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Single-photon storing in coupled non-Markovian atom-cavity system
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Taking the non-Markovian effect into account, we study how to store a single photon of arbitrary temporal
shape in a single atom coupled to an optical cavity. Our model applies to Raman transitions in three-level atoms,
with one branch of the transition controlled by a driving pulse, and the other coupled to the cavity. For any
couplings of input field to the optical cavity and detunings of the atom from the driving pulse and cavity, we
extend the input-output relation from Markovian to non-Markovian dynamics. For most possible photon shapes,
we derive an analytic expression for the driving pulse in order to completely map the input photon into the atom.
We find that the amplitude of the driving pulse depends only on the detuning of the atom from the frequency of
the cavity, i.e., the detuning of the atom to the driving pulse has no effect on the strength of the driving pulse.
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I. INTRODUCTION

Quantum networks composed of local nodes and quantum
channels have attracted much attention in recent years due
to a wide range of possible applications in quantum infor-
mation science [1–7], for example, quantum communication
and distributed quantum computing. An important class
of schemes for quantum communication and computing is
based on an elementary process in which single quanta of
excitation are transferred back and forth between an atom
and a photon [8]. This is achieved within the framework of
cavity electrodynamics, which is also the most promising
candidate for deterministically producing streams of single
photons [9–14] of narrow band and indistinguishable radiation
modes [15].

The dissipative dynamics of cavity-atom systems have been
well investigated and deeply understood under the Markovian
approximation [16]. This approximation is valid when the
coupling between the system and the bath is weak such that the
perturbation theory can be applied; meanwhile the validity of
the Markovian approximation requires that the characteristic
time of the bath is sufficiently shorter than that of the system.
However, in practice, the coupling of the system to the bath
is not weak and the memory effect of the bath cannot be
neglected. Typical examples include optical fields propagating
in cavity arrays or in an optical fiber [17–19], trapped ions
subjected to artificial colored noise [20–22], and microcavities
interacting with a coupled resonator optical waveguide or
photonic crystals [23–27], to mention a few.

Previous studies of state transfer (or mapping) between
atoms and photons in cavity QED are based on the Marko-
vian approximation [28–32]. However, recent studies have
shown that Markovian and non-Markovian quantum processes
[33–36] play an important role in many fields of physics, e.g.,
quantum optics [37–39] and quantum information science
[40,41]. This motivates us to explore the storing of single
photons of arbitrary temporal shape (or a packet) in coupled
atom-cavity systems under the non-Markovian approximation.

For this purpose, we first extend the input-output relation in
Ref. [31] from a Markovian system to a non-Markovian system
[42]. Then we show the difference between Markovian and
non-Markovian approximations in the single-photon storing.
Next we study state transfer from an input photon state to a

single-photon cavity dark state by adiabatically evolving the
system in the non-Markovian regime. The result is compared
with that given by the earlier scheme, and we find that these
methods are in good agreement with each other.

The remainder of the paper is organized as follows: In
Sec. II, we introduce a model to describe the atom-cavity
system coupled to input photons and derive the non-Markovian
input-output relations; the dynamical equations for the atom-
cavity system are also given in this section. In Sec. III, we
derive an exact expression for the complex driving pulse with
nonzero detunings and nonzero populations of the excited
state. In Sec. IV, we study the storing of single photons, taking
the non-Markovian processes into account. In Sec. V, we study
the adiabatic transfer via dark states between the input photon
and the cavity-atom system. Discussion and conclusions are
given in Sec. VI.

II. EQUATIONS OF MOTION AND NON-MARKOVIAN
INPUT-OUTPUT RELATIONS

We now discuss how to transfer a single-photon state of
input field into a single excitation of atom-cavity systems. We
consider an effective one-dimensional model, which describes
a Fabry-Perot cavity coupled to a three-level atom, as shown
in Fig. 1. The input and output fields are parallel to the z axis
(perpendicular to the cavity mirrors). The input field partially
transmits into the cavity through the mirror at z = 0 (the mirror
at the right-hand side of the setup), and the other mirror of the
cavity is assumed to be 100% reflecting.

