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Off-axis excitation of hydrogenlike atoms by twisted photons

Andrei Afanasev,1 Carl E. Carlson,2 and Asmita Mukherjee3

1Department of Physics, The George Washington University, Washington, DC 20052, USA
2Department of Physics, The College of William and Mary in Virginia, Williamsburg, VA 23187, USA

3Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
(Received 17 May 2013; published 24 September 2013)

We show that the twisted-photon states, or photon states with large (>h̄) angular momentum projection (mγ )
in the direction of motion, can photoexcite atomic levels for a hydrogenlike atom that are novel and distinct and
are not restricted by mγ , when the symmetry axis of the twisted-photon beam does not coincide with the center
of the atomic target. Selection rules are given and interesting implications and observables for the above process
are pointed out.
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I. INTRODUCTION AND MOTIVATION

The fact that circularly polarized photons carry an angular
momentum h̄ was predicted theoretically and demonstrated
experimentally in a seminal experiment by Beth in 1936 [1].
It was also realized [2] (Appendix) that the electromagnetic
wave can carry orbital angular momentum in the direction of
its propagation if it is constrained in the transverse plane, as
in waveguides. Much later, in 1992, Allen and collaborators
suggested [3] that special light beams that can propagate
in vacuum, called Laguerre-Gaussian beams, predicted as
non-plane-wave solutions of Maxwell equations, can carry
large angular momentum Jz � h̄ associated with their helical
wave fronts. At a quantum level such beams can be described
in terms of “twisted photons” [4]. This concept can be also
extended to beams of particles, and electrons in particular [5].
Detailed reviews of the field are published, cf. [6]. Methods to
produce “twisted” light include spiral phase plates, computer-
generated holograms [6], and synchrotron radiation in a helical
undulator [7,8] or in a free-electron laser [9]. Theoretical
work [10,11] has shown that one can generate twisted
photons with high energies of several GeV via Compton
backscattering of laser photons on an energetic electron beam,
making such photon beams relevant for nuclear and particle
physics.

An important question is, to what extent is absorption of the
twisted photons by atoms or nuclei different from the plane-
wave photons? Work by Picón et al. [12] demonstrated that
during photoionization of atoms, the knocked-out electrons
carry angular momenta that reproduce the angular momentum
of the incoming photons. The references [12,13] deal mainly
with a special case in which the photon beam’s symmetry axis
coincides with a center of an atom. In a recent publication
[14] the authors analyzed elastic scattering of the twisted
photons on a hydrogen atom, again with a restriction that
the atom is located at the center of the optical vortex. We
consider a more general case of arbitrary positioned beams
and considered photoexcitation of bound states with different
quantum numbers in a hydrogen atom. Such considerations
can also be found in [15], which has important observations
regarding total angular momentum conservation, although
many formulas are given just for the atom-on-axis case. After
presenting theoretical formalism for excitation of an atom by
twisted photons, we point out novel effects caused by large

angular momenta of the incoming photons. Our arguments
are further corroborated by theoretical calculations showing
that a significant fraction of the atomic levels excited by
the twisted photons could not be otherwise produced by
plane-wave photons. The angular momentum projection of
the twisted-photon state is derived in the Appendix.

II. BASIC FORMULAS

The twisted-photon definition here follows Serbo and
Jentschura [10,11], although with a more field-theory-based
viewpoint. Another possibility would be to quantize a
Laguerre-Gaussian laser mode considered in the original work
by Allen et al. [3], but our main conclusions will not be affected
by this choice.

A twisted photon moving in the z direction is

|κmγ kz�〉 =
∫

d2k⊥
(2π )2

aκmγ
(�k⊥)|�k,�〉

=
√

κ

2π

∫
dφk

2π
(−i)mγ eimγ φk |�k,�〉, (1)

where |�k,�〉 are plane-wave states, or momentum eigenstates
with fixed longitudinal component kz and fixed magnitude
traverse component

aκmγ
(�k⊥) = (−i)mγ eimγ φk

√
2π

κ
δ(κ − |�k⊥|). (2)

The twisted-photon state can thus be viewed as a superposition
of plane-wave states where the momenta form a cone in
momentum space with a fixed pitch angle

