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We study the effects of finite size and of vacancies on the photonic band gap recently predicted for an
atomic diamond lattice. Close to a Jg = 0 → Je = 1 atomic transition, and for atomic lattices containing up to
N ≈ 3 × 104 atoms, we show how the density of states can be affected by both the shape of the system and the
possible presence of a fraction of unoccupied lattice sites. We numerically predict and theoretically explain the
presence of shape-induced border states and of vacancy-induced localized states appearing in the gap. We also
investigate the penetration depth of the electromagnetic field which we compare to the case of an infinite system.
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I. INTRODUCTION

Wave propagation in periodic potentials constitutes a
problem shared by several domains of classical and quantum
physics, ranging from the study of electron motion in metals
[1], to that of x- and γ -ray scattering by crystals [1–3], and of
light by photonic crystals and metamaterials [4]. Periodicity
leads to an organization of modes according to bands, and
to the possible presence of band gaps, i.e., energy intervals
where modes are absent. By periodicity here we really refer to
an infinitely extended three-dimensional periodic system, not
even to a system on a torus, hence it is strictly speaking not
physical. Nonetheless, predictions made on the basis of infinite
systems can become really satisfactory for systems large
enough, as in solid-state physics, and present the advantage
of benefiting from the Bloch theorem, and of being solved
in the reciprocal space avoiding typical real-space oscillating
functions. Models based on infinite systems may, however,
present some subtleties related to the way in which the infinite
limiting process is performed, often requiring ad hoc Ewald’s
summations type strategies.

The recent experimental realization of a Mott phase with
ultracold-atomic gases [5,6], i.e., of artificial crystals made
by single atoms trapped at the nodes of laser optical lattices,
leads to the necessity of understanding the features of the band
structure of light interacting with such systems. The peculiarity
of this new system is that it presents several remarkable fea-
tures: incident light scatters on pointlike elementary quantum
objects with an internal energy level structure, and a quantum
delocalized position in space [7], the lattice periodicity is of the
order of the incident light wavelength, allowing the exploration
of the entire Brillouin zone and hence of possible band gaps
[8]; experiments reached a remarkable accuracy and control,
permitting the realization of ultraprecise atomic clocks [9–11];
the long-range dipolar coupling among the scattering objects
induces a strongly cooperative response that can be used to
tailor the light amplitude on a subwavelength scale [12]. First
attempts toward the description of such a system overlooked
divergence problems, resulting in noncorrect prediction of
band gaps [13,14], or were based on an ad hoc ultraviolet
regularization procedure allowing us to explore only a particu-
lar class of lattice geometries not presenting any band gap [15].

Photonic band gaps of one-dimensional (1D) cold-atomic
vapors have been realized [16] and exploited to generate
optical parametric oscillation with distributed feedback [17].
Scattered photons have been suggested as a signature of
the Mott insulator and superfluid quantum states [18] and
studied in the framework of polaritons [19], excitons, and
cavity polaritons [20]. Recently, by exploiting a microscopic
theory of light-atom interaction [21] (see also [22–25]), and by
explicitly introducing the presence of the unavoidable atomic
quantum motion, it was possible to naturally regularize the
divergences in a way independent of the lattice geometry,
and at the same time to study the quantitative effects of
the quantum atomic motion on the band structure [7]. The
explicit dependence of the photonic band structure on quantum
features, as the atomic internal energy levels and the external
atomic quantum motion, allows us to consider this artificial
structure as an example of quantum metamaterial [26]. In
the framework of the Fano-Hopfield self-consistent quadratic
theory [3,19,27], it was also possible to find an exact solution
valid for the full Brillouin zone and for arbitrary Bravais and
non-Bravais lattices, allowing the prediction of the diamond
as the first three-dimensional (3D) atomic lattice geometry
presenting a complete photonic band gap [8]. Although an
optical diamond lattice was to our knowledge not obtained yet
in the laboratory, the technique to realize it, elaborating on the
ideas of [28], is perfectly known and consists in superimposing
four plane-wave laser beams of well-chosen directions and
polarizations [8,29]. Further investigations suggested to add
external magnetic fields to open band gaps in other geometric
structures [30].

In cold-atom realizations of 3D optical lattices, the atomic
Mott state extends over 10–20 lattice sites in diameter, so a
natural question regards the features of the band gap in this
finite-size system. A further question concerns the effects of
an imperfect finite portion of a lattice containing site defects,
i.e., a fraction of vacancies resulting in a not complete filling
of the lattice.1 The experimental interest of these issues is
related to the fact that both the finite-size and vacancy effects,

1The n = 1 ground-state Mott phase for a nonzero tunneling-to-
interaction ratio t/U has indeed vacant and multiply occupied sites.
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separately, could in principle drastically affect the presence
and the experimental visibility of the band gap due to the
appearance of states in the gap. The main questions we address
in this paper are as follows: What does happen to the band gap
for systems of realistic sizes and of different shapes? What
is the fraction of vacancies which still permits us to have
a reasonable band-gap visibility? What is the value of the
penetration depth of an electromagnetic wave in the atomic
diamond lattice for finite and infinite systems, i.e., how is it
affected by finite-size effects? Even if we discuss in detail the
case of a diamond lattice, we will present a general formulation
and will discuss the main features which will remain valid
for other lattice geometries with a photonic band gap (which
excludes the simple cubic lattice).

The paper is organized as follows. In Sec. II, we illustrate
the model we use, and the resulting main equations we
solve. In Sec. III, we present and discuss a numerical study
on the density of states and on the penetration depth in a
finite-size system, possibly in presence of imperfections due
to vacant sites in the lattice. In Sec. IV, we provide an analytical
analysis to support and illustrate some of the main features of
the numerical findings. We conclude in Sec. V.

II. MODEL

We consider a system made by a collection of N identical
atoms having fixed positions and an optical dipolar transition
between a Jg = 0 electronic ground state and a Je = 1
electronic excited state.2 Such a transition is available in appro-
priate atomic species, such as strontium [32]. Having a spinless
electronic ground state of course considerably simplifies the
physical description, as the atomic density operator has no
off-diagonal matrix elements in the ground state and there
can not be ground-state-changing photon scattering, that is,
optical-pumping processes [33]; in the low-intensity regime,
the scattering of a photon by a ground-state atom is then purely
elastic, which is a crucial advantage to study coherent multiple
scattering of light in an atomic ensemble as experimentally
done in [32], and only the optical coherences of the density
operator, that give the mean atomic dipoles, are relevant in the
theoretical description.

In our model, which applies in the regime of low-atomic
excitation, the atomic dipoles are thus the only dynamical
variables, and they are coupled by the electromagnetic
field they radiate. The resulting eigenmodes of the mean
atomic dipoles are given by the solutions of the eigenvalue

We may here treat the multiply occupied sites as effectively vacant
sites, either because the resonance frequency of two or more atoms
confined in the Lamb-Dicke regime differs from the single atom one
ω0 by much more than the natural width �, or because there are
techniques to selectively empty the multiply occupied sites [31].

2It is worth stressing that the often-used scalar model for light has
the evident advantage of drastically reducing the numerical effort, but
also the disadvantage of providing a qualitatively and quantitatively
wrong description of the physical system. For instance, it is possible
to show that already for a simple cubic atomic lattice, the scalar
model, in contradiction with the vectorial one, predicts the presence
of a band gap.

problem [13,21]
(
h̄ω0 − i

h̄�

2

)
di,α +

N∑
j = 1
j �= i

∑
β=x,y,z

gαβ(ri − rj )dj,β

= h̄(ω − iγ )di,α. (1)

Here, di,α is the component along the direction α = x,y,z of
the mean dipole carried by the atom i, ω − iγ is the mode
eigenfrequency (it is complex in general with γ > 0, and may
be measured as suggested in [7]), ω0 and � are the single-
atom resonance frequency and spontaneous emission rate. The
tensor gαβ(r) gives the α component of the electric field at the
position r radiated by a dipole oscillating along the direction
β at the origin of coordinates Eα(r) = −gαβ(r)dβ/d2, d being
the atomic dipole moment such that � = d2ω3

0/(3πε0h̄c3).
Here, we consider the case where ω − iγ is very close to ω0,
so that gαβ can be evaluated for a dipole oscillating at the
resonance frequency; introducing the vacuum wave number

k0 = ω0

c
, (2)

we take

gαβ(r) = −3h̄�

4k3
0

[(
k2

0δαβ + ∂rα
∂rβ

)eik0r

r
+ 4πδαβδ(r)

]

=
r>0

3

4
h̄�

eik0r

k0r

[(
−1 − i

k0r
+ 1

(k0r)2

)
δαβ

+
(

1 + 3i

k0r
− 3

(k0r)2

)
rαrβ

r2

]
. (3)

Our first expression in (3) for gαβ(r) differs by a scalar δ(r)
contribution from the usual expression for the electric field
radiated by a dipole [see Eqs. (4.20) and (9.18) of [34]];
this ensures compatibility with our previous works and it is
of course irrelevant here since atoms are never at the same
position.3 The first expression is particularly useful to directly
extract its Fourier transform, needed in the Bloch description
of infinite systems (see Sec. IV), while the second one [which
differs from the first one by another scalar δ(r) contribution]
has the well-known dipole-dipole interaction form, and will be
used in numerical calculations on finite-size systems in Sec. III.