The input-output field is introduced as a continuum field
modeled by a set of oscillators, denoted by annihilation
operator b̂(ω), which are coupled to the cavity mode with
coupling constants κ(ω). The interaction between the cavity
field â and the continuum b̂(ω) is described by the following
Hamiltonian [30,39,43]:

Hint = i

∫ ∞

−∞
dω[κ(ω)âb̂†(ω) − H.c.], (1)

where [b(ω),b†(ω′)] = δ(ω − ω′) and [a,a†] = 1. We consider
an input field in a general single-photon state |ψin(t)〉 =∫

dωC in
ω (t)b̂†(ω)|0〉 with C in

ω (t) = C in
ω (t0)e−iω(t−t0). Here, |0〉

denotes the vacuum state of the continuum b(ω). In what
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FIG. 1. (Color online) Schematic illustration of our system. It
consists of a cavity, a three-level atom, and input-output fields. The
atom is driven by both the cavity field with coupling constant gcav and
a classical field characterized by the driving pulse �(t). The classical
and cavity fields are detuned from the atomic resonance by �1 and
�2, respectively.

follows we characterize these fields by an envelope wave
function �in(z,t) defined by

�in(z,t) =
∫

dω〈0ω|b̂(ω)eikz|ψin(t)〉

=
∫

dωC in
ω (t)eikz. (2)

The normalization condition
∫

dω|C in
ω (t)|2 = 1 of the Fourier

coefficients implies the normalization of the input wave
function according to Parseval’s theorem:∫

dt |�in(z,t)|2 = 1. (3)

Clearly, �in(z,t) describes a single photon propagating along
the z axis.

To derive an input-output relation for a general non-
Markovian quantum system, we write the total Hamiltonian
in a rotation frame with respect to the center frequency ωc of
the cavity field,

H = HS + HB + Hint (4)
with

HS = (�(t)ei�1t σxe + gcavσxgâei�2t + H.c.) − iγLσxx,
(5)

HB =
∫ ∞

−∞
dω�ωb̂†(ω)b̂(ω),

where σμν = |μ〉〈ν|(μ,ν = x,e,g) are the atomic transition
operators, and H.c. stands for the Hermitian conjugate.
|g〉 denotes the ground state with energy ωg = 0 (h̄ = 1,
hereafter), and |e〉 denotes the excited state with energy ωe.
â is the annihilation operator of the cavity mode with center
frequency ωc. The |e〉 to |x〉 (with energy ωx) transition
is driven by the classical field �(t) with frequency ν�,
and the transition from |g〉 to |x〉 is driven by the cavity
mode with coupling constant gcav. Detuning �1 is defined as
�1 = ωx − ωe − ν� ≡ ωxe − ν�, and �2 = ωx − ωg − ωc ≡
ωxg − ωc. γL denotes the atomic spontaneous emission rate
and �ω = ω − ωc the detuning of the ω mode from the center
frequency of the cavity.

Assuming there is only one photon initially in the input
field and the cavity-atom system is not excited, we can restrict
the solution and discussion of the total system (4) to the
subspace containing zero and a single excitation. This allows
us to expand the state vector of the total system at a later

time t as

|ψ(t)〉 = G(t)|g,1,0〉 + E(t)|e,0,0〉 + X(t)|x,0,0〉
+

∫ ∞

−∞
dωCω(t)b̂†(ω)|g,0,0〉, (6)

where |g,1,0〉 denotes a state with the atom in the ground
state |g〉, the cavity having a single photon and no photons in
the input. G(t) denotes the probability amplitude of the total
system being in |g,1,0〉. The other states have similar nota-
tions. To calculate the probability amplitudes G(t),E(t),X(t),
and Cω(t), we substitute |ψ(t)〉 into the Schrödinger equation
i∂t |ψ(t)〉 = H |ψ(t)〉. Simple calculation yields

Ġ = −igcavXe−i�2t −
∫ ∞

−∞
dωκ∗(ω)Cω,

Ė = −i�∗(t)e−i�1tX,
(7)

Ẋ = −i�(t)ei�1tE − igcavGei�2t − γLX,

Ċω = −i�ωCω + κ(ω)G.

By formally integrating the fourth equation of Eq. (7), we
obtain

Cω(t) = e−i�ω(t−t0)Cω(t0) + κ(ω)
∫ t

t0

dτG(τ )e−i�ω(t−τ ), (8)

where Cω(t0) is the initial condition of Cω(t). Similarly,

Cω(t) = e−i�ω(t−t1)Cω(t1) − κ(ω)
∫ t1

t

dτG(τ )e−i�ω(t−τ ), (9)

where t1 � t . The single-photon input and output fields
�in(0,t) and �out(0,t) [for simplicity, hereafter we write
�out(0,t) as �out(t), the same notation for �in(t)] are defined
as the Fourier transformation of Cω(t0) and Cω(t1) at z = 0,
respectively:

�in(t) = −1√
2π

∫ ∞

−∞
dωCω(t0)e−i�ω(t−t0),

(10)

�out(t) = 1√
2π

∫ ∞

−∞
dωCω(t1)e−i�ω(t−t1).