θk = arctan

(
|�k⊥|
kz

)
, (3)

and varying azimuthal angle weighted by a phase eimγ φk .
The normalization is

〈κ ′m′
γ k′

z�
′|κmγ kz�〉

= 2π 2ωδ(kz − k′
z)δ(κ − κ ′)δmγ m′

γ
δ��′ (4)

for 〈�k′�′|�k�〉 = (2π )32ωδ3(�k − �k′)δ��′ , and ω = |�k|.
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Using the photon field operator Aμ(x), the wave function
of a plane-wave photon is

〈0|Aμ(x)|�k,�〉 = ε
μ

�k,�
e−ikx (5)

and so the wave function of the twisted photon is

Aμ

κmkz�
(x) = 〈0|Aμ(x)|κmkz�〉

=
√

κ

2π

∫
dφk

2π
(−i)mγ eimγ φk ε

μ

�k,�
e−ikx . (6)

In cylindrical coordinates this is

Aμ

κmγ kz�
(x) = e−i(ωt−kzz)

×
√

κ

2π

∫
dφk

2π
(−i)mγ eimγ φk ε

μ

�k,�
ei�k⊥·�x⊥ , (7)

so that the twisted photon in coordinate space has a self-
reproducing two-dimensional wave front moving forward at
a speed less that the normal speed of light.

The wave front can be given explicitly with help of the
Jacobi-Anger formula

ei�k⊥·�x⊥ =
∞∑

n=−∞
inein(φρ−φk )Jn(κρ), (8)

where φρ is the azimuthal angle in coordinate space, ρ = |�x⊥|,
and Jn is the Bessel function, and with

ε
μ

�k�
= e−i�φk cos2 θk

2
η

μ
� + ei�φk sin2 θk

2
η

μ
−�

+ �√
2

sin θk η
μ

0 , (9)

where the η’s are constant vectors,

η
μ

±1 = 1√
2

(0, ∓ 1, − i,0), η
μ

0 = (0,0,0,1) ; (10)

the photon polarization vector phase is like the Trueman-Wick
[16] phase convention. Then

Aμ

κmγ kz�
(x) = e−i(ωt−kzz)

√
κ

2π

{
�√

2
eimγ φρ sin θkJmγ

(κρ) η
μ

0

+ i−�ei(mγ −�)φρ cos2 θk

2
Jmγ −�(κρ) η

μ
�

+ i�ei(mγ +�)φρ sin2 θk

2
Jmγ +�(κρ) η

μ
−�

}
. (11)

As an aside, if we were to write the photon wave function
for a plane-wave photon of helicity �, it would be like the
above, possibly with some differences of normalization choice,
but with pitch angle θk → 0 (including κ → 0) and without
an azimuthal phase factor, i.e., equivalent to mγ = � in the
preceding equation.

The twisted-photon wave front has the feature that the
Poynting vector is spiraling forward. It has azimuthal and
z components in cylindrical coordinates, but no radial

component. In detail, the magnetic field for � = 1 is

Bρ = iω

√
κ

4π
ei(kzz−ωt+mγ φ)

×
(

sin2 θk

2
Jmγ +1(κρ) + cos2 θk

2
Jmγ −1(κρ)

)
,

Bφ = ω

√
κ

4π
ei(kzz−ωt+mγ φ)

×
(

sin2 θk

2
Jmγ +1(κρ) − cos2 θk

2
Jmγ −1(κρ)

)
,

Bz = ω

√
κ

4π
ei(kzz−ωt+mγ φ) sin θkJmγ

(κρ), (12)

and the electric field is just 90◦ out of phase with the magnetic
field, �E = i �B. The physical fields are the real parts of the above
expressions, and one can see that the wave front moves forward
at less than the normal speed of light. Working physical electric
and magnetic fields, the Poynting vector �S = �E × �B is

Sρ = 0,

Sφ = κω2

4π
sin θk Jmγ

(κρ)

×
(

cos2 θk

2
Jmγ −1(κρ) + sin2 θk

2
Jmγ +1(κρ)

)
,

Sz = κω2

4π

(
cos4 θk

2
J 2

mγ −1(κρ) − sin4 θk

2
J 2

mγ +1(κρ)

)
. (13)

Figure 1 shows Sφ in the transverse plane. For this illustra-
tion, and for the next, the photon wavelength is 0.5 microns,
the pitch angle is 0.2 radians, and mγ = 4. The figure shows
a bulls-eye pattern characteristic of twisted photons, with a
wide hole in the middle that one can also see from the Bessel
functions in the above expressions. Figure 2 shows �S in the
transverse plane, showing again the bulls-eye pattern and also
showing the circulation of momentum density about the center
of the pattern.