Equation (1) allows one to determine the density of states of
the system. In case an infinite number of atoms are periodically
arranged at the nodes of a diamond lattice, it has been shown
that the system may exhibit an omnidirectional photonic band
gap [8]. Here, by numerical solution of (1), we investigate the
fate of such a gap, in situations close to realistic experimental
ones, where the number of atoms is finite and/or there are
vacancies in the lattice. A further interesting quantity related
to the occurrence of a gap is the so-called “penetration depth”
ξ : an incident electromagnetic wave at a frequency in the
band gap can not penetrate the medium, and its amplitude will
decay exponentially over a characteristic distance ξ . In order to
calculate such a length, we consider a pointlike dipolar source
immersed in the atomic medium, and we extract ξ from the
total field and the induced dipole spatial profiles: we fix at the

3Our convention amounts to omitting the δ(r) term in Eq. (3) of [21].
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position rs a forced dipole ds
α = ďs

α e−iωs t ; the atomic dipoles
at the positions ri will reach a steady state di,α = ďi,α e−iωs t

given by the linear system

−
[
h̄(ωs − ω0) + i

h̄�

2

]
ďi,α +

N∑
j = 1
j �= i

∑
β=x,y,z

gαβ(ri − rj )ďj,β

= −
∑

β=x,y,z

gαβ(ri − rs)ď
s
β . (4)

III. NUMERICAL RESULTS FOR A FINITE-SIZE SYSTEM

In this section, we study a system of N atoms at the nodes
of a diamond lattice. We recall that the diamond lattice is
formed by the superposition of two copies of the same Bravais
lattice: the fcc lattice of lattice constant a, generated by the
three basis vectors

e1 = (0,a/2,a/2), e2 = (a/2,0,a/2), e3 = (a/2,a/2,0),

(5)

and a second fcc lattice obtained by translating the first lattice
by the vector (a/4,a/4,a/4). The corresponding basis of the
reciprocal lattice is

ẽ1 = (−2π/a,2π/a,2π/a), ẽ2 = (2π/a,−2π/a,2π/a),

ẽ3 = (2π/a,2π/a,−2π/a). (6)

In our simulations, the atoms occupy a finite region in space,
which can be a ball or a cube centered at the origin of the
coordinates, each geometry corresponding to the usually used
harmonic traps [5,6] or to the recently realized flat-bottom
cuboid traps [35]. From the numerical solution of (1) we
extract the density of states for the case of a unit filling factor
(Sec. III A) and for the case with a low concentration of
vacancies (Sec. III B). Finally, we analyze the penetration
depth in Sec. III C solving (4).

A. Finite-size effects on the density of states

In this section, we discuss the density of states obtained
by solving Eq. (1) for a finite-size diamond lattice, in the
absence of vacancies. In particular, in Fig. 1 we show the
density of states ρ(ω) for a number of atoms corresponding to
typical experimental realizations N ≈ 2.5 × 104. Here, ρ(ω)
is defined as the distribution of the real part ω of the complex
spectrum of Eq. (1), normalized as

∫
ρ(ω)dω = 6/VL, where

VL = a3/4 is the volume of the direct lattice primitive cell,
in order to facilitate the comparison with the infinite-system
results of [8], plotted as a bar histogram in the figure. If the
atoms occupy a ball (see the black solid line), we observe
partial filling of the spectral gap, most pronounced in the upper
region. On the contrary, the region close to the lower border
of the gap remains relatively weakly affected by the finite size
of the system, considering the sharp rise of ρ(ω) to the left of
this border. The remaining part of the density of states remains
very close to the one of the infinite system. If the atoms occupy
a cube (see the red solid line), the finite-size effects are quite
different. Two peaks appear: a very pronounced one in the
middle of the gap [at (ω − ω0)/� ≈ −3.2], and a second one

-6 -4 -2 0 2 4 6
(ω−ω0)/Γ

0

1

2

3

4

5

ρ(
ω

) Γ
V

L

-5 -4 -3 -2 -1

0

1

FIG. 1. (Color online) Density of the real part of the eigenfre-
quencies ρ(ω) obtained from Eq. (1), in the absence of vacancies and
for k0a = 2 where a is the fcc lattice constant. Red solid lines: finite
system with a cubic shape of side of length 14a, and N = 2.7 × 104.
Black solid lines: finite system with a spherical shape of diameter
18a, and N = 2.4 × 104. The histogram provides the same quantity
for an infinite system [8]. Each of the three curves is composed of
250 bins. VL is the volume of the direct lattice primitive cell. The
inset is a magnification.

at (ω − ω0)/� ≈ 0.5. We investigated the nature of the states
belonging to the peak in the gap, by looking at 10 successive
eigenstates of (1), finding that they are “border states”: they
reach their maxima in a spherical shell of radius ≈5a, and
decay exponentially towards the center of the cube with a law

|di |2 ≡
∑

α=x,y,z

|di,α|2 � e−22+4.6ri /a, (7)

where the dipole eigenvectors are normalized to the maximum
value of their modulus equal to unity. This suggests a value of
the penetration depth of the order of 0.5a, in agreement with
the calculation done in Sec. III C.

In Fig. 2, we show the distribution of the eigenvalues of
Eq. (1) in the complex plane, restricted to small values of
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FIG. 2. (Color online) Complex eigenvalues ω − iγ obtained
from Eq. (1). The system is of finite size, in the absence of
vacancies, for k0a = 2, with a spherical shape of diameter 18a, and
N = 2.4 × 104 atoms. The two vertical red dashed lines give the
borders of the band gap of the infinite periodic system.
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γ /�. In this region, the figure shows that the band gap is
not filled, apart from two narrow intervals of values of ω, in
the center and close to the upper border of the gap. Then, in
the finite-size system, the partial filling of the gap is mostly
due to eigenvalues with larger values of γ /�. The smallest
values of γ /� we obtained are ≈2 × 10−5. The real part of
the corresponding eigenvalues are located on the borders of
the band gap for the infinite system, marked in the figure by
vertical dashed lines, and on the upper bound of the values
of ω represented in Fig. 2 for the finite system, i.e., around
(ω − ω0)/� = 9.5.

B. Effects of vacancies on the density of states

In this section, we address the case where the finite-
size diamond lattice is not perfectly filled, presenting a
concentration 1 − p of defects made by the presence of a
random uniform distribution of nonoccupied lattice sites. For
each value of the parameters and of the system geometry, the
numerical results are obtained for a single realization of the
disorder, randomly chosen by the computer. The fact that such
a random realization is typical was checked by repeating the
simulations with other random arrangements, which produced
similar results (not shown); this could also have been expected
from the fact that the densities of states reported here have a
smooth variation with the concentration 1 − p of vacancies,
as the reader shall see. From an experimental point of view,
this is an interesting piece of information, indicating that the
relevant physics (such as peaks in the density of states) can be
accessed without averaging over the disorder.

In Fig. 3, we show the density of states ρ(ω) obtained
solving Eq. (1) for atoms occupying a ball, as a function of
the lattice filling factor p. The figure, and its inset, show
that already a small concentration of vacancies equal to
1 − p = 0.01 (red solid line) produces a remarkable signature
in the density of states manifested by the appearance of a
pronounced peak in the middle of the band gap, at (ω −
ω0)/� ≈ −3.08. We explain the nature of the peak with the
presence of single-vacancy states localized at the vacancy
position. Since the vacancy concentration is small, most
frequent vacancy states have a single-site nature. In Sec. IV C,
we theoretically calculate the value of the single-vacancy
state frequency, signaled in the inset by a black vertical
dotted line, which seems to coincide quite satisfactorily with
that of the numerically observed peak. By increasing the
vacancy concentration, Fig. 3 shows for 1 − p = 0.05 the
occurrence of a clear second peak in the gap, which seems
to match quite well the frequency of a two-vacancy in-gap
state calculated in Sec. IV C [see the red vertical dotted
line at (ω − ω0)/� � −4]. Peaks corresponding to other
two-vacancy states predicted in Sec. IV C are less visible (see
the other vertical dotted lines in the inset of Fig. 3). Further
increase of the concentration of vacancies produces a gradual
filling of the band gap, whose visibility completely deteriorates
for a vacancy concentration around 1 − p = 0.2.