Integrating Eq. (8) and Eq. (9) and using Eq. (10), we obtain a
non-Markovian input-output relation (change t1 → t)

�in(t) + �out(t) =
∫ t

t0

dτh(t − τ )G(τ ), (11)

where

h(t) = 1√
2π

∫ ∞

−∞
dωe−i�ωtκ(ω) (12)

defines the impulse response function that equals the Fourier
transform of the coupling strength κ(ω). Substituting Eq. (8)
into the first equation of Eq. (7), we obtain finally the general
equations of motion for the total system,

Ġ = −igcavXe−i�2t + N (t) −
∫ t

0
dτf (t − τ )G(τ ),

Ė = −i�∗(t)e−i�1tX,
(13)

Ẋ = −i�(t)ei�1tE − igcavGei�2t − γLX,

�in(t) + �out(t) =
∫ t

t0

dτh(t − τ )G(τ ),
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where

N (t) =
∫ ∞

−∞
dτh∗(τ − t)�in(τ ) (14)

is the driving field,

f (t − τ ) =
∫ ∞

−∞
dζh∗(τ − ζ )h(t − ζ )

=
∫ ∞

−∞
dω|κ(ω)|2e−i�ω(t−τ )

≡
∫ ∞

−∞
dωJ (ω)e−i�ω(t−τ ) (15)

is the memory function of the system, and J (ω) = |κ(ω)|2.
From the derivation, we find that h(t) and f (t) plays essential
roles in the photon storing. Different h(t) and f (t) leads to
different non-Markovianity of the dynamics; hence they affect
the design of the driving pulse to store a photon in the atom-
cavity system.

III. DRIVING PULSE AND EXCITED-STATE POPULATION

In this section we present an analytical expression for
the driving pulse to completely store an arbitrary photon
wave packet �in(t) in the atom-cavity system. Obviously,
complete impedance matching is a necessary condition for this
purpose, i.e.,

�out(t) = 0 (16)

must be satisfied at any time.
The spectral response function κ(ω) for the Fabry-Perot

(FP) cavity can be defined by

κ(ω) =
√

�

2π

W

W − i(ω − ωc)
, (17)

where � is the cavity-input coupling strength and W is the
spectrum bandwidth of the input field. The effective spectral
density is then [45–47]

J (ω) = �

2π

W 2

W 2 + (ω − ωc)2 . (18)

In the wide-band limit (i.e., W → ∞), the spectral density

approximately takes J (ω) → �
2π

, equivalently, κ(ω) →
√

�
2π

.
This describes the case in the Markovian limit. Then according
to Eqs. (12) and (15) we have

h(t) =
√

�δ(t), f (t) = �δ(t). (19)

Substituting Eq. (19) into Eq. (13), we obtain the Markovian
dynamics of the total system [28,31]:

Ġ = −igcavXe−i�2t +
√

��in(t) − 1
2�G(t),

Ė = −i�∗(t)e−i�1tX,
(20)

Ẋ = −i�(t)ei�1tE − igcavGei�2t − γLX,

�in(t) + �out(t) =
√

�G(t).

In order to take the non-Markovian effect into account,
we calculate the system-field memory function f (t) and

the spectral-response function h(t) [46,48,49] by the use of
Eqs. (17) and (18). They read

h(t) = W
√

��(t)e−Wt (21)

and

f (t) = 1
2W�e−W |t |, (22)

where �(t) is the unit step function

�(t) =
{

1, t � 0,

0, t � 0.

To store an input photon into the atom-cavity system, it is
reasonable to assume that the total system is initially prepared
in state b̂†(ω)|g,0,0〉, i.e., the initial condition for the equations
of motion is ∫

dt |�in(t)|2 = 1, (23)

G(0) = 0, (24)

X(0) = 0, (25)

E(0) = 0. (26)

Now we calculate the population of the atom in the excited
state |e,0,0〉,

ρee(t) = ρoffset − X̃2(t)

+
∫ t

0
dt ′[2gcavX̃(t ′)G(t ′) − 2γLX̃2(t ′)]. (27)

Equation (27) shows that the population of excited state ρee(t)
does not depend on the detunings �1 and �2. From the deriva-
tion below for the complex driving pulse �(t), we see that we
should introduce an offset term ρoffset phenomenologically to
account for the imperfect state preparation—a small initial
population in the excited state |e,0,0〉. The derivations of
Eq. (27) are given in Appendix; for details, see Appendix.