The center of the bulls-eye is currently at the origin in the
x-y plane. Shifting it is easily done by applying the translation
operator exp{ip̂·b} to the twisted-photon state |κmγ kz�〉,
where p̂μ is the momentum operator and bμ is a constant
vector. There is a de facto phase convention in Eq. (5) that
the momentum eigenstate wave function at x = 0 is just the
polarization vector. Algebraic effects of the shift are to change

FIG. 1. (Color online) The size of Poynting vector azimuthal
component as a function of position in the transverse plane. For this
illustration, the photon wavelength is 0.5 microns, the pitch angle is
0.2 radians, and mγ = 4.
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FIG. 2. (Color online) 2πρ × �S projected onto the transverse
plane. One sees the major bands of �S circulating in the same
direction, building up the large orbital angular momentum. Also for
this illustration, λ = 0.5 μm, θk = 0.2 radians, and mγ = 4.

the phase in Eq. (6) from exp{−ikx} to exp{−ik(x − b)}
and arguments of the Bessel functions in later equations to
Jν(κ|�x⊥ − �b⊥|).

III. ATOMIC PHOTOEXCITATION

We will consider excitation by a twisted photon of a
hydrogenlike atom from the ground state to an excited state.
In general, the photon’s wave front will be traveling in the z

direction and the axis of the twisted photon will be displaced
from the nucleus of the atomic target by some distance
in the x-y plane which we will call �b. We work out the
photoexcitation for this case in this section and then apply the
result to two situations. One situation will be the case when
the twisted-photon axis passes directly through the center of
the atom’s nucleus. The other will be the case where target
atoms are at random locations, and we have to average over
all axis-to-atom separations.

For simplicity, we will treat an atomic state just in terms
of its principal quantum number nk , orbital quantum number
lk , and magnetic quantum number mk , where k = i for the
initial state and k = f for the final state. We treat the atom
nonrelativistically. The twisted photon satisfies the Coulomb
gauge condition, and the interaction Hamiltonian is

H1 = − e

me

�A · �p, (14)

and the transition matrix element is

Sf i = −i

∫
dt〈nf lf mf |H1|nilimi ; κmkz�〉. (15)

The twisted-photon wave function is given in Eq. (11).
We shall center the atomic nucleus at the origin, with the

atomic electron located at (ρ,φρ,z) in cylindrical coordinates
or (r,θr ,φρ) in spherical coordinates. The twisted photon,
moving in the z direction, has its origin in general not centered
on the atomic nucleus but displaced to position �b in the
x-y plane. Relative to the photon axis, the electron position
projected onto the x-y plane will be at distance | �ρ − �b| and
angle φ′

ρ , as illustrated in Fig. 3. Then

Sf i = 2πiδ(Ef − Ei − ω)
e

me

√
κ

2π

∫
r2dr d(cos θr ) dφρ Rnf lf (r)Y ∗

lf mf
(θr ,0)e−imf φρ

{
�√

2
eimγ φ′

ρ sin θk Jmγ
(κ| �ρ − �b|) �η0

+ i−� ei(mγ −�)φ′
ρ cos2 θk

2
Jmγ −�(κ| �ρ − �b|) �η� + i�ei(mγ +�)φ′

ρ sin2 θk

2
Jmγ +�(κ| �ρ − �b|) �η−�

}
eikzz · �p R10(r)Y00, (16)

where Ek = Enk
. Note that

η̂λ· �p R10(r) = −iη̂λ·r̂ R′
10(r) = −i

√
4π

3
Y1λ(θr ,φρ) R′

10(r). (17)

The expansion theorem,

einφ′
ρ Jn(κ| �ρ − �b|) =

∞∑
N1=−∞

eiN1φρ e−i(N1−n)φbJN1 (κρ)JN1−n(κb), (18)

allows us to perform the dφρ integral and obtain

Sf i = −2πδ(Ef − Ei − ω)
e

mea0

√
2πκ

3
ei(mγ −mf )φb Jmf −mγ

(κb)

× i−�

{
cos2 θk

2
gnf lf mf � + i√

2
sin θk gnf lf mf 0 − sin2 θk

2
gnf lf mf ,−�

}

def= 2πδ(Ef − Ei − ω)Mnf lf mf �(b). (19)
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FIG. 3. Relative positions of atomic state and photon axis, as
projected onto the x-y plane, with the origin at the nucleus of the
atom.