In Fig. 4, for exactly the same spherical system with a va-
cancy concentration of 1 − p = 0.2, we show the distribution
of the eigenvalues of Eq. (1) in the complex plane, restricted
to small values of γ /�. The figure shows that the band gap
is completely filled. The states filling the gap, for such a large
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FIG. 3. (Color online) Density of the real part of the eigenfre-
quencies ρ(ω) obtained from Eq. (1), for different concentrations
of vacancies, that is, for various filling factors p, and for k0a = 2.
The finite system has a spherical shape of diameter 18a, and N =
2.4 × 104 for p = 1. The histogram provides the same quantity for an
infinite system with no vacancies [8]. VL is the volume of the direct
lattice primitive cell. The inset is a magnification, where the vertical
dotted lines correspond to frequencies of the single-vacancy in-gap
state (black, central) and to two-vacancy in-gap states (R̆2 − R̆1 = e1,
μ̆1 = μ̆2 = 1 in red, outer; R̆2 − R̆1 = aex , μ̆1 = 2,μ̆2 = 1 in blue,
inner; these quantities are defined in Appendix B) theoretically
predicted in Sec. IV C. Decreasing values of p correspond to
increasing values of ρ(ω) in the band gap (see the color code and, in
the inset, the values of p linked with the curves by arrows).

vacancy concentration, are completely delocalized over the
entire system size, and have a spectral imaginary part mostly
concentrated around γ /� ≈ 10−2, with γ /� � 10−3.

In Fig. 5, we study the effect of vacancies on a system
of cubic shape. The figure shows that for a concentration of
vacancies 1 − p = 0.01 (red solid line), two peaks are present
in the band gap. They have a different origin: the first one, that
at smallest frequency, is nothing but the peak related to shape-
induced states, already present in the absence of vacancies (see
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FIG. 4. (Color online) Complex eigenvalues ω − iγ obtained
from Eq. (1). The system is of finite size, in presence of vacancies, that
is with a filling factor p = 0.8, for k0a = 2, with a spherical shape of
diameter 18a, and N = 1.9 × 104 atoms. The two vertical red dashed
lines give the borders of the band gap of the infinite periodic system.
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FIG. 5. (Color online) Density of the real part of the eigenfrequen-
cies ρ(ω) obtained from Eq. (1), for two concentrations of vacancies,
that is, for the filling factors p = 1 (black) and p = 0.99 (red), and
for k0a = 2. The finite system has a cubic shape of side 14a, and
N = 2.7 × 104 for p = 1. The histogram provides the same quantity
for an infinite system with no vacancies [8]. VL is the volume of
the direct lattice primitive cell. We note the double-peak structure
for p = 0.99 (see text). The vertical dotted line corresponds to the
frequency of the single-vacancy in-gap state theoretically predicted
in Sec. IV C.

black solid line, and the discussion in Sec. III A). The second
peak is instead the signature of single-vacancy localized states,
and its central frequency is the same as that shown in Fig. 3
for a spherical shape at the same vacancy concentration.

C. Penetration depth

To numerically calculate the penetration depth ξ for a
diamond finite-size atomic lattice, we numerically solve the
forced dipole equation (4) for a pointlike dipolar oscillating
source ds

α = ďs
α e−iωs t at the position rs (at the center of the

system within a distance a, where a is the lattice constant),
and with ωs in the band gap. Solutions of Eq. (4) provide the
induced atomic dipoles amplitudes ďi,α at the lattice positions
ri . We point out that this geometry is quite favorable to
extract the penetration depth ξ for small systems, whereas
the usual geometry, that sends an electromagnetic plane
wave on the medium, may lead here to complicated border
effects, with light propagating around our spherical medium,
making the precise extraction of ξ difficult, even numerically.
Experimentally, the source inside the medium may be realized
by driving one or a few atomic dipoles close to the center of
the medium, with the two-photon transition already considered
in [7]; the two focused laser beams, whose joint action shall
excite the two-photon transition, spatially overlap at the center
of the medium only, and individually have a frequency far
from single-photon resonance frequencies so that they freely
propagate in the medium.

An interesting question is to know if the penetration depth
ξ is the same for the textbook geometry used to define the
penetration depth (an infinite half-space medium excited by a
plane wave) and for our geometry (a finite spherical medium
with a source at its center). The analytical result of Sec. IV B
for ξ [see Eqs. (33), (35), and (38)] strongly suggests that this
is the case since it only involves the dispersion relation for light
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FIG. 6. (Color online) Penetration depth ξ in (a) and its inverse κ

in (b), as functions of the dipole source frequency ωs . Symbols (the
lines are a guide to the eye) correspond to the numerical solution of
Eq. (4) for a finite system of spherical shape, diameter 18a, filling
factor p = 1, k0a = 2, and containing N = 2.4 × 104 atoms. Red
squares and black circles correspond to values obtained using the
methods of Eqs. (8) and (10), respectively. The vertical dashed lines
correspond to the borders (13) of the band gap for the infinite periodic
system.

in the bulk. Mathematically, one may try to obtain an explicit
proof of that property by extending the analytics of Sec. IV B
to a medium filling a half-space; this is, however, beyond the
scope of this work and it is reserved for a future work.

From our numerical simulations, we extract ξ according
to different methods. The first method is based on the direct
analysis of the induced dipoles, and consists in averaging the

norm
√∑

α |ďi,α|2 on spherical shells of radius ≈u = ||r − rs ||
centered at the source position. We then obtain an average
real dipole function D(u) that we fit in a certain range of u

[where the behavior of D(u) is clearly exponential over several
decades] as

D(u) = C
e−u/ξ

u
, (8)

where ξ and C are the two fitting parameters. The factor 1/u

in (8) is introduced to take into account the direct effect of the
source which is dominant at small distances, allowing us to fit
the function on a larger range. This method provides the results
presented by red squares in Fig. 6. Its specialization to the
analysis of the penetration depth along some given direction
(without averaging over spherical shells) is straightforward,
and leads to the filled diamonds and circles in Figs. 7(a) and
7(b), respectively.

The second method is based on the calculation of the total
electric field amplitude generated by the source and induced
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FIG. 7. Inverse penetration depth κ = 1/ξ along direction e1 in
(a) and direction ex in (b), as a function of the source frequency
ωs expressed through a change of variable mapping the band gap
[ωinf,ωsup] onto R+. Same physical parameters as in Fig. 6. Filled
diamonds in (a) and filled circles in (b): finite-size system with first
extraction method; empty circles in (b): finite-size system with second
extraction method; for those data, ωinf and ωsup were obtained by
linear extrapolation of κ2 to zero. Stars: for the infinite medium
from a numerical evaluation of Eq. (30). Dashed lines: analytical
predictions, close to the band borders, deduced from Eq. (42) (see
text). Note that the x and y axes are in log10 and log2 scale.

dipoles obtained by (4):

Ěα(r) = −
∑

β

gαβ(r − rs)
ďs

β

d2
−

N∑
i=1

∑
β

gαβ(r − ri)
ďi,β

d2
. (9)

We evaluate Ěα(r) on three lines, parallel to the Cartesian axes
and passing trough the source position rs . We first average
the norm

√∑
α |Ěα(r)|2 on the two directions (±) of the three

axes α, then we obtain and fit the six corresponding average
real electric functions E (±)

α (u) as

E (±)
α (u) = K (±)

α

e−u/ξ (±)
α

u
, (10)

obtaining six values of ξ (±)
α , whose average is presented by

empty black circles in Figs. 6 and 7(b).
In Fig. 6, it is apparent that the extractions of the penetration

depth from Eqs. (8) and (10) give different values. This shows
that ξ is not isotropic; it depends on the considered direction
of space, a property that will be recovered analytically in
Sec. IV B. Whereas use of Eq. (10) is expected to give
the penetration depth along the x axis, the first method,
when it involves a directional average as in Eq. (8), is
expected to pull out the maximal penetration depth (maximized
over the directions of space). A second property, apparent

in Fig. 6(a), is the divergence of ξ at the borders of the
infinite-medium forbidden gap (represented by vertical dashed
lines at frequencies ωinf , ωsup). Figure 6(b) even suggests that
κ vanishes there with a vertical slope. We indeed find that
κ2 vanishes linearly with ωs (not shown), as also predicted
analytically in Sec. IV B. By a linear extrapolation of κ2 as a
function of ωs , we get for the borders of the forbidden bands(

