
PHYSICAL REVIEW A 88, 033842 (2013)

Breakdown of adiabatic transfer of light in waveguides in the presence of absorption
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In atomic physics, adiabatic evolution is often used to achieve a robust and efficient population transfer.
Many adiabatic schemes have also been implemented in optical waveguide structures. Recently there has been
increasing interest in the influence of decay and absorption, and their engineering applications. Here it is shown
that even a small decay can significantly influence the dynamical behavior of a system, above and beyond a mere
change of the overall norm. In particular, a small decay can lead to a breakdown of adiabatic transfer schemes,
even when both the spectrum and the eigenfunctions are only sightly modified. This is demonstrated for the
generalization of a stimulated Raman adiabatic passage scheme that has recently been implemented in optical
waveguide structures. Here the question how an additional absorption in either the initial or the target waveguide
influences the transfer property of the scheme is addressed. It is found that the scheme breaks down for small
values of the absorption at a relatively sharp threshold, which can be estimated by simple analytical arguments.
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I. INTRODUCTION

The adiabatic theorem of Hermitian quantum mechanics
provides the basis for many experimental schemes to ma-
nipulate and control quantum systems. Prominent examples
from atomic physics include the Raman adiabatic passage
(RAP) and stimulated Raman adiabatic passage (STIRAP)
schemes [1] for population transfer in effective two- or
three-level systems. In many applications, however, quantum
systems have states with finite lifetimes described by complex
energies. These more realistic situations cannot be described
by conventional Hermitian quantum mechanics, but require
an additional anti-Hermitian part in the Hamiltonian (see,
e.g., [2,3] and references therein). Due to the analogy of
the time-dependent Schrödinger equation and the paraxial
approximation for light propagation in optical media [4,5],
the dynamics generated by non-Hermitian Hamiltonians can
conveniently be realized using optical systems [6].

It has previously been pointed out in the literature that the
adiabatic theorem does not necessarily hold for non-Hermitian
systems [7], and it has recently been shown that this can
lead to new effects in the “deep” non-Hermitian regime
in the presence of exceptional points [8]. However, it is often
assumed that small decay rates do not modify the systems’
behavior drastically, and their effects on adiabatic behavior
seem hitherto not to have been fully appreciated.

Here we show that even a small decay rate, which does not
modify the static behavior of a system significantly, can lead to
a breakdown of adiabatic transfer properties. We demonstrate
this fact for a STIRAP-related scheme, which is readily
implemented in optical waveguide structures. In this scheme
a sharp threshold for the breakdown of the transfer property is
observed, which we calculate to a good approximation using
simple analytical arguments. Note that models similar to the
one considered here also appear in the context of cavity QED
systems [9].

II. MODEL: A STIRAP-TYPE SCHEME IN THREE
COUPLED WAVEGUIDES

The STIRAP scheme was originally proposed and imple-
mented for population transfer in three-level atoms [1,10]. Re-
cently, STIRAP-type schemes have also been implemented in
optical waveguides [11–14]. The optical realization allows for
a straightforward experimental implementation of additional
decay of varying strength using absorbing materials. Thus, in
what follows we shall proceed our analysis in the waveguide
context. The propagation of light in this system is governed by
a Schrödinger-type equation, where the propagation distance
z takes over the role of time in conventional quantum systems
[4,5]

i
d

dz
|ψ(z)〉 = H (z)|ψ(z)〉. (1)

In a system of N waveguides |ψ(z)〉 is a vector in CN

whose components are the wave amplitudes in the different
waveguides, and the Hamiltonian H (z) encodes the refractive
index in the waveguides as well as the coupling between them.