Note that the energy δ function requires energy conservation,
but in our formalism atomic recoil is neglected, so that overall
linear momentum is not conserved. The dimensionless atomic
factors are

gnf lf mf λ

≡ −a0

∫ ∞

0
r2dr Rnf lf (r) R′

10(r)

×
∫ 1

−1
d(cos θr ) Jmf −λ(κρ) Ylf mf

(θr ,0) Y1λ(θr ,0)eikzz,

(20)

and a0 is the Bohr radius. The quantum numbers of the initial
state are tacit, as we always start from the ground state. As a
simple practical matter, −a0R

′
10(r) = R10(r), and one also has

κρ = ωr sin θr sin θk and kzz = ωr cos θr cos θk . Further, one
can show that the three terms in the curly bracket above are
either all real or all purely imaginary.

IV. ON-AXIS AND OFF-AXIS ATOMIC EXCITATION

By way of review, the selection rules for photoexcitation
(starting from the ground state) with plane-wave photons of
helicity � are, cf. Refs. [17],

mf = �, lf � 1, g
(pw)
nf lf ,mf =�,� ∝ (ωa0)lf −1, (21)

where g(pw) is the plane-wave analog of the reduced atomic
amplitudes shown in Eq. (20) and shows the suppression that
follows when higher photon partial waves are needed.

From Eq. (19) it can be seen that the magnitude of the
result depends on mγ only through the argument of the Bessel
function Jmf −mγ

(κb). When a twisted photon strikes an atom
centered on its axis, the impact parameter b = 0, and we
immediately obtain mf = mγ from the Bessel function in the
general result, Eq. (19),

Jmf −mγ
(κb) → Jmf −mγ

(0) = δmf mγ
. (22)

That is, the only final states that can be produced are those
that can absorb the full projected angular momentum of the
twisted photon.

However, the atom does not have to be far off the photon
axis before other amplitudes, not satisfying the above selection
rule, play an important role. This was also observed in the
simulations done in [13]. In our numerical calculations as well

FIG. 4. (Color online) Size of the transition amplitude∣∣∣M(mγ =3)
nf lf mf �(b)

∣∣∣ for particular quantum numbers nf ,lf ,� and several

mf ; here the photons are circularly polarized. Upper graph is for
the final state nf = 4, lf = 1; the state mf = 1 is allowed by
electric-dipole selection rules for plane waves, while mf = 0, − 1
are unique for the twisted photons. Lower graph is for the final state
nf = 4, lf = 3. The curve styles for both graphs: mf = 3 is the red
solid curve, mf = 2 is orange and medium dashed, mf = 1 is gold
and long dashed, mf = 0 is green and dot-dashed, mf = −1 is blue
and dotted, and transitions to other mf are quite small and not plotted.

as in the plots, unless otherwise stated, we take a twisted-
photon state of wavelength 97.2 nm (set by the hydrogen
atom spacing), mγ = 3, � = 1, and θk = 0.2 radians. As an
illustration, we plot in Fig. 4 the amplitudes

∣∣Mnf lf mf �(b)
∣∣ for

the example of nf = 4, lf = 1 and photon angular momentum
along the direction of motion mγ = 3 (upper plot) and nf = 4,
lf = 3 (lower plot). Note the relative strength of the amplitudes
is much higher, by about six orders of magnitudes, for the
transition into lf = 1 state vs lf = 3, in accordance with the
selection rules presented below.

In Fig. 4 the horizontal axis is the impact parameter b

in units of the photon wavelength λ. Already with an impact
parameter of less than half a wavelength, amplitudes that do not
satisfy the mf = mγ selection rule are becoming important.
The amplitude with the largest peak is the one with mf = 1,
which is the only amplitude one would have with a plane-wave
photon polarized with helicity � = 1. In a near-field setup,
when the twisted light outside of the central (small-b) areas is
blocked by a screen, one can study whether the enhancement
of the transition to mf = mγ for the photons with large mγ ,
as seen in Fig. 4 (lower plot, continuous curve), would lead
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to enhanced attenuation of these photons by atoms, making
matter more opaque to them.

The general selection rules for the off-axis case are

mf = any, lf � |mf |,
gnf lf ,mf ,� ∝ (ωa0 cos θk)lf −|mf −�|−1(ωa0 sin θk)|mf −�|,

(23)

where in the last line, the first factor is absent if its exponent
is negative. Note that we neglect atomic recoil. For manifest
conservation of both linear and angular momentum, the atom’s
recoil momentum can be taken into account [15].