ωinf − ω0

�
,
ωsup − ω0

�

)
Eq. (10)� (−4.748,−1.962) (11)

Eq. (8)� (−4.747,−1.948), (12)

which are indeed quite close to the infinite-medium results [8](
ωinf − ω0

�
,
ωsup − ω0

�

)
� (−4.743,−1.962). (13)

To better put in evidence the vanishing of κ at the band edges,
and to more easily compare the various methods, we show κ as
a function of (ωs − ωinf)/(ωsup − ωs) in Fig. 7, with the band
edges ωinf and ωsup deduced for the finite-size simulations
by linear extrapolation of κ2.4 This change of variable on
ωs has the advantage of mapping the band edges to 0 and
+∞, respectively, which is then combined with a log-scale
representation on both figure axes. This figure was produced
for two particular directions of penetration, along the direct
lattice basis vector e1 in Fig. 7(a), and along the Cartesian
axis direction ex in Fig. 7(b). First, in Fig. 7(b), it appears
that the two extraction methods for the penetration depth
in the finite-size system (the first method from the dipoles,
see the filled circles; the second method from the electric
field, see the empty circles) give compatible results if they are
applied along the same direction (here ex , which is equivalent
to ey or ez due to symmetry of the diamond lattice). Second,
in Figs. 7(a) and 7(b), the results of the finite-size systems
are compatible with the ones (stars) for the infinite system in
Sec. IV B, and even if they do not cover a as large range for κ ,
they do nicely follow the analytical prediction (dashed lines)
for the vanishing of κ close to the band edges.

IV. THEORY FOR THE INFINITE SYSTEM

We show in this section that several features of the
numerical simulations, such as the sharp rise of the penetration
depth ξ close to the band-gap borders, and some peaks induced
by vacancies in the density ρ(ω) of the real part of the
eigenfrequencies, can be interpreted analytically for an infinite
system. In this case, a reformulation of Eqs. (1) and (4) in
Fourier space is more appropriate. It is known, however, that
the resulting series over the reciprocal lattice presents subtle
convergence issues [15] that were overlooked in [13,14]. These
issues were solved in [8] by coupling each atomic dipole to
a spatially smoothed version Ē⊥(r) = ∫

d3u E⊥(r − u)χ (u)
of the transverse electromagnetic field operator E⊥(r), where
the smoothing function χ (u) may be taken as a positive

4Note that, according to Eqs. (19) and (20), this rational fraction
of the source frequency is the same for the original model and the
Gaussian spatially smoothed model (ω̄s − ω̄inf )/(ω̄sup − ω̄s) � (ωs −
ωinf )/(ωsup − ωs), within an exponentially small error in 1/b2.
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rotationally invariant function of unit integral and of small
width b. This cuts off the dipolar coupling at high-wave-
number field modes and regularizes the theory for the infinite
system.

One then finds that two changes have to be applied to
Eqs. (1) and (4). First, the function gαβ(r) has to be replaced
by the smoothed function ḡαβ(r) such that

ḡαβ(ri − rj )

=
∫

d3ui

∫
d3ujgαβ(ri + ui − rj − uj )χ (ui)χ (uj ). (14)

In Fourier space, the convolution products take a simple form
so that

˜̄gαβ(k) = 3πh̄�

k3
0

k2δαβ − kαkβ

k2
0 − k2 + i0+ χ̃2(k), (15)

where ˜̄gαβ(k) = ∫
d3r e−ik·rḡαβ(r) is the Fourier transform of

ḡαβ and χ̃(k) is the one of χ (r). Second, the spontaneous
emission rate � in Eqs. (1) and (4) has to be replaced by

�̄ = �χ̃2(k0), (16)

where k0 is a vector of modulus equal to k0 and of arbitrary
direction. If one would treat the atomic motion quantum
mechanically, as in [7], for atoms trapped at the nodes of
an optical lattice, χ (u) = φ2(u) would be the probability
distribution of the fluctuations u of the atomic position around
a node ri , where φ is the underlying atomic center-of-mass
wave function. Then, Eq. (14) would have a straightforward
physical interpretation. Also, �̄ would simply be the elastic
spontaneous emission rate, where the atomic center-of-mass
after decay to the electronic ground state remained in the wave
function φ. In practice, a Gaussian choice for χ is convenient,
which corresponds to

χ̃ (k) = e−k2b2/2. (17)

It is useful to know to which extent the results from the
spatially smoothed model differ from the original model.
For the Gaussian smoothing function, one then has the
remarkable result that, when the width b is much smaller than
all interatomic distances |ri − rj |, one has the approximate
relation

ḡαβ(ri − rj ) � e−k2
0b2

gαβ(ri − rj ) (18)

with an exponentially small error in 1/b2 [7], that is, one has
the same Gaussian factor as for �̄. For the eigenvalue problem
(1), this shows that the eigenvalues ω̄ − iγ̄ of the spatially
smoothed model may be related to the ones ω − iγ of the
original model by

ω̄ − ω0 − iγ̄ � e−k2
0b2

(ω − ω0 − iγ ) (19)

within an exponentially small error in 1/b2. For the steady-
state problem (4), it is found that the forced dipoles of the
spatially smoothed model will (within an exponentially small
error) coincide with the ones of the original model if one takes
in the smoothed model the modified source frequency such
that

ω̄s − ω0 = e−k2
0b2

(ωs − ω0). (20)

A. Density of states for the infinite periodic system

In this section, we show how to recover Fourier space
results of [8] for the density of states in the infinite periodic
system, starting from the smoothed version of the real-space
equation (1).

According to Bloch theorem, solutions of (1) can be taken
of the form di,α = d (μ)

α eiq·R, where q is the Bloch vector,
R is a vector of the Bravais lattice, the index μ labels the
sublattices (for the diamond lattice, given by the combination
of two shifted fcc Bravais lattices, μ assumes two values), so
that all atomic positions can be written as ri = R + r(μ), where
r(μ) is the position with respect to the Bravais lattice vector R.
Injecting this ansatz in Eq. (1) modified according to Eqs. (14)
and (16) gives the eigenvalue problem∑

β,ν

P̄αμ,βν(q)d̄ (ν)
β = h̄(ω̄ − ω0 − iγ̄ )d̄ (μ)

α (21)

with

P̄αμ,βν(q) = −
[
ḡαβ(0) + i

h̄�̄

2
δαβ

]
δμν

+
∑
R∈L

ḡαβ(R + r(μ) − r(ν))e−iq·R. (22)

Here, indices α,β and μ,ν label the spatial direction and
the sublattices, respectively, and eigenvalues ω̄ − iγ̄ and
eigenvectors d̄

(ν)
β depend on the choice of the cutoff smooth

function χ (u), hence, for the Gaussian choice as in Eq. (17),
they depend on the value of b. By considering the first
contribution of Eq. (22), inside the square brackets, it is
found from the inverse Fourier transform of (15) that the
tensor ḡαβ(0) is scalar (it is proportional to δαβ); further, using
1/(X + i0+) = P 1

X
− iπδ(X) and (16), one finds that the

imaginary part of ḡαβ(0) exactly cancels with the �̄ term. The
second contribution, that is the sum over the Bravais lattice in
(22), can be transformed with the Poisson summation formula.
For the Gaussian smoothing function (17), the real part of
ḡαβ(0) can be calculated explicitly; one obtains as in [8]

P̄αμ,βν(q) = h̄�

2
δαβδμν

[
1 + 2(k0b)2

2π1/2(k0b)3
− Erfi (k0b)e−k2

0b2

]

+ 1

VL

∑
K∈RL

ei(K+q)·(r(μ)−r(ν)) ˜̄gαβ(K + q), (23)

where the wave vectors K run over the reciprocal lattice of
the Bravais lattice, and Erfi is the imaginary error function. As
expected for an infinite system, the matrix P̄ is Hermitian, so
that γ̄ = 0.

Turning back to the original problem (1), that is, in the
absence of any smoothing function, we conclude for the infinite
periodic system that the spectrum is real (γ = 0) and that
h̄ω − h̄ω0 is any of the eigenvalues of the matrix

P (q) = lim
b→0

P̄ (q), (24)

as in the perturbative limit of [8] (that is, for the eigenfre-
quencies close to ω0 when ω2

p/ω2
0 → 0, ωp being the plasma

frequency). The resulting density of states is

ρ(ω) =
∑

n

∫
D

d3q

(2π )3
δ(ω − ωq,n), (25)
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where the integral over q is taken in the unit cell D =
{∑3

i=1 Qi ẽi ,− 1
2 � Qi < 1

2 } of the reciprocal lattice of basis
(ẽi)1�i�3, the sum over n runs over the all the eigenvectors of
P (q), and ωq,n is the corresponding eigenfrequency.