We now proceed to derive the complex driving pulse �(t)
for completely storing a photon in arbitrary temporal shape
with nonzero detunings �1 and �2,

�(t) = α(t) + iβ(t), (28)

where

α(t) = [∂t X̃(t) cos A(t) − gcavG(t) cos A(t)

+ γLX̃(t) cos A(t) + �2X̃(t) sin A(t)]/
√

ρee(t),

β(t) = [�2X̃(t) cos A(t) − ∂t X̃(t) sin A(t) + gcavG(t) sin A(t)

− γLX̃(t) sin A(t)]/
√

ρee(t), (29)

with

A(t) = −� · t + �2

∫ t

0
dt ′

X̃2(t ′)
ρee(t ′)

. (30)

The details of the derivation of Eq. (28) can be found in
Appendix.

The modulus and argument of the complex driving pulse
�(t) = |�(t)|eiθ(t) are

|�(t)| =
√

α2(t) + β2(t) (31)
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=
√

[∂t X̃(t) − gcavG(t) + γLX̃(t)]
2 + �2

2X̃(t)2

ρee(t)
, (32)

θ (t) = arctan

[
β(t)

α(t)

]
, (33)

which is an analytical expression that defines the complex
driving pulse necessary to completely store the desired photon
packet. This equation tells us that the modulus of the driving
pulse �(t) depends only on the detuning �2, not on the
detuning �1.

Under the Markovian approximation (we denote the quan-
tities in the Markovian case by introducing a subscript f

to them) and defining Xf (t) = −iei�2t X̃f (t) and Ef (t) =
e−i�1t+i�2t Ẽf (t), we obtain from Eq. (20) the following results
with nonzero �1 and �2:

Gf (t) = �in(t)/
√

�,

X̃f (t) =
[
−Ġf (t) + 1

2
�Gf (t)

]/
gcav,

ρfee = ρoffset − X̃2
f (34)

+
∫ t

0
dt ′

[
2gcavX̃f (t ′)Gf (t ′) − 2γLX̃2

f (t ′)
]
,

�f (t) = αf (t) + iβf (t),

where

αf (t) = [cos(Af )∂t X̃f − gcav cos(Af )Gf

+ γL cos(Af )X̃f + �2 sin(Af )X̃f ]/
√

ρfee,

βf (t) = [�2 cos(Af )X̃f − sin(Af )∂t X̃f

+ gcav sin(Af )Gf − γL sin(Af )X̃f ]/
√

ρfee,

Af (t) = −� · t + �2

∫ t

0
dt ′

X̃2
f (t ′)

ρfee(t ′)
. (35)

Within the Markovian approximation, the modulus |�f (t)|
and argument θf (t) of the complex driving pulse �f (t) can be
written in the same form as in Eqs. (31) and (33), by replacing
α(t) by αf (t) and β(t) by βf (t). This driving pulse representing
the coupling constant between the atom and the driving fields
is complex when the detunings are not zero, which is not
discussed in the earlier studies.

IV. SINGLE-PHOTON STORING
AND IMPEDANCE MATCHING

We now consider a realistic input photon packet that starts
from time t0 and ends at time te. We assume the packet
starts off smoothly, i.e., �in(t0) = ∂t�in(t0) = 0, as described
in [44]. The second time derivative of the input �in(t0) might
be nonzero at t0; thus G(0) = 0 in Eq. (A1), but

Ġ(t0) = �̈in(t0)

W
√

�

= 0. (36)

Furthermore, from Eq. (A2) together with Eqs. (25) and (24)
we find

Ġ(0) = N (0), (37)

the so-called equilibrium condition.

By Eqs. (14) and (21) we can establish a relation between
W and � for arbitrary input photon wave packets �in,

� = �̈in(0)

W 2
∫ ∞
t

dτe−W (τ−t)�in(τ )
. (38)

We should notice that the initial conditions from Eq. (28) now
become A(0) = 0, β(0) = 0, and �(0) = α(0) = ∂t X̃(0)√

ρoffest

= 0.

To satisfy the last initial condition, a small but nonvanishing
initial population in the state |e,0,0〉 is required, in other words,
perfect impedance matching with ρoffest = 0 would only be
possible when the input photon packet lasts for a very long
(infinite) time.