In the following, we study a generalization of the setup
investigated by the authors of [13], which consists of two par-
allel (left and right) waveguides with an additional diagonally
directed central waveguide, as schematically depicted in Fig. 1.
Since the couplings between neighboring waveguides depend
exponentially on their distances, this system can be described
by a Hamiltonian of the type

H (z) =
⎛
⎝ 0 v(z) 0

v(z) 0 w(z)
0 w(z) 0

⎞
⎠ , (2)

with couplings of the form

v(z) = 1/w(z) = e−a(z−L/2)/L. (3)
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FIG. 1. (Color online) Sketch of the STIRAP scheme in three
coupled waveguides as implemented in [13], leading to adiabatic
transfer of light from waveguide 3 to waveguide 1.

The eigenvalues of the system for a given value of z are given
by

E0 = 0, E± = ±ω, with ω =
√

v2 + w2, (4)

with the corresponding eigenstates

|ϕ0〉 =

⎛
⎜⎝

cos θ

0

− sin θ

⎞
⎟⎠ , |ϕ±〉 = 1√

2

⎛
⎜⎝

sin θ

±1

cos θ

⎞
⎟⎠ , (5)

where tan θ = v/w. For convenience, and in analogy to
the quantum case, we will refer to these eigenvalues and
eigenstates as instantaneous eigenenergies and eigenstates in
the following.

An example of the instantaneous eigenvalues of this system
is depicted in the left panel in Fig. 2. The right panel shows the
components of the instantaneous eigenstate |ϕ0〉 correspond-
ing to the zero energy eigenvalue. As in the conventional
STIRAP scheme, |ϕ0〉 varies from |3〉 (only populating the
right waveguide) at z = 0 to |1〉 (only populating the left
waveguide) at z = L for sufficiently large values of a, for
which

w(0)

v(0)
= v(L)

w(L)
= e−a � 1. (6)

Thus, adiabatic parameter variation, which is given for
sufficiently large values of L in the present case, leads to
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FIG. 2. (Color online) The left figure shows the eigenvalues of
the Hamiltonian (2), with the parameter dependence (3) for a = 5.
The right figure shows the squared absolute values of the components
of the adiabatic eigenstate |ϕ0〉 (first, second, and third component
shown in black, magenta, and light blue, respectively).

a complete population transfer from the right to the left
waveguide. Furthermore, since the second component of |ϕ0〉
is identically zero for all z, the central waveguide is never
significantly populated during the process. This has been
experimentally demonstrated in the waveguide setup in [13].

A. Adiabatic transfer probability

Let us now consider the transfer probability in more
detail. We wish to adiabatically follow the state |ϕ0〉, which
corresponds approximately to the right waveguide at z = 0,
that is,

|ψ(0)〉 = |ϕ0(0)〉 ≈ −|3〉. (7)

The transfer probability to the left waveguide at z = L is
defined by

P = |〈1|ψ(L)〉|2∑3
n=1 |〈n|ψ(L)〉|2 , (8)

where the denominator is constant if there is no absorption,
and can be set to unity.

Let us express the solution of the evolution equation (1) as
a sum of adiabatic and nonadiabatic parts in the instantaneous
eigenbasis

|ψ(z)〉 = a0(z)|ϕ0(z)〉 +
∑
j=±

aj (z)|ϕj (z)〉, (9)

where the absolute values of the nonadiabatic coefficients of
the instantaneous states |ϕ±〉 are equal due to the symmetry
of the problem. On account of the relation |ϕ0(L)〉 ≈ |1〉, the
transfer probability in Eq. (8) can be estimated as

P = |a0(L)|2
|a0(L)|2 + 2|a±(L)|2 . (10)

Again, if there is no absorption in the system, the denominator
is equal to unity if the initial wave function is normalized.