For the Gaussian smoothing function, the limit of the band
structure for b → 0 is computed in practice from the relation

P̄αμ,βν(q) � Pαμ,βν(q)e−k2
0b2

, (26)

which holds within an exponentially small error in
(dmin/b)2 � 1 where dmin is the minimal interatomic distance
[7,8]. Note that this relation, obtained for the particular case
of a periodic system, is consistent with the general result (19),
and implies that the eigenvectors of P̄ (q) essentially coincide
with those of P (q). For the diamond, dmin = a

√
3/4. We used

typically b = 0.05a, to which we applied the above b → 0
extrapolation formula to obtain the histogram in Figs. 1, 3,
and 5.

B. Penetration depth for the infinite periodic system

In this section we wish to derive, for an infinite system, the
value of the penetration depth ξ and to confirm that it depends
on the considered direction of the direct space and that it
diverges at the band edges, both properties having already
been observed for a finite-size system in Sec. III C.

Hence, we have to solve Eq. (4) in the presence of a forcing
source dipole ds

α = ďs
α e−iωs t placed in rs . The solutions we

look for are the steady-state dipole amplitudes ďi,α = ď
(μ)
R,α on

each diamond lattice site of position ri = R + r(μ), where R
belongs to the Bravais direct lattice. Since the scope is to
determine the penetration depth ξ , we restrict ourselves to the
case where the source frequency ωs is in the band gap. Then,
the dipole amplitudes are expected to decay exponentially at
large distances, and one may introduce the Fourier transform

ď (μ)
q,α =

∑
R∈L

ď
(μ)
R,αe−iq·R. (27)

One applies this Fourier transform to the spatially smoothed
version of Eq. (4); for a Gaussian smoothing function, the
source frequency is actually chosen to be ω̄s given by Eq. (20),
which ensures that the forced dipole amplitudes are essentially
unaffected by the smoothing. In what follows, we can thus omit
the bar (indicating the spatial smoothing) over the dipoles and
the penetration depth. After calculations that closely resemble
those of Sec. IV A,

−h̄(ω̄s − ω0)ď (μ)
q,α +

∑
β,ν

P̄αμ,βν(q)ď (ν)
q,β

= − 1

VL

∑
K∈RL

ei(K+q)·(r(μ)−rs )
∑

β

˜̄gαβ(K + q)ďs
β . (28)

One writes the formal solution of this linear system in terms of
the inverse of the matrix P̄ (q) − h̄(ω̄s − ω0)1, where 1 is the
identity; this inverse exists for all q since ω̄s is in the band gap
of the spatially smoothed model. Then, applying the inverse
Fourier transform

d
(μ)
R,α =

∫
D

d3q

VRL
d (μ)

q,αeiq·R, (29)

and using K · R = 0 modulo 2π , one obtains the forced dipole
amplitude on each lattice site:

ď
(μ)
R,α = −

∑
β,γ,ν

∑
K∈RL

∫
D

d3q

(2π )3
ei(K+q)·(R+r(ν)−rs )

×{[P̄ (q) − h̄(ω̄s − ω0)1]−1}αμ,βν ˜̄gβγ (K + q) ďs
γ .

(30)

A first application of Eq. (30) is to evaluate the dipole
amplitudes from a numerical integration over q and, fitting
them in a region of large values of R in some direction u, to
extract the penetration depth in that direction. Using up to 2563

points in the numerical integration over q leads to the stars in
Fig. 7, that compare well to the penetration depth extracted
from the simulations on a finite-size system in Sec. III C.
Furthermore, this approach is numerically more efficient close
to the borders of the band gap, where the penetration depth
diverges and the finite-size effects of the simulations become
stronger.

A second strategy to obtain the penetration depth from
Eq. (30) is to use the residue theorem. Since K + q spans R3

when K spans the reciprocal lattice and q spans its unit cell D,
and since P̄ (q) = P̄ (q + K), Eq. (30) can be rewritten as

ď
(μ)
R,α = −

∑
β,γ,ν

∫
R3

d3k

(2π )3
eik·(R+r(ν)−rs )

×{[P̄ (k) − h̄(ω̄s − ω0)1]−1}αμ,βν ˜̄gβγ (k) ďs
γ . (31)

To take the large-R limit in the direction u, we set

R = ru + O(1) with r > 0,r → ∞. (32)

We split the integration over k into an integral over the
component k‖ of k along u and over the transverse components
k⊥ of k. Then, (k⊥/k) · R remains bounded, whereas u · R is
divergent.

First, we consider the integral over k‖ ∈ R for a fixed k⊥.
The integrand involves the exponential factor eik‖r ; since r > 0
we close the integration contour with a half-circle (of diverging
radius) in the upper complex plane.5 Whereas the equation for
k‖,

ω̄k‖u+k⊥,n = ω̄s, (33)

where ω̄k,n is the dispersion relation of the nth band of
eigenfrequencies for the spatially smoothed periodic system,
has for sure no real solution since ω̄s is in the band gap, it may
have complex solutions k

(0)
‖ with a positive imaginary part.

Due to the occurrence of the inverse matrix involving P̄ (k)
in the integrand, such complex solutions provide poles in the
half upper plane, which according to the residue theorem lead
to the damped exponential exp(ik(0)

‖ r). If (33) admits several
roots, or roots for various band index n, one has to keep the
value n0 of n and the root k(0)

‖ leading to the smallest imaginary
part, that provides the leading contribution in the large-r limit.

5To this end, the Gaussian smoothing function χ is not appropriate.
One can rather take χ (r) ∝ e−r/b/r , whose Fourier transform is a
Lorentzian.
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Then, one has to remember that there is still an integral over
k⊥, and that k

(0)
‖ depends on k⊥. We thus face an integral of

the form

ď
(μ)
R,α =

∫
R2

d2k⊥
(2π )2

eik
(0)
‖ (k⊥)r f (k⊥)

∂k‖ ω̄k
(0)
‖ (k⊥)u+k⊥,n0

, (34)

where the derivative of the band dispersion relation in the
denominator originates from the residue of the pole in
k

(0)
‖ (k⊥) and the r-independent function f in the numerator

is easily reconstructed from Eq. (31). To obtain an asymptotic
equivalent of the integral (34) in the large-r limit, we use the
saddle-point method: Eq. (34) is dominated by the contribution
of the vicinity of the stationary point of the “phase,” that is,
k(0)

⊥ such that6

∂k⊥k
(0)
‖ (k(0)

⊥ ) = 0. (35)

As we shall see, in general k(0)
⊥ has complex coordinates (in the

plane orthogonal to u) and one has to deform the integration
domain of (34) to let the integration go through the stationary
point.7 Then, one quadratizes the variation of the pole around
the stationary point:

k
(0)
‖ (k(0)

⊥ + δk⊥) = k
(0)
‖ (k(0)

⊥ ) + δk⊥ · Bδk⊥ + O(δk3
⊥), (36)

where the relevant values of the deviation δk⊥ of k⊥ from the
stationary point scale as 1/r1/2. One finally gets the equivalent

ď
(μ)
R,α ∼

r→∞
eik

(0)
‖ (k(0)

⊥ )rf (k(0)
⊥ )

∂k‖ ω̄k
(0)
‖ (k(0)

⊥ )u+k(0)
⊥ ,n0

∫
R2

d2δk⊥
(2π )2

eirδk⊥·Bδk⊥ , (37)

where the Gaussian integral provides a factor 1/r . The inverse
of the penetration depth in direction u is thus

κ(u) ≡ 1

ξ (u)
= Im [k(0)

‖ (k(0)
⊥ )]. (38)

In general, this procedure is however difficult to use, even
numerically, as one has to look for poles of the dispersion
relation for a wave vector k(0) with three complex coordinates.
An important and manageable limiting case is for a source
frequency ω̄s very close to the lower border ω̄inf or the upper
border ω̄sup of the band gap. The penetration depth is then
expected to diverge, so that the imaginary components of the
wave vector are small and its real components are close to

6If there are several stationary points, one has to keep the one leading
to the smallest imaginary part of k

(0)
‖ .