V. CROSS SECTIONS FOR RANDOMLY DISTRIBUTED
TARGETS

A. Cross-section calculation

In general, the location of the photon axis cannot be
controlled at the level of the photon wavelength, so we
should average over the transverse separations. For transverse
separation �b,

σ
(mγ )
nf lf mf � = 2πδ(Ef − Ei − ωγ )

|M(mγ )
nf lf mf �(b)|2

f
, (24)

where f is the incoming flux and a suitable sum or average
over spins is implied.

With the target atoms uniformly distributed, the cross
section averaged over atom location is

σnf lf mf � = 2πδ(Ef − Ei − ω)

f

1

πR2

∫
d2b |Mnf lf mf �(b)|2

= 2πδ(Ef − Ei − ω)

f

1

πR2

2πe2κ

3m2
ea

2
0

×
∫ R

0
2πb db J 2

mf −mγ
(κb)

∣∣∣ cos2 θk

2
gnf lf mf �

+ i√
2

sin θk gnf lf mf 0 − sin2 θk

2
gnf lf mf ,−�

∣∣∣2
.

(25)

Outside the integration measure, the only b dependence is in
the Bessel function, and the useful integral is

lim
R→∞

∫ R

0
b db J 2

mf −mγ
(κb) = R

πκ
, (26)

independent of index.
For the flux we take the average density of the twisted-

photon state times the incoming wave front velocity kz/ω. The
target is unit normalized. The density of the twisted-photon
state, with our normalization and averaged over a disk of radius
R, can be worked out and leads to

f = ρavg
kz

ω
= 2kz

π2R
. (27)

Thus

σnf lf mf � = 2πδ(Ef − Ei − ω)
8π3α3

3kz

∣∣∣∣ cos2 θk

2
gnf lf mf �

+ i√
2

sin θk gnf lf mf 0 − sin2 θk

2
gnf lf mf ,−�

∣∣∣∣
2

. (28)

B. Unique twisted-photon features

For the twisted photon centered on target, there is the
dramatic result that the magnetic quantum number of the final
atomic state must equal the corresponding z projection of the
angular momentum of the twisted photon. This constraint is
relaxed for the general case of random target location, but there
are still features unique to twisted photons.

Photoexcitation, starting from the ground state, by a
plane-wave photon of a certain helicity leads only to final
states whose magnetic quantum number equals the helicity.
Twisted photons, on the other hand, photoexcite states with
a large range of magnetic quantum numbers mf . Values of
mf impossible for plane-wave photons are produced even
when the twisted photons enter a medium with random target
locations.

Twisted photons also produce the mf = � states that
plane-wave photons necessarily lead to. But the interest is
in the mf �= � states unique to twisted-photon production.
To quantify the probability of finding these states, we define
a ratio for a fixed � which compares the rate for producing
final states that are unique to twisted photons to the total rate
where the twisted photon produces all final states, including
mf = �, for a given energy level characterized by quantum
numbers (nf ,lf ) (and for the case of a large interaction region
with random target locations),

ftwisted =

∑mf =lf

mf =−lf ,
mf �=�

σnf lf mf �

∑mf =lf
mf =−lf

σ nf lf mf �

. (29)

The twisted-photon ratio ftwisted evaluates what fraction of the
final states excited by the twisted photon could not have been
produced by a plane-wave photon. As a numerical example,
we evaluate this ratio for final states with varied values of nf

and lf and the result is

ftwisted[g.s. → (nf = 4,lf = 1)] = 2.0%,
(30)

ftwisted[g.s. → (nf = 4,lf = 3)] = 20.3%.

A comparison between the total photoproduction rate from
twisted photons and from plane-wave photons is

rtwisted =
∑mf =lf

mf =−lf
σ nf lf mf �

σ
(pw)
nf lf ��

. (31)

For the above-chosen final states, the other ratio works out to
rtwisted = 1.02.

The ratios ftwisted and rtwisted can be measured in experi-
ments. They can provide a tool to identify twisted photons
arriving from pointlike sources, no matter if they come from
distant stars or are produced in the laboratory. In particular, the
presence of the mf = 0 state in the atomic excitation produced
by the photons coming from a well-defined direction would be
a definitive signal of a twisted-photon absorption.