The dynamical equations for the coefficients aj directly
follow from Eq. (1) as

daj

dz
= −iEjaj −

∑
k �=j

〈
ϕ̄j

∣∣∣∣dϕk

dz

〉
ak (11)

with the initial conditions

a0(0) = 1, a±(0) = 0. (12)

The bar denotes complex conjugation distinguishing the
left and right eigenvectors for the symmetric possibly non-
Hermitian Hamiltonian to be considered in the following. In
that case the geometric phase is included in the eigenvectors
by using the normalization condition 〈ϕ̄j |ϕj 〉 = 1 [2]. If
there is no absorption the Hamiltonian under consideration
is real symmetric, and the instantaneous eigenstates can be
chosen real; thus no complex conjugation is required. For the
Hamiltonian (2) the equations (11) explicitly read

i
d

dz

⎛
⎜⎝

a−
a0

a+

⎞
⎟⎠ =

⎛
⎜⎜⎝

−ω i
√

2a
L ω2 0

−i
√

2a
L ω2 0 −i

√
2a

L ω2

0 i
√

2a
L ω2 ω

⎞
⎟⎟⎠

⎛
⎜⎝

a−
a0

a+

⎞
⎟⎠ , (13)
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FIG. 3. (Color online) Nonadiabatic transition probabilities as a
function of L for a = 5 (blue solid line). For comparison also the
estimation based on Eq. (16) is shown (black dashed line).

with ω = √
v2 + w2, which depends on z. For large values

of L the nonadiabatic coupling constant
√

2a
L ω2 is small for all

values of z, and reaches its maximal value at z = L/2.
The nonadiabatic transition probability can be obtained

by a numerical integration. The result is depicted in a
semilogarithmic plot as a function of L in Fig. 3, for a = 5.
While there is an approximate exponential decay initially, at a
critical value of L the transition probability begins to oscillate
around an only slowly decreasing mean value. Similar behavior
is typically observed in STIRAP schemes [15].

The initial exponential decay of the nonadiabatic transition
probability in Fig. 3 can be estimated by a Landau-Zener-type
argument as

Pnonad ≈ exp

(
−2Im

∫ z0

L/2
(E+ − E0)dz

)
, (14)

where z0 denotes the position of the exceptional point, where
E0 = E+ or E0 = E−, nearest to the real z axis [16]. Since
E− = E+, exceptional points appear as triple degeneracies
(EP3) with E+ = E0 = E− = 0 corresponding to complex
values of z given by the equation v = ±iw. Using Eq. (3),
we find that they are located at

zn = L

(
1

2
+ i(1 + 2n)

π

4a

)
, n ∈ Z. (15)

The EP3 with the smallest positive imaginary part of
z is z0. From E0 = 0 and E+(L/2 + iξ ) = √

v2 + w2 =√
2 cos(2aξ/L), we can compute the integral in Eq. (14) as

Pnonad ≈ exp

(
−2

∫ Im z0

0

√
2 cos(2aξ/L)dξ

)

= exp

(
− 2

a
√

π
�2

(
3

4

)
L

)
. (16)

This estimate is shown in Fig. 3 as a dashed black line. It can
be seen that it provides a good approximation for the initial
decrease of the transition probability with increasing L. The
saturation of the transition probability with larger values of L is
due to the fact that the Landau-Zener approximation assumes
a vanishing coupling at the beginning and the end of the “time
evolution” (i.e., at z = 0 and z = L, respectively), which is
not the case in the STIRAP scheme investigated here.

In summary, the transfer probability (10) is very close to
unity as long as L is large. In the following we will see how the
scheme can break down in the presence of losses, even though
the nonadiabatic transitions stay small.