7In the limiting case to come, close to a border of the band gap
and for a given direction u, the naive minimization of the imaginary
part of k

(0)
‖ (k⊥) over real component k⊥ leads to k⊥ = 0 and gives

an expression for the inverse penetration depth that in general differs
from the correct one (42). Surprisingly, this naive minimization gives
an upper bound on the penetration depth in the direction u, i.e., it
underestimates the damping of the field. The clue to this paradox is
the fact that the value k⊥ = 0, although it minimizes the imaginary
part of k

(0)
‖ (k⊥), is not a stationary point of the real part of k

(0)
‖ (k⊥).

The integration of the oscillating function exp{i Re [k(0)
‖ (k⊥)]r} over

k⊥ then induces an additional blurring of the dipole amplitudes, that
reduces the penetration depth as compared to the naive prediction
1/Im[k(0)

‖ (0)].

the location q0 in the Bloch vector space of the band-gap
border (such that ω̄q0,n0 is equal to ω̄inf or ω̄sup). One can then
quadratize the dispersion relation around the location of the
border:

ω̄q0+δq,n0 = ω̄q0 + δq · Āδq + O(δq3), (39)

where Ā (resp. −Ā) is a positive-definite matrix for the
upper (resp. lower) border of the band gap. In practice, to
determine the matrix Ā, we diagonalize the matrix P̄ (q0) and
we analytically expand the matrix P̄ (q0 + δq) up to second
order in δq, where the matrix P̄ (q) is given as a function of q
by Eq. (23). To obtain the resulting change of the eigenvalues
of P̄ (q0) up to order δq2 included, we treat the deviation of
P̄ (q0 + δq) from P̄ (q0) linear in δq up to second order in
the usual perturbation theory, and the deviation of P̄ (q0 + δq)
from P̄ (q0) quadratic in δq up to first order in perturbation
theory. Note that, according to Eq. (26), Ā is related to its
zero-b limit A, that is, to the matrix A of the original model,
by

Ā � e−k2
0b2

A (40)

within an exponentially small error in 1/b2. Then, the solution
of (33) obeying the stationarity condition (35) can be obtained
analytically:

k(0) ≡ k
(0)
‖ (k(0)

⊥ )u + k(0)
⊥ � q0 + iκ(u)

Ā−1u
u · Ā−1u

(41)

with the expression for the inverse penetration depth

κ(u) = [(ω̄q0 − ω̄s)u · Ā−1u]1/2, (42)

where Ā−1 is the inverse of the matrix Ā. In practice, one may
find that the band-gap border is obtained for several values of
q0, due to symmetry properties (as it shall be the case for the
diamond lattice). At fixed direction u, one then has to select
the value of q0 leading to the minimal value of κ(u) in Eq. (42).
Equations (41) and (42) are derived in Appendix A, where the
complete resulting expression for ď

(μ)
R,α is also given.

A simple consequence of (42) is the asymptotic expression
for the maximal penetration depth at a given frequency ω̄s , i.e.,
maximized over the direction u, close to a band-gap border:

ξmax ∼
ω̄s→ω̄bord

(
Āmax

ω̄bord − ω̄s

)1/2

, (43)

where Āmax is the eigenvalue of the matrix Ā of maximal
modulus.

We have explicitly evaluated the prediction (42) in the
vicinity of the upper border of the band gap. Irrespective of
the value of k0a, we find that the frequency ω̄sup of this upper
border is reached on the so-called L point of the first Brillouin
zone of the lattice, corresponding to q0 = (ẽ1 + ẽ2 + ẽ3)/2 =
(π/a)(ex + ey + ez) [see Eq. (6) for the values of the ẽi], as it
was already suspected in [8]. This point is so symmetric that
all the six components of the corresponding eigenvector of the
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matrix P̄ are equal, which leads to the quite explicit expression

ω̄sup − ω0 = �

2

[
1 + 2(k0b)2

2π1/2(k0b)3
− Erfi (k0b)e−k2

0b2

]

+ 2π�

k3
0VL

∑
K∈RL

∑
ν

cos[K′ · (r(μ) − r(ν))]

× K ′2e−K ′2b2

k2
0 − K ′2 , (44)

where K′ = K + q0. However, this frequency is also exactly
reached for 13 other values of q0, so that

ω̄q0 = ω̄sup for 2q0 ∈ {±ẽ1 ± ẽ2 ± ẽ3,±ẽ1,±ẽ2,±ẽ3}.
(45)

For a given direction u, one thus calculates the 14 corre-
sponding matrices Ā, which are all similar, and one keeps the
one giving the smallest contribution to Eq. (42). For u = e1

and u = ex , this leads to the dashed line in the right part
of Figs. 7(a) and 7(b), respectively, in excellent agreement
with the numerical evaluation of (30) and in good agreement
with the finite-size simulations. Furthermore, for k0a = 2
as in the simulations, the direction e1 corresponds to the
twice-degenerate, maximal modulus eigenvalue Āmax of some
of the 14 matrices Ā (the ones associated to q0 = ± 1

2 ẽ2 and
q0 = ± 1

2 ẽ3) so that the maximal penetration depth ξmax is
obtained in that direction e1. Remarkably, for k0a large enough
(but smaller than the value k0a � 5.14 leading to a closure of
the gap), we find that the conclusion changes, and that the
maximal penetration depth is now obtained in the direction
(ex + ey + ez)/

√
3. This change suggests that there exists a

magic value of k0a such that the matrix Ā is scalar and, close
to the upper border of the band gap, the penetration depth is
isotropic, which is confirmed by the diagonalization of Ā that
leads to8

(k0a)sup
iso � 2.8632. (46)

We have also explicitly evaluated the prediction of Eq. (42)
in the vicinity of the lower border of the band gap. We have
found that the frequency ω̄inf of this lower border is obtained
in 12 values q0 of the Bloch vector, that weakly depend on
k0a and that can be parametrized in terms of a single positive
dimensionless unknown quantity σ :

ω̄q0 = ω̄inf for q0 ∈{±σ (ẽ1 − ẽ2),±σ (ẽ1 − ẽ3),

±σ (ẽ2 − ẽ3),±[σ (ẽ1 + ẽ2) + (2σ − 1)ẽ3],

±[σ (ẽ1 + ẽ3) + (2σ − 1)ẽ2],

±[σ (ẽ2 + ẽ3) + (2σ − 1)ẽ1]}, (47)

where the basis vectors of the reciprocal of the fcc lattice are
given by Eq. (6). Note that the last six elements of (47) have
a σ -independent component ±2π/a in the Cartesian basis,

8For k0a below that value, Āmax is twice degenerate and the
corresponding eigenspace is the plane orthogonal to (ex + ey +
ez)/

√
3 for q0 = (ẽ1 + ẽ2 + ẽ3)/2 and the plane orthogonal to (−ex +

ey + ez)/
√

3 for q0 = ẽ1/2. For k0a above that value, Āmax is not
degenerate and the corresponding eigenvector is (ex + ey + ez)/

√
3

for q0 = (ẽ1 + ẽ2 + ẽ3)/2, and (−ex + ey + ez)/
√

3 for q0 = ẽ1/2.

along ez, ey , ex , respectively, and their components along
the other two Cartesian axes are equal; these six elements
are thus located on the straight line XU , where X and U

are standard remarkable points of the first Brillouin zone of
the diamond lattice. For the value k0a = 2 taken in the figures,
we numerically obtained σ � 0.330 346. For those 12 values
of q0, we have determined the 12 similar matrices Ā describing
the local quadratization of ω̄q and we have kept, for a given
u equal to e1 or ex , the one giving the smallest contribution
to Eq. (42). This has led to the dashed line in the left part of
Figs. 7(a) and 7(b), respectively, again in excellent agreement
with the numerical evaluation of (30) and in good agreement
with the finite-size simulations. For k0a = 2, it is also found
that e1 is the eigenvector of two of the 12 similar Ā matrices
[the ones corresponding to the last two elements of (47)]
with the nondegenerate, largest modulus eigenvalue Āmax, so
that the maximal penetration depth ξmax is actually achieved
in that direction, close to the lower border of the band gap.
For larger values of k0a, the situation can change to a maximal
penetration depth obtained along direction ex . This change
occurs for the magic value

(k0a)inf
change � 2.9412, (48)

where σ � 0.353 740 and the maximal modulus eigenvalue
Āmax of the matrices Ā is twice degenerate.

C. States in the gap due to vacancies

We now create a single vacancy in the infinite periodic
system still using the spatially smoothed version by removing
the atom at the location ri0 = R0 + r(μ0), that is, at the
lattice site R0 on the sublattice μ0. The eigenspectrum of
the spatially smoothed version of (1) is expected to remain
real (γ̄ = 0) but there may now be eigenvalues with ω̄ in
the band gap of the periodic system, corresponding to states
exponentially localized around the vacancy. As we will see,
the corresponding ω̄ are given by Eq. (53).