To exemplify the scheme and discuss the implications of
the constraints to the initial population, we now apply the
design to a couple of typical photon shapes (or packets) that
are of general interest. First, we consider photon wave packets
on a finite support ranging from 0 to T symmetric in time.
A particular normalization shape (or packets) that meets the
above initial condition is

�in(t) = 8sin2(2tπ/T )cos2(tπ/T )√
7π

. (39)

Taking T = πμs, we obtain a constraint on W and � in the
input packet from Eq. (38):

� = (W 2 + 4)(W 2 + 16)(W 2 + 36)

W (W 4 + 28W 2 + 72)(1 − e−πW)
. (40)

Notice the unit step function in h(t); the upper and lower
limits of the integral in Eq. (14) are T and t , respectively. For
zero detunings, �1 = �2 = 0, the driving pulse �(t) (28) is
real. This together with Eqs. (29) and (30) yields A(t) = 0,
β(t) = 0 and a real α(t):

�(t) = α(t) = [∂t X̃(t) − gcavG(t) + γLX̃(t)]/
√

ρee. (41)

For an input photon packet with a duration of T = πμs, we
plot �in(t), �(t), and the probability amplitude of reflected
photon �out(t) as a function of time in Fig. 2. �out(t) is
obtained from numerical simulations of Eq. (13) for the
following two cases: (1) the system is initially prepared in
|g,0,0〉, i.e., ρoffset = 0; and (2) the population of the atom in
the excited state is initially not zero (in the figure we choose
ρoffset = 0.002), while the cavity is empty. We emphasize that
in the numerical simulations here and hereafter, the frequency
is rescaled in units of megahertz, and accordingly the time
t is in units of microseconds. To be specific, we choose
gcav = 30π MHz and γL = 6π MHz to plot Fig. 2. This choice
of parameters was suggested in [31,44], which is within reach
of current technologies. Note that in this plot we use the same
driving pulse �(t), which is calculated with ρoffset = 0.002.
We should emphasize that the choice of ρoffset is arbitrary and
limited only by practical considerations; we will discuss this
issue again later.

Figures 2(a) and 2(b) show that in order to store the
input photon completely, we have to change the driving pulse
according to the cavity-input field couplings. From Fig. 2(c)
we can learn that when the initial state of an atom matches
the conditions used to calculate �(t), i.e., with ρoffset = 0.002,
no photon is reflected out (it is below 10−16, almost zero).
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FIG. 2. (Color online) Input single-photon packet (blue line), the
driving pulse (red-dashed line), and |�out|2 as a function of time.
The parameters chosen are gcav = 30π MHz,γL = 6π MHz. In the
numerical simulations here and hereafter, the coupling strength � is
given by Eq. (40). Initially, the system is prepared almost in |g,0,0〉
with a small probability ρoffset = 0.002 in |e,0,0〉, which is plotted in
(c) and (d) (thin red lines). For comparison, we plot |�out|2 in (c) and
(d) (bold green lines) for the case in which the system is prepared with
probability 1 in |g,0,0〉. Note that in this case, we still use the driving
pulse calculated with ρoffset = 0.002, so the reflection is higher. The
other parameters chosen are �1 = �2 = 0, W = 1.671 6 MHz for
(a) and (c), W = 17.238 MHz for (b) and (d).

However, if the initial state deviates from the state used to
calculate the driving pulse, say the initial state is |g,0,0〉, the
photon would be reflected off the cavity with an probability of
0.2%, which is much larger than 10−16 and can be explained
as a mismatch between the initial state used to calculate the
driving pulse and the realistic initial state.

In order to compare the results of the non-Markovian
process with that of the Markovian process, we plot the time
evolution of the atomic population in the excited state |e〉
and the real driving pulse (corresponding to zero detunings)
�(t) (41) in Fig. 3. We find that when the coupling W is
small [see Figs. 3(a) and 3(c)], the so-called backflowing
phenomenon occurs for the population ρee. As W increases,
the results given by the non-Markovian equation (27) are
in good agreement with those given in the Markovian limit
[see Figs. 3(b) and 3(d)]. Besides, from Figs. 4(a) and 4(b),
we can see that the excited-state population ρee(t) obtained
in the non-Markovian case [Eq. (27)] is different from that
ρfee(t) in the Markovian case [Eq. (34)] when the parameter
W runs from 0.5 to 2, but the difference is not clear for W > 2
[see Figs. 4(c) and 4(d)].