III. BREAKDOWN OF ADIABATICITY IN THE PRESENCE
OF ABSORPTION

The adiabatic theorem states that a system initially prepared
in an eigenstate remains in the corresponding instantaneous
eigenstate if the system parameters are varied infinitely slowly
and the corresponding energy level is nondegenerate at all
times. For finite parameter variations, there are small transition
amplitudes between the adiabatic states, which are typically
of order O(ε), where ε denotes the small adiabatic parameter
[17,18]. We have seen for the STIRAP scheme in waveguides
investigated here, that indeed the nonadiabatic transitions are
negligible for large values of L. In the presence of absorption,
however, this alone does not guarantee adiabatic evolution.
This is due to the fact that absorption leads to complex
eigenvalues, that is, the amplitudes of the instantaneous
eigenstates are themselves exponentially decreasing in time.
This can lead to a situation in which the small nonadiabatic
transition amplitude grows exponentially in time relative to
the adiabatic amplitude, if the adiabatic state is not the one
with the smallest decay rate. In other words, the effect is
caused by the dominance of the single gain mode of the time
evolution operator [8]. We will now demonstrate how this
general phenomenon can lead to a breakdown of the adiabatic
population transfer in our waveguide system, if one of the
waveguides has an additional absorption. Note that this does
not rule out the existence of a modified transfer scheme which
could lead to a total population transfer in the presence of
absorption. See, e.g., [9] for investigations of such alternative
schemes in the context of cavity QED.

The case of absorption in the central waveguide is well
studied in the context of the original STIRAP scheme, and it is
straightforward to show that it does not influence the transition
probability significantly. Intuitively this can be understood by
realizing that the adiabatic state |ϕ0〉 does not populate the
central waveguide at any instant, and thus, is not affected by
the additional decay. For moderate absorption the nonadiabatic
coupling elements are not altered and thus the system will
simply not feel the absorption in the unpopulated state in a
first-order approximation. In the following we shall focus on
the effect of absorption in one of the outer waveguides, which
can indeed lead to a breakdown of the transfer property.

A. Approximate eigenvalues and eigenstates in
the presence of absorption

Absorption in the nth waveguide is modeled by an
imaginary energy −iγ in the nth diagonal element of
the Hamiltonian (2). Here we are in particular interested
in the effect of small absorption rates, which only slightly
modify the eigenvalues and eigenstates. In this case, the
eigenvalues can be obtained via first-order perturbation theory
that leaves the real parts unaltered and yields additional
imaginary parts [2,19]. For absorption in the target waveguide
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(state |1〉), i.e., for the Hamiltonian

H (z) =

⎛
⎜⎝

−iγ v(z) 0

v(z) 0 w(z)

0 w(z) 0

⎞
⎟⎠ , (17)

we find

Im(E0) ≈ −γ cos2 θ = −γ
w2

ω2
,

(18)

Im(E±) ≈ −γ
1

2
sin2 θ = −γ

v2

2ω2
.

The eigenstate corresponding to E0, in first-order perturbation
theory, is given by

|ϕ0〉 =
⎛
⎝ cos θ

iγ cos θ sin θ/ω

− sin θ

⎞
⎠ . (19)

In the upper and middle panels of Fig. 4 we show the
numerically obtained energy levels in comparison to the
first-order perturbation theory for a = 5, and two different
values of γ as a function of z/L. The energies are well
described by the perturbative equation. In the lower panels
of the figure the components of the instantaneous eigenstate
|ϕ0〉 are shown. As in the Hermitian case, this state populates
the right waveguide for z = 0, while it is localized in the
left for z = L. However, the central waveguide is also partly
populated for intermediate values of z.

±
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FIG. 4. (Color online) Real (top) and imaginary (middle) parts
of the energies for γ = 0.1 (left) and γ = 0.5 (right), and a = 5.
The solid black line shows the numerically obtained eigenvalues,
and the dashed red line those obtained from first-order perturbation
theory. The solid lines in the lower panel show the components of the
adiabatic eigenstate |ϕ0〉 (colors as in Fig. 2), the dashed lines show
the perturbative result.