To look for such in-gap states, we use the following trick:
Starting from a periodic system in presence of a source
dipole in rs (of imposed frequency ω̄s and amplitudes ďs

α), we
imagine that the vacancy on site ri0 results from the coales-
cence of the corresponding forced dipole ďi0,α with the source
dipole in the limit where the source location tends to the
location of the vacancy:

lim
rs→ri0

ďi0,α = −ďs
α, ∀ α. (49)

In this case, the total dipole carried by the vacancy site
vanishes, as if there was indeed a vacancy there. Obviously,
condition (49) can be satisfied only for specific values of ω̄s

in the band gap of the spatially smoothed model, that we now
determine.

Writing Eq. (30) for R = R0, μ = μ0, rs = R0 + r(μ0), and
replacing ď

(μ0)
R0,α

with −ďs
α , we obtain the homogeneous linear

system

ďs
α =

∑
β,γ,ν

∫
D

d3q

VRL
{[P̄ (q) − h̄(ω̄s − ω0)1]}αμ0,βν

× Q̄βν,γμ0 (q)ďs
γ , (50)
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where we used (2π )3 = VRLVL and we called Q̄αμ,βν(q)
the nonscalar contribution to P̄αμ,βν(q), which is the second
contribution in the right-hand side of Eq. (23). In terms of
matrices,

P̄ (q) = �1 + Q̄(q), (51)

where � is the coefficient of the scalar contribution, that is,
of the first term in Eq. (23), � = −[ḡαα(0) + ih̄�̄/2] (this is
independent of the direction α). We recognize a matrix product
in Eq. (50), related to the sum over ν and β; we then use

[P̄ (q) − h̄δ̄1]−1Q̄(q) = 1 + (h̄δ̄ − �)[P̄ (q) − h̄δ̄1]−1,

(52)

with δ̄ = ω̄s − ω0. The contribution to (50) of 1 in that
expression exactly reproduces the term ďs

α of the left-hand side
of (50) since the integral over q on the primitive cell D of the
reciprocal lattice is equal to VRL. Simplifying the remaining
contribution by the factor h̄δ̄ − �, it remains

0 =
∑

γ

{∫
D

d3q

VRL
[P̄ (q) − h̄(ω̄s − ω0)1]−1

}
αμ0,γμ0

ďs
γ , ∀ α.

(53)

This must have a nonzero solution for the source dipole,
which is equivalent to requiring that the ω̄s-dependent 3 × 3
Hermitian matrix in-between curly brackets in (53) has a
zero eigenvalue. To show that the condition (53) is not
only sufficient, but also necessary, we have performed an
alternative calculation, presented in Appendix B, that has also
the advantage of including the case of several vacancies.

For the diamond lattice, we have evaluated numerically
the integral over the Bloch vector q in Eq. (53). We then
find that the resulting 3 × 3 Hermitian matrix (in-between
curly brackets) is scalar. As the eigenvalues of that matrix
are increasing functions of ω̄s , as can be shown with the
Hellmann-Feynman theorem, this implies that there is at most
one solution for ω̄s in the band gap. Numerically, we find that
there is a solution, whose value [after extrapolation to b → 0
using Eq. (19)] for k0a = 2 is indicated by a vertical dotted
line in Fig. 3, in agreement with a peak location in the density
of states in the numerical simulations.

In the case of several vacancies, we can extend our analysis
as described in Appendix B. By numerical solution of Eq. (B7),
we have then investigated the in-gap states for two vacancies
on sites separated by R̆2 − R̆1 = 0,e1 or aex , being either
on the same sublattice (μ̆1 = μ̆2) or on different sublattices
(μ̆1 �= μ̆2). In most cases, we have found allowed frequencies
close to the one of the single-vacancy state, within the width
of the central peak in the inset of Fig. 3; those states can not
be resolved in that figure and we have not indicated them. For
the two geometries specified in the caption of Fig. 3, we have
found frequencies of two-vacancy states that are clearly out
of the central peak (see the red and blue vertical dotted lines);
in particular, the prediction with (ω − ω0)/� � −4 seems to
match quite well the very clear secondary peak that emerges
in the figure for increasing concentration of vacancies.

V. CONCLUSION

Three-dimensional infinite periodic arrangements of ex-
tended scattering objects leading to an omnidirectional band
gap for light have been known since the 1990s, starting from
the diamond lattice configuration of dielectric microspheres
of [36]. In the case of a periodic ensemble of pointlike
scatterers, the technical issues affecting the calculation of the
band structure of light have been solved only recently [7,8,15],
which has allowed us to show that the diamond lattice can also
lead to a photonic band gap in the pointlike case [8].

With cold-atom experiments, a diamondlike ensemble of
pointlike scatterers is in principle realizable, provided that one
produces, in the appropriate optical lattice geometry [8,29],
a high-quality Mott phase of atoms [5,6] having an optical
transition between a spin-zero ground state and a spin-one
electronic excited state [37]. In practical realizations, there
will be of course unavoidable deviations from the ideal infinite
periodic case, which we have quantified in this work with
numerical solutions of linearly coupled dipoles equations with
about 3 × 104 particles.

A first issue is due to effects of the finite size of the
atomic medium. Rather than having a band structure, light
has a continuous spectrum of scattering states; by analytic
continuation to the lower half of the complex plane, however,
it is more physical to consider, as we have done, the discrete
complex eigenfrequencies ω − iγ of the resonances of the
system. In the distribution function of ω, the forbidden
gap remains visible in our simulations. It remains actually
quite visible if one restricts to the resonances with a half
decay rate γ much smaller than the free-space single-atom
spontaneous emission rate �; such a filtering of the resonances
could be realized experimentally by performing a frequency
measurement after an adjustable time delay, during which the
short-lived resonances decay and are suppressed. Amusingly,
a narrow peak in the distribution function of ω was observed
close to the center of the infinite system band gap, when the
finite-size atomic medium has a cubic shape; such a peak,
absent when the medium has a spherical shape, is a very clear
finite-size effect.

A second issue is due to vacancies inside the atomic
medium. For a concentration of a few percent of vacancies,
narrow peaks emerge in the distribution function of ω inside
the gap. We were able to identify several of these peaks as
corresponding to the frequencies of localized states around
one or two close vacancies in an otherwise infinite periodic
medium. At higher concentrations of vacancies, e.g., 20%,
with no filtering on γ , the gap disappears.

From our finite-size sample, we have shown that one can
quite accurately extract the penetration depth ξ of the light in
the medium, and that the obtained values compare well with
independent calculations in a periodic medium. Away from the
borders of the band gap, ξ as a function of the imposed field
frequency ωs exhibits a plateau at a remarkably low value,
between 0.5a and a, where a is the lattice constant of the
underlying fcc lattice. Close to the borders ωbord of the band
gap, one can even directly observe, in our finite-size system,
the onset of the divergence of ξ as 1/|ωs − ωbord|1/2, with
a prefactor close to our analytical predictions. We have also
observed from the simulations that ξ is anisotropic (it depends
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on the direction of space), in agreement with our theoretical
analysis, and that this anisotropy becomes quite pronounced
close to the lower border of the band gap.
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APPENDIX A: PENETRATION DEPTH

In this appendix, for the spatially smoothed model, we
derive the results (41) and (42) for the penetration depth in the
direction u at a frequency ω̄s close to a border of the band gap,
which justifies the use of the quadratized dispersion relation
(39) around the Bloch vector q0, and we give the large-distance
equivalent of the forced dipole amplitude, as obtained from the
saddle-point method.