To shed more light on the photon storing in the non-
Markovian limit, we compare the non-Markovian results with
those in the Markovian case [see Fig. 5(a)]. By the input signal
|�in|2, we divide the dynamics and the time dependence of the
driving pulse into four regimes, labeled I–IV. In regimes I and
III, the driving pulse �(t) is negative in both non-Markovian
and Markovian cases, while the populations of the atom in the
excited state |e〉 increase continuously in these regimes, i.e., no
population backflow in the dynamics. In contrary, the driving

FIG. 3. (Color online) The populations of the atom on the excited
state ρee(t) (non-Markovian case) and ρfee(t) (Markovian case), the
driving pulse �(t) (non-Markovian case) and �f (t) (Markovian
case) versus time t . The red line denotes the non-Markovian case
and the blue-dashed line denotes the Markovian case. Parame-
ters chosen are �1 = �2 = 0, ρoffset = 0.007 5, gcav = 30π MHz,
γL = 6π MHz,W = 0.5 MHz, for (a) and (c), W = 25 MHz for
(b) and (d).

pulse in regimes II and IV are positive, and there is population
backflow in these regimes.

Now we study the effect of detunings �1 and �2 on
the driving pulse �(t). Examining Eq. (29), we find that
A(t) = �1t and �(t) = e−i�1t [∂t X̃(t) − gcavG(t) + γLX̃(t)]
when the detuning �2 = 0. When �2 
= 0, the modulus |�(t)|
of the driving pulse �(t) does not depend on the detuning �1,
while it depends on the absolute value of �2 only (see Fig. 6).
Meanwhile, the argument θ (t) of the �(t) depends on both
detunings �1 and �2. The argument θ (t) of the driving pulse
�(t) is an odd function of �2 [see Figs. 7(a) and 7(b)] when
�1 = 0 or �1 = �2.

Time Time

Time
Time

(a) (b)

(d)(c)

2 2Time

FIG. 4. (Color online) The time evolution of the excited-state
population in non-Markovian limit ρee(t) and in the Markovian limit
ρfee(t) as a function of time t and the coupling strength W . Parameters
chosen are gcav = 30π MHz, γL = 6π MHz.
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FIG. 5. (Color online) Comparison of non-Markovian case to
a Markovian case in terms of ρ(t) and �(t). Parameters chosen
are �1 = �2 = 0, gcav = 30π MHz,γL = 6π MHz,W = 1 MHz,
ρoffset = 0.004.

V. PHOTON STORING IN DARK STATES

We now discuss the problem of transferring a single-photon
state of the input field to an atom-cavity dark state, taking
the non-Markovian effect into account. We show that these
processes can be achieved by adiabatically rotating the cavity
dark state in a special way. Before proceeding, we introduce a
dark |D(t)〉 and its orthogonal bright states |B(t)〉 [30,50]:

|D(t)〉 = − cos ϕ(t)|g,1,0〉 + sin ϕ(t)|e,0,0〉,
(42)

|B(t)〉 = sin ϕ(t)|g,1,0〉 + cos ϕ(t)|e,0,0〉,
where tan ϕ(t) = gcav/�(t).

Taking the dark and bright states instead of |g,1,0〉 and
|e,0,0〉 as the basis, we re-expand Eq. (43) as

|ψ(t)〉 = D(t)|D(t)〉 + B(t)|B(t)〉 + X(t)|x,0,0〉
+

∫ ∞

−∞
dωCω(t)b̂†(ω)|g,0,0〉. (43)

FIG. 6. (Color online) The modulus |�(t)| [non-Markovian case,
see Eq. (32)] and |�f (t)| (Markovian case) of the driving pulse
�(t) vary with the detuning �2 and time t . Parameters chosen are
gcav = 30π MHz,γL = 6π MHz,W = 0.5 MHz,ρoffset = 0.003.

(a) (b)

(c) (d)

�
₂

�
₂

�
₂

�
₂

Time t (�s) Time t (�s)

FIG. 7. (Color online) The argument sin θ (t) [(a) and (c), see
Eq. (33)] in the non-Markovian case and sin θf (t) [(b) and (d)]
in the Markovian case vary with the detuning �2 and time t .
Parameters chosen are �1 = �2,gcav = 30π MHz,γL = 6π MHz,
W = 0.5 MHz,ρoffset = 0.003 for (a) and (b), and �1 = 20 for (c)
and (d).

The relations between the amplitudes D(t), B(t), G(t), and
E(t) can be written as

D(t) = − cos ϕ(t)G(t) + sin ϕ(t)E(t),
(44)

B(t) = sin ϕ(t)G(t) + cos ϕ(t)E(t).