A similar behavior is found for absorption in the initial
waveguide (state |3〉), described by the Hamiltonian

H (z) =
⎛
⎝ 0 v(z) 0

v(z) 0 w(z)
0 w(z) −iγ

⎞
⎠ , (20)

where the eigenvalues acquire additional imaginary parts of

Im(E0) ≈ −γ sin2 θ, Im(E±) ≈ −γ

2
cos2 θ. (21)

Assuming that the nonadiabatic transitions are small, one
could conclude from the behavior of the eigenvalues and
eigenstates that starting in the right waveguide (|3〉) for large
values of L a full transfer of the population to the left
waveguide (|1〉) (up to an overall decay) should be achieved for
moderate values of γ . However, a numerical simulation of the
total transferred probability, as a function of γ and L, yields a
different result, as depicted in Fig. 5 for absorption in the target
waveguide and in Fig. 6 for absorption in the initial waveguide:
In both cases there is a sharp transition for relatively small
values of γ at which the adiabatic transfer scheme breaks
down. This is related to the relative growth of the nonadiabatic

L20 60 100 140

0

0.3

0.6

0.9

L50 100 150

0

0.2

0.4

0.6

FIG. 5. (Color online) Numerically obtained transfer probability
(P = 1 is red, P = 0 is blue) for absorption in the target waveguide
as a function of L and γ for a = 5 (top) and a = 8 (bottom).
The dashed white line shows the analytical transition boundary
based on the amplification of the nonadiabatic coupling for the
Hermitian system using the approximation (16), the solid black line
is the semianalytical critical boundary using the numerically obtained
nonadiabatic coupling for the non-Hermitian system with γ = 0.2.
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FIG. 6. (Color online) Numerically obtained transfer probability
(P = 1 is red, P = 0 is blue) for absorption in the initial waveguide
as a function of L and γ for a = 5. The black line shows the analytical
transition boundary (39).

transitions mentioned above. In the case of absorption in the
initial waveguide, there are additional separate regions where
the population is transferred completely for larger values of γ .
These, however, correspond to nonadiabtic (coherent) transfer.
In what follows we shall first investigate in detail how the
adiabatic transition boundary emerges for absorption in the
target waveguide, before turning to the case of absorption in
the initial waveguide in Sec. III C.

B. Absorption in the target waveguide

As before we express the time-dependent state in the basis
of the instantaneous eigenvectors according to Eq. (9), and
analyze the behavior of the adiabatic coefficients. The main
difference to the absorption-free case discussed in Sec. II is
that we have to take into account that the adiabatic states
have a finite lifetime, that is, they decay. Approximating the
instantaneous eigenvectors by those of the Hermitian system,
while at the same time using the first-order corrections for the
energies (18) to account for the decay rates, Eq. (11) becomes

i
d

dz

⎛
⎝ a−

a0

a+

⎞
⎠ =

⎛
⎜⎜⎝

−ω − i
γ v2

2ω2 i
√

2a
L ω2 0

−i
√

2a
Lω2 −i

γ w2

ω2 −i
√

2a
L ω2

0 i
√

2a
L ω2 ω − i

γ v2

2ω2

⎞
⎟⎟⎠

⎛
⎝a−

a0

a+

⎞
⎠ .

(22)

The nonadiabatic coupling constant is not affected by the
absorption, and still is maximal in the vicinity of the avoided
crossing of the energies, close to z = L/2 (see Fig. 4). The
adiabatic state |ϕ0〉 is approximately stable for z < L/2 where
Im(E0) is small, and decays for z > L/2, where Im(E0) ≈
−γ . Hence, we can assume that the main transition to the
nonadiabatic states |ϕ±〉 still occurs in the neighborhood of
z ≈ L/2. After this point, the states |ϕ±〉 decay only slowly
since the imaginary parts of their energies are small. Thus we
find

|a±(L)| ≈
√

Pnonad, (23)

where Pnonad denotes the nonadiabatic transition probability.
The remaining population in the state |ϕ0〉, which we wish

to follow adiabatically, on the other hand, decays after the
transition. Thus we estimate

|a0(L)| =
√

1 − 2Pnonad exp

(∫ L

0
Im E0dz

)

≈
√

1 − 2Pnonad e−γL/2, (24)

where the integral is calculated using the eigenvalues in
first-order perturbation theory in Eq. (18). The factor of 2
in front of the nonadiabatic transition probability accounts for
the transitions into the two states |ϕ±〉.

