1364/OL.32.000178
http://dx.doi.org/10.1126/science.1158275
http://dx.doi.org/10.1126/science.1158275
http://dx.doi.org/10.1103/PhysRevLett.103.010501
http://dx.doi.org/10.1103/PhysRevLett.66.2593
http://dx.doi.org/10.1103/PhysRevLett.66.2593
http://dx.doi.org/10.1126/science.1085946
http://dx.doi.org/10.1126/science.1085946
http://dx.doi.org/10.1103/PhysRevLett.99.143601
http://dx.doi.org/10.1103/PhysRevLett.99.143601
http://dx.doi.org/10.1364/AO.37.003295
http://dx.doi.org/10.1103/PhysRevA.70.063818
http://dx.doi.org/10.1103/PhysRevA.70.063818
http://dx.doi.org/10.1088/0953-4075/41/15/155004
http://dx.doi.org/10.1088/0953-4075/41/15/155004
http://steck.us/alkalidata
http://dx.doi.org/10.1364/OE.19.021358
http://dx.doi.org/10.1364/OE.19.021358
http://dx.doi.org/10.1103/PhysRevLett.109.043602