The evolution equations (7) in terms of Eq. (44) then take (we
here consider only �1 = �2 = 0)

Ẋ = −i�1(t)B(t) − γLX,

Ḋ = ϕ̇B(t) + cos ϕ

∫
dωκ∗(ω)Cω,

(45)
Ḃ = −ϕ̇D(t) − i�1(t)X − sin ϕ

∫
dωκ∗(ω)Cω,

Ċω = −i�ωCω + κ(ω) sin ϕB(t) − cos ϕκ(ω)D(t),

where �1(t) = √
g2

cav + �2(t), and the terms proportional to ϕ̇

describe the coupling between the bright and dark state induced
by nonadiabatic evolutions. We now adiabatically eliminate
the excited state, which is possible if the characteristic time t1
of the system is sufficiently longer than the decay time of the
excited state (γLt1 � 1). After elimination of the excited state,
we adiabatically eliminate the bright state and neglect terms
with ϕ̇. The conditions which validate such an elimination
will be given later. Defining D(t) = −d1, we finally arrive
at [29,30]

.

d1 = − cos ϕ(t)
∫

dωκ∗(ω)Cω(t),

Ċω = −i�ωCω(t) + cos ϕ(t)κ(ω)d1(t). (46)

One immediately recognizes from these equations that the total
probability of finding the system in single-photon states of the
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input field and in the cavity-dark state is conserved:

d

dt

[
|d1(t)|2 +

∫
dω|Cω(t)|2

]
= 0. (47)

Thus with adiabatic evolution, the system can occupy only two
states, namely, the input field state and the cavity dark state.

By formally integrating the second equation of Eq. (46)
and substituting it into the first [these steps are similar to
Eqs. (7)–(13)], we get

.

d1(t) = cos ϕ(t)N (t) − cos ϕ(t)

×
∫ t

0
dτ cos ϕ(τ )d1(τ )f (t − τ ),

�in(t) + �out(t) =
∫ t

0
dτh(t − τ ) cos ϕ(τ )d1(τ ). (48)

We note the adiabatic evolution happens when [6,29,30]

g2
cav � γL�. (49)

This condition is the same as that for adiabatic storing in
the Markovian limit, in other words, the non-Markovian
and Markovian systems share the same condition to store a
photon adiabatically. Making use of the completely impedance
matching condition Eq. (16), we obtain

cos ϕ(t)d1(t) = G(t). (50)

By substituting Eq. (50) into the first equation of Eq. (48),
we get

d1(t) =
√

2
∫ t

0
M(τ )dτ, �(t) = gcav

tan ϕ(t)
, (51)

where M(t) = G(t)N(t) − G(t)
∫ t

0 G(τ )f (t − τ )dτ,

cos ϕ(t) = G(t)
d1(t) . In order to compare the analytical results

under the adiabatic evolution Eq. (51) with the exact analytical
results in Eq. (41) given by

Ddark(t) = G(t) cos ϕ1(t) − E(t) sin ϕ1(t), (52)

we plot the time evolution of the population of the dark state
and the driving pulse in Fig. 8. Here G(t) and E(t) = √

ρee(t)
are the exact analytical expressions in Eq. (A1) and Eq. (27),
respectively, and ϕ1 = arc tan[gcav/�(t)] is determined by
Eq. (41).

We find from the figure that the results given by the
adiabatic elimination Eq. (51) are in good agreement with
those obtained by the exact analytical expression Eq. (41) and
Eq. (52) when the strong coupling conditions (49) are satisfied
[see Figs. 8(a), 8(c), and 8(b), 8(d)]. When the coupling
is weak (49) [see Figs. 8(e) and 8(f)], the curve obtained
by the adiabatic elimination approximation Eq. (51) has
serious deviations from those obtained by the exact analytical
expression Eqs. (41) and (52). In addition, from Figs. 8(b),
8(d), and 8(f), we can see that the driving pulse �(t) obtained
by the adiabatic elimination Eq. (51) shows serious deviations
from those obtained by the exact analytical expression Eq. (41)
when the time is short (approximately t = 0.2 μs). This can be
explained as an effect of the imperfect impedance matching, in
other words, with ρoffset = 0 the perfect impedance matching
can take place only with �(t) → ∞.
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FIG. 8. (Color online) This plot shows the comparison of the
adiabatic elimination approximation and the exact expression. The red
line and black-dashed line denote the exact solution [see Eqs. (52)
and (41)] and the solution of the adiabatic elimination approxima-
tion [see Eq. (51)]. Parameters chosen are �1 = �2 = 0, ρoffset =
0.000 75,gcav = 30π MHz,γL = 6π MHz,W = 0.5 MHz for (a) and
(b); gcav = 30π MHz,γL = 6π MHz,W = 25 MHz for (c) and (d);
and gcav= 14π MHz,γL = 6π MHz,W = 25 MHz for (e) and (f).