Let us discuss one more special feature of the twisted
photons and compare the probabilities of photoexcitation of
an (unpolarized) atom by the photons with opposite helicities
±�. For plane-wave photons these probabilities are identical
due to parity conservation. For twisted photons with a fixed z

projection of orbital angular momentum but opposite helicities
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FIG. 5. (Color online) Helicity asymmetry A� for excitation of
the atomic state nf = 4, lf = 1 by a twisted photon with mγ = 2.

such an asymmetry would not violate parity, because the
corresponding photon states do not transform into each
other via parity transformation. The corresponding helicity
asymmetry A� can be defined as

A�(nf ,lf ,mγ ) =
∑mf =lf

mf =−lf

(
σ

(mγ −1)
nf lf mf �=−1 − σ

(mγ +1)
nf lf mf �=1

)
∑mf =lf

mf =−lf

(
σ

(mγ −1)
nf lf mf �=−1 + σ

(mγ +1)
nf lf mf �=1

) .

(32)

The value of mγ is zero for plane-wave photons; for the
twisted photons it is controlled by the method of their genera-
tion, and in a paraxial approximation it would correspond to z

projection of the orbital angular momentum. The asymmetry
A� turns to zero after averaging up to infinite values of the
impact parameter b; it is large for the central areas of the optical
vortex, as shown in Fig. 5. This interesting observable can be
studied experimentally for microparticles placed in the inner
area of the optical vortex; it indicates that the electromagnetic
fields due to spin and orbital angular momentum of the twisted
photons add up coherently, leading to distinctively different
strength of interaction at a given transverse-plane location if
the direction of spin is flipped. The corresponding figure of
merit A2

�σ is small at b = 0, but peaks near b/λ = 0.6, where
A� is about 20%.

VI. SUMMARY AND DISCUSSION

In this paper we developed a formalism for photoexcitation
of an atom with a beam of twisted photons, using a hydrogen
atom as an example. In the derivation, we use an expansion
[10,11] of the twisted-photon states in terms of plane waves.
We show that in a special case when the photon beam axis
coincides with the atomic center, the transitions between
atomic levels obey angular momentum selection rules, similar
to the conclusions made in Ref. [12] for photoionization,
resulting in an excited state with a magnetic quantum number
(Jz = m1) exactly matching mγ of the incoming beam. We also
recover standard electric-dipole angular momentum selection
rules [17,18] in the limit of plane-wave photons.

Next, we extended our calculation to a more general case
of the atoms located away from the photon beam axis and
analyzed the amplitudes of various transitions as a function of

the beam center position in units of photon wavelength, b/λ.
In this case the magnetic quantum number of the photoexcited
state no longer matches mγ , and a range of final-state
quantum numbers is generated. Relative magnitudes of various
transitions were studied both analytically and numerically. It
was found that after we average over the beam position, the
amplitude allowed by standard plane-wave dipole selection
rules quickly gains strength and makes a dominant contribution
to photoabsorption.

To quantify the role of photon orbital angular momentum,
we introduced several observables that describe probabilities
of excitation of the mf �= � states that are forbidden to plane
waves. The important finding is that relative probability of
transitions to “forbidden” states can reach tens of percent in
the examples we considered (λ = 100 nm, pitch angle = 0.2
rad, m = 3). This is in stark contrast with familiar selection
rules [17,18]. Given a noticeable effect arising from the orbital
angular momentum of the photons, our predictions can be
verified experimentally.
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APPENDIX: ANGULAR MOMENTUM PROJECTION

The factor exp{imγ φk} in the twisted-photon state should
give the state a z component of angular momentum that is at
least approximately m. This is stated in a number of sources,
but we have not seen a claim of exactness. In fact we can prove
that the total angular momentum projected in the longitudinal
direction is exactly mγ , at least in the sense of expectation
values.

From the Noether current corresponding to rotations, one
gets the angular momenta. The result can be found, for
example, in Bjorken and Drell [19], Eq. (14.22), and is

J ij = εijkJ k

=
∫

d3x : �̇A · (xi∂j − xj∂i) �A − (ȦiAj − ȦjAi) : (A1)

We will speak of the first term as the orbital angular momentum
and the second as the spin.