As shorthand notations, we introduce z = k‖ − q0‖ and
x = k⊥ − q0⊥ as the components along u and in the plane
orthogonal to u of the vector k − q0. We also introduce
the frequency deviation from the nearest band border �̄ ≡
ω̄q0 − ω̄s . Then, Eq. (33) reduces to a degree-two equation
for z:

z2u · Āu + 2zx · Āu + x · Āx + �̄ = 0. (A1)

Furthermore, z has to be stationary with respect to a variation
of k⊥ [see Eq. (35)]. Differentiating the trinomial (A1) with
respect to x, and using ∂xz = 0, one obtains the vectorial
equation zQĀu + QĀQx = 0 where Q projects orthogonally
to u. The solution is

x = −z(QĀQ)−1Āu, (A2)

where the matrix inverse is intended within the vectorial plane
orthogonal to u. Inserting this solution into Eq. (A1) and
using [P ĀP − P ĀQ (QĀQ)−1 QĀP ]P Ā−1P = P where
P = 1 − Q is the orthogonal projector on u [see relation
(B.23) of Sec. III B2 in [38]], one obtains

z = iκ(u) with κ(u) given by Eq. (42). (A3)

Similarly, we can derive the chain of identities
Ā[u − (QĀQ)−1Āu] = [P ĀP − P ĀQ (QĀQ)−1 QĀP ]u =
(P Ā−1P )−1u = u/(u · Ā−1u), simply injecting the closure
relation P + Q = 1 on both sides of the first factor Ā. This
gives, as in Eq. (41),

zu + x
iκ(u)

= u − (QĀQ)−1Āu = Ā−1u
u · Ā−1u

. (A4)

To determine the residue appearing in (37), one takes the
derivative of the trinomial (A1) with respect to z for a fixed x.
Using the previous relations, one obtains

∂k‖ ω̄k(0),n0 = 2zu · Āu + 2x · Āu = 2iκ(u)

(u · Ā−1u)
. (A5)

Next, we determine the matrix B in Eq. (37) originating from
the quadratization of z around the stationary point x. Since x is
a stationary point, a first-order variation δx induces a variation
δz of z that is second order in δx. Performing these variations
in Eq. (A1) up to second order in δx, and thus up to first order

in δz, and using the previous relations, we obtain

B = i

2κ(u)
(u · Ā−1u)QĀQ. (A6)

We conclude that the matrix iB appearing in the Gaussian
integral (37) is negative, which justifies the fact that the saddle
point is approached along the real-axis direction as in (37). If
one performs the Gaussian integral, Eq. (37) reduces to

ď
(μ)
R,α ∼

r→∞
e−κ(u)rf (k(0)

⊥ )

4iπr
[det(QĀQ)]−1/2. (A7)

The determinant in that expression is conveniently transformed
as det(QĀQ) = (u · Ā−1u) det Ā using the expression of the
matrix of Ā−1 in terms of the comatrix of Ā (in an orthonormal
basis containing the direction u).

To obtain our final asymptotic form for the forced dipole
amplitude, we note that, for any acceptable vector k(0) of
the pole plus saddle-point analysis, k(0) + K is again accept-
able, where K is any vector of the reciprocal lattice; this is
due to the periodicity of the dispersion relation ω̄k,n0 . We also
include a sum over possibly degenerate Bloch vector q0 leading
to the same value ω̄q0,n0 (as discussed in the main text). We
also note that, when R → +∞,

||(Ā−1�̄)1/2(R + r(ν) − rs)||
= −i(k(0) − q0) · (R + r(ν) − rs) + o(1), (A8)

which gives a simple physical interpretation to the expression
(41) of k(0): The apparently obscure correction to q0 in (41)
simply originates from the fact that what more precisely
matters in the asymptotic behavior of the dipole amplitudes is
not ru but really the vectorial distance R + r(ν) − rs between
the considered lattice site and the source. Finally, we obtain, for
ω̄s close to a border of the band gap, the asymptotic equivalent
for R → ∞:

ď
(μ)
R,α ∼ −

∑
q0

(
�̄

det Ā

)1/2
eiq0·Re−||(Ā−1�̄)1/2(R+r(ν)−rs )||

4πh̄||(Ā−1�̄)1/2(R + r(ν) − rs)||
×

∑
β,μ,ν

∑
K∈RL

ei(q0+K)·(r(ν)−rs )φ(n0)
αμ φ

(n0)∗
βν

˜̄gβγ (q0 + K)ďs
γ ,

(A9)

where φ(n0)
αμ are the components of the normalized eigenvector

of P̄ (q0) of eigenvalue ω̄q0,n0 , we approximated k(0) by q0 in
the argument of ˜̄gβγ , and the square root (Ā−1�̄)1/2 of the
matrix Ā−1�̄ is well defined since this matrix is positive. Note
that the second line of (A9) does not depend on R.

APPENDIX B: A GENERAL VACANCY CALCULATION

We consider here the infinite periodic system, with a finite
number of vacancies at nodes (R̆i ,μ̆i), 1 � i � n, where we
recall that R belongs to the Bravais lattice and μ labels the
sublattices. The scope is to determine the frequencies ω̄ of
the localized states that can exist, due to the presence of
the vacancies, in the band gap of the periodic system, in the
spatially smoothed version of the model.

The idea is to formally introduce, in the coupled equations
for the dipoles, fictitious dipoles carried by the vacancies.
Among the physical dipoles, the spatially smoothed version of
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Eq. (1) holds:

0 = (�− h̄δ̄)d (μ)
R +

′∑
R′,μ′

ḡ(R + r(μ) − R′ − r(μ′))d (μ′)
R′ . (B1)

Here, the prime over the summation symbol means that the sum
is restricted to the physical dipoles, δ̄ = ω̄ − ω0 is the detuning
from the atomic resonance, � is defined below Eq. (51), and
we have used for conciseness an implicit vectorial notation
for the dipoles and an implicit matrix notation for ḡ. For the
fictitious dipoles, the equation is that they are equal to zero:

0 = (� − h̄δ̄)d (μ̆i )
R̆i

, ∀ i ∈ {1, . . . ,n}. (B2)

This allows us to formally extend the sum in Eq. (B1) to the
fictitious dipoles, that is, one can remove the prime over the
summation symbol. One can then merge the two series of
equations using the usual plus-minus trick: for all R in the
Bravais lattice and for all sublattices μ, one requires that

0 = (� − h̄δ̄)d (μ)
R +

∑
R′,μ′

ḡ(R + r(μ) − R′ − r(μ′))d (μ′)
R′

−
n∑

i=1

δR,R̆i
δμ,μ̆i

s̄i , (B3)

where δ is the Kronecker symbol and we have introduced the
auxiliary unknowns

s̄i ≡
∑
R′,μ′

ḡ(R̆i + r(μ̆i ) − R′ − r(μ′))d (μ′)
R′ . (B4)

Then, taking the Fourier transform (27) of Eq. (B3) and
using (22),

0 =
∑
μ′

[P̄ (q) − h̄δ̄1]μμ′d (μ′)
q −

n∑
i=1

e−iq·R̆i δμ,μ̆i
s̄i . (B5)

Since the frequency ω̄ is in the gap, the matrix is invertible,
and taking the inverse Fourier transform, one obtains

d
(μ)
R =

n∑
i=1

∫
D

d3q

VRL
eiq·(R−R̆i ){[P̄ (q) − h̄δ̄1]−1}μμ̆i

s̄i . (B6)

Expressing the fact that the fictitious dipoles are all equal
to zero, we find the homogeneous system of equations:

n∑
i=1

{∫
D

d3q

VRL
eiq·(R̆j −R̆i )[P̄ (q) − h̄δ̄1]−1

}
μ̆j μ̆i

s̄i = 0, (B7)

to be satisfied ∀ j ∈ {1, . . . ,n}. The acceptable in-gap fre-
quencies are such that the system admits a nonidentically zero
solution (s̄i)1�i�n, that is the determinant of the corresponding
3n × 3n matrix (the one in-between curly brackets) must
vanish. In the case of a single vacancy, this reproduces Eq. (53).

Finally, we have performed the consistency check that, if
one replaces in Eq. (B4) the dipoles in terms of the auxiliary
unknowns s̄j , as given by (B6), one recovers exactly the same
system as (B7), using Eqs. (22) and (51) and the fact that the
integral over q on the primitive cell D of the reciprocal lattice
is equal to its volume VRL.

[1] G. Grosso and G. Pastori-Parravicini, Solid State Physics
(Academic, New York, 2000).

[2] A. M. Afanas’ev and Yu. Kagan, Zh. Eksp. Teor. Fiz. 52, 191
(1966) [Sov. Phys.–JETP 25, 124 (1967)]; G. B. Smirnov and
Y. V. Shvydko, Pis’ma Zh. Eksp. Teor. Fiz. 34, 409 (1982) [JETP
Lett. 35, 505 (1982)].

[3] J. J. Hopfield, Phys. Rev. 112, 1555 (1958); V. Agranovich,
Zh. Eksp. Teor. Fiz. 10, 216 (1960) [Sov. Phys.–JETP 10, 307
(1960)].

[4] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade,
Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton
University Press, Princeton, NJ, 2008); F. Zolla, G. Renversez,
A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros,
and S. Leon-Saval, Foundations of Photonic Crystal Fibres, 2nd
ed. (Imperial College Press, London, 2012).

[5] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch,
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