The population transfer is successful if

|a0(L)|2 	 2|a±(L)|2, (25)

that is, when the nonadiabatic transition probability is small.
Treating Eq. (25) as an equality and using Eqs. (23) and (24),
we obtain the threshold value

γcr = ln

(
1

2Pnonad
− 1

)/
L. (26)

On account of the exponential dependence of a0 on γ in
Eq. (24), the characteristic width of the threshold can be
estimated by δγcr ∼ 2/L. Since δγcr � γcr for small Pnonad

in Eq. (26), the observed threshold appears to be rather sharp.
Since we expect γcr to be relatively small, to get a first

estimate we approximate the nonadiabatic transition probabil-
ity with its initial exponential behavior in the Hermitian case
where γ = 0, given by Eq. (16). Substituting this expression
into Eq. (26) yields an analytic estimate for the critical decay
rate

γ LZ
cr = 1

L
ln

(
exp

[
2

a
√

π
�2

(
3
4

)
L

]
2

− 1

)
, (27)

which for large values of L simplifies to

γ LZ
cr ≈ 2

a
√

π
�2

(
3

4

)
− ln(2)

L
. (28)

In Fig. 5 this value is shown as a white dashed line. It can
be seen that it is a good estimate for the exact transition
boundary. It fails, however, to describe a slow decrease of γcr

for large values of L. This decrease is due to the nonexponential
behavior of the transition probability for large values of L,
already observed in Fig. 3.

The exact nonadiabatic transition probability can again
be obtained by a numerical integration. We show the result
for three different values of γ in a semilogarithmic plot as
a function of L in Fig. 7. The light blue line corresponds
to the Hermitian case. For comparison, the Landau-Zener
estimate (16) is also shown (dashed black line). The presence
of absorption leads to a smoothing of the oscillations, and an
increase of the value of L for which the initially approximately
exponential decay starts to saturate. It can also be seen that the
slope in the region of exponential decay is slightly decreased
by the absorption. The latter effect explains why the white
lines in Fig. 5 slightly overestimate the critical value of γ . As
expected the quality of the approximation is better for the case
a = 8, where the boundary is located at smaller values of γ .

We can obtain an excellent approximation for the transfer
boundary by using the numerical values of the nonadiabatic
transition probability Pnonad for a fixed value of γ = 0.2,
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FIG. 7. (Color online) Nonadiabatic transition probabilities as a
function of L for a = 5 for different values of γ : γ = 0 (light blue),
γ = 0.1 (magenta), and γ = 0.25 (black). For comparison also the
estimation based on Eq. (16) is shown (black dashed line).

close to the actual boundary, as an input in Eq. (26). This
is demonstrated in Fig. 5, where the solid black lines depict
the thus obtained result.

C. Absorption in the initial waveguide

Let us finally analyze the case with decay in the initial
state, modeled by the Hamiltonian (20). In this case, similar
to the case of absorption in the target waveguide, using the
decay rates in Eq. (21), we find the dynamical equations for
the coefficients of the state in the instantaneous eigenbasis

i
d

dz

⎛
⎝ a−

a0

a+

⎞
⎠ =

⎛
⎜⎜⎝

−ω − i
γ w2

2ω2 i
√

2a
L ω2 0

−i
√

2a
L ω2 −i

γ v2

ω2 −i
√

2a
L ω2

0 i
√

2a
L ω2 ω − i

γ w2

2ω2

⎞
⎟⎟⎠

⎛
⎝a−

a0

a+

⎞
⎠ .