Regarding the spin term, one can consider a direct calcu-
lation with the usual expansion and commutation relation in
terms of plane-wave states,

Aμ(x) =
∑

λ

∫
d3q

(2π )32ωq

(
a�qλε

μ

�qλ
e−iqx + a

†
�qλ

ε
μ∗
�qλ

eiqx
)
,

(A2)

and

[a�qλ,a
†
�k�

] = (2π )32ωδ3(�q − �k)δλ�. (A3)

After noting that the a†a† and aa terms in J 3(spin) do not
contribute to the matrix element below, one can show the a†a
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terms lead to

〈k′�′|J 3(spin)|k�〉 = 2iω(2π )3δ3(�k − �k′)(�ε�k� × �ε∗
�k�′)

z.

(A4)

After showing

(�ε�k� × �ε∗
�k�′)

z = −i� cos θkδ��′ , (A5)

this becomes

〈k′�′|J 3(spin)|k�〉 = � cos θk 〈k′�′|k�〉. (A6)

There is no φk dependence above, and since the twisted-photon
states each have fixed � and θk , one can promote the states to
twisted-photon states and obtain

〈κ ′mγ k′
z�|J 3(spin)|κmγ kz�〉

〈κ ′mγ k′
z�|κmγ kz�〉 = � cos θk. (A7)

Continuing to the orbital angular momentum (OAM) piece,
we need

〈κ ′mγ k′
z�|J 3(OAM)|κmγ kz�〉

= 〈κ ′mγ k′
z�|

∫
d3x : �̇A · ∂ �A

∂φρ

: |κmγ kz�〉. (A8)

We pursue a different calculation here, still noting that
within the normal ordering terms with two creation or two
annihilation operators gives zero. For contributions where an

akλ comes from ∂ �A/∂φρ and an a
†
k′λ′ comes from �̇A, the result

is unchanged by inserting a vacuum intermediate state. The
same is true for the reverse contribution. Hence

〈κ ′mγ k′
z�|J 3(OAM)|κmγ kz�〉

= 2
∫

d3x 〈κ ′mγ k′
z�| �̇A|0〉〈0| ∂ �A

∂φρ

|κmγ kz�〉. (A9)

We can use the results for the twisted-state wave functions,
Eq. (11), and known Bessel function integrals to obtain

〈κ ′mγ k′
z�|J 3(OAM)|κmγ kz�〉

〈κ ′mγ k′
z�|κmγ kz�〉

= 1

2
mγ sin2 θk + (mγ − �) cos4 θk

2
+ (mγ + �) sin4 θk

2
= mγ − � cos θk. (A10)

Combining the results,

〈κ ′mγ k′
z�|J 3|κmγ kz�〉

〈κ ′mγ k′
z�|κmγ kz�〉 = mγ . (A11)

The total angular momentum projection in the direction of
motion is precisely mγ . The value of mγ can be controlled
in the laboratory by the means used to generate the beam of
twisted photons, for example, by the use of spiral phase plates
or computer-generated holograms [6].

[1] R. Beth, Phys. Rev. 50, 115 (1936).
[2] W. Heitler, The Quantum Theory of Radiation (Clarendon Press,

Oxford, 1954).
[3] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.

Woerdman, Phys. Rev. A 45, 8185 (1992).
[4] G. Molina-Terriza, J. P. Torres, and L. Torner, Nat. Phys. 3, 305

(2007).
[5] M. Uchida and A. Tomomura, Nature 464, 737 (2010).
[6] A. Yao and M. Padgett, Adv. Optics Photon. 3, 161 (2011).
[7] S. Sasaki and I. McNulty, Phys. Rev. Lett. 100, 124801 (2008).
[8] A. Afanasev and A. Mikhailichenko, arXiv:1109.1603.
[9] E. Hemsing, A. Marinelli, and J. B. Rosenzweig, Phys. Rev.

Lett. 106, 164803 (2011).
[10] U. D. Jentschura and V. G. Serbo, Phys. Rev. Lett. 106, 013001

(2011).

[11] U. Jentschura and V. Serbo, Eur. Phys. J. C 71, 1571 (2011).
[12] A. Picón, J. Mompart, J. R. V. de Aldana, L. Plaja, G. F. Calvo,

and L. Roso, Opt. Express 18, 3660 (2010).
[13] A. Picón, A. Benseny, J. Mompart, J. R. V. de Aldana,

L. Plaja, G. F. Calvo, and L. Roso, New J. Phys. 12, 083053
(2010).

[14] B. S. Davis, L. Kaplan, and J. H. McGuire, J. Opt. 15, 035403
(2013).
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