From Figs. 8(a) and 8(b), we can learn that the non-
Markovianity-caused backflow to the dark state occurs when
the parameter W is small. The non-Markovian regime transits
to the Markovian regime when the parameter W is large.
Therefore by manipulating W we can control the crossover
from a non-Markovian process to a Markovian process and
vice versa, which provides us with photon storage in the
atom-cavity system in both non-Markovian and Markovian
limits.

VI. CONCLUSION

The storing of a single photon of arbitrary temporal shape
in a single three-level atom coupled to an optical cavity in
non-Markovian dynamics has been explored. To calculate the
driving pulse, we first extend the input-output relation from a
Markovian to non-Markovian process, taking the off-resonant
couplings between the atom and fields into account. With
the extended input-output relation, we have presented a very
simple recipe for calculating the driving pulse with nonzero
detunings �1 and �2, and discuss the features caused by
the non-Markovian effect. The results show that the driving
field might take different sign at different times for the non-
Markovian case, while it is always negative in the Markovian
case. From the respect of atoms, there is a backflow in
the population on the excited state in the non-Markovian
case, whereas there is no backflow in the Markovian case.
The fidelity to store a photon in the cavity can reach 1 for
both cases, regardless of whether the process is Markovian
or non-Markovian. We also present a proposal to store the
single photon in a dark state of the cavity-atom system by
adiabatically steering the dark state.
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APPENDIX: DERIVATION OF THE POPULATION
OF THE ATOM IN THE EXCITED STATE AND

THE COMPLEX DRIVING PULSE WITH DETUNINGS

1. The population of the atom in the excited state

By substituting Eqs. (21) and (16) into the first and fourth
equation of Eq. (13), we obtain

G(t) = �̇in(t) + W�in(t)

W
√

�
(A1)

and

X̃(t) =
[
−Ġ(t) + N (t) −

∫ t

0
dτf (t − τ )G(τ )

]/
gcav,

(A2)

where X̃(t) = ie−i�2tX(t). We note that the envelope �in(t)
of the input is a real function of time, so both G(t) and X̃ are
real. Defining E(t) = e−i�1t+i�2t Ẽ(t), we have from Eq. (7)

�(t)Ẽ(t) = ∂t X̃(t) + i�2X̃(t) − gcavG(t) + γLX̃(t) (A3)

and

�∗(t)X̃(t) = −i�Ẽ(t) − ∂t Ẽ(t), (A4)

where � = �2 − �1. It is easy to see that Ẽ(t) and �(t) are
complex due to nonzero detunings �1 and �2; this is one of
the differences between our work and the earlier work [31].
Taking a complex conjugation of both sides of Eq. (A3) yields

�(t)∗Ẽ∗(t) = ∂t X̃(t) − i�2X̃(t)

− gcavG(t) + γLX̃(t). (A5)

Dividing Eq. (A4) by Eq. (A5), we have

−i�|E(t)|2 − Ẽ∗(t)∂t Ẽ(t)

= X̃(t)∂t X̃(t) − i�2X̃
2(t) − gcavX̃(t)G(t) + γLX̃2(t).

(A6)

Taking the complex conjugation of both sides of Eq. (A4), we
have

�(t)X̃(t) = i�Ẽ∗(t) − ∂t Ẽ
∗(t). (A7)

Dividing Eq. (A3) by Eq. (A7), we have

−i�|E(t)|2 + Ẽ(t)∂t Ẽ
∗(t)

= −X̃(t)∂t X̃(t) − i�2X̃
2(t) + gcavX̃(t)G(t) − γLX̃2(t).

(A8)

Using Eq. (A8), Eq. (A6), and ∂tρee(t) = Ẽ(t)∂t Ẽ
∗(t) +

Ẽ∗(t)∂t Ẽ(t), we get a differential equation of ρee(t)

ρ̇ee(t) = −2X̃(t)∂t X̃(t) + 2gcavX̃(t)G(t) − 2γLX̃2(t). (A9)

Therefore, Eq. (27) can be obtained by formally integrating
Eq. (A9).

2. The complex driving pulse with detunings

Multiplying both sides of Eq. (A8) by −i and taking the
complex conjugation of the result, we obtain

−�|Ẽ(t)|2 + iẼ∗(t)∂t Ẽ(t)

= −iX̃(t)∂t X̃(t) − �2X̃
2(t) + igcavX̃(t)G(t) − iγLX̃2(t).

(A10)

Considering

Ẽ∗(t) = ρee(t)

Ẽ(t)
, ρee(