(29)

While superficially these dynamical equations appear very
similar to Eq. (22), in contrast to the previously considered
cases, the only important nonadiabatic coupling occurs for
small z/L. The nonadiabatic coupling constant

√
2a

L ω2 is the
same in both cases, and still has a maximum around z =
L/2. However, the adiabatic state |ϕ0〉 is now exponentially
decaying for values of z < L/2, and the actual transition is
proportional to the population in the adiabatic state. Thus, the
loss of population due to absorption can cancel out the increase
in the coupling constant for increasing values of z. This is the
case for large values of L and sufficiently large absorption
γ 	 1/L.

To quantitatively estimate for which values of γ the
adiabatic transfer breaks down, as before we have to estimate
at which value of γ the condition |a0(L)|2 	 2|a±(L)|2 holds.

For small values of z � L, we can use Eq. (3) and set

v2

ω2
≈ 1,

w2

ω2
≈ e−2a � 1, ω ≈ ea/2 	 1 (30)

in Eq. (29). If we further neglect a small nonadiabatic effect
for the amplitude a0, which is justified by the initial conditions
(12), the dynamical equations (29) reduce to

da0

dz
= −γ a0,

da±
dz

= ∓iea/2a± + ae−a
√

2

L
a0. (31)

Using Eq. (12) this system is solved by

a0 = e−γ z, (32)

and

a± = − ae−a
√

2

(±iea/2 − γ )L
e∓iea/2z[1 − e(±iea/2−γ )z]. (33)

Thus

|a±| = ae−a
√

2√
γ 2 + eaL

√
1 − 2 cos(ea/2z)e−γ z + e−2γ z. (34)

The term
√

1 − 2 cos(ea/2z)e−γ z + e−2γ z oscillates around the
value 1 + e−2γ z with decreasing amplitude. For values of z 	
1/γ , |a±| thus converges to the constant value

|a±| = ae−a
√

2√
γ 2 + eaL

. (35)

Since the population in the adiabatic state continues to
decrease exponentially up to z ∼ L/2 and is consequently
small afterwards, the nonadiabatic transitions for larger z are
small and do not change the final result at z = L for sufficiently
large L 	 1/γ . The only important process for values of
z > L/2 is the decay with the rates given in Eq. (21). Using
Eq. (35), this yields

|a0(L)| = e
∫ L

0 Im E0dz = e−γL/2, (36)

and

|a±(L)| = ae−a
√

2√
γ 2 + eaL

e
∫ L

0 Im E±dz = ae−a
√

2√
γ 2 + eaL

e−γL/4.

(37)

The adiabatic transfer breaks down when |a0|2 ≈ 2|a±|2,
which yields the condition

e−γcrL ≈ 4a2e−2a(
γ 2

cr + ea
)
L2

e−γcrL/2. (38)

Since ea 	 1, while we expect the critical value of γ to be
small, we can neglect the term γ 2

cr in the denominator in
Eq. (38), to obtain an approximation for the critical value
of γ at which adiabatic transfer breaks down:

γcr = 4

L
ln

L

2ae−3a/2
. (39)

Again, due to the exponential dependence on γcr in Eq. (38)
the breakdown of adiabatic transfer has a relatively sharp
threshold of width δγcr ∼ 2/L � γcr. Figure 6 shows the
boundary given by Eq. (39) together with the results of
direct numerical simulation, confirming the validity of our
derivation. The deviation for smaller values of L is due to
the fact that the assumption of the only relevant nonadiabatic
transitions occurring for small values of z/L is only justified
for sufficiently large values of L.

IV. CONCLUSION

We have demonstrated that even a small decay rate can
significantly influence the dynamical behavior of a system
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with respect to adiabatic time evolutions. This is due to a
competition between small nonadiabatic transition amplitudes
and relative exponential growths of the decaying adiabatic
eigenstates. In particular, we have shown for a STIRAP-related
scheme, which can be implemented straightforwardly using
optical waveguides, that the adiabatic transfer behavior breaks
down at a relatively sharp threshold for small decay rates. The
critical value of the decay rate has been estimated by simple
analytical arguments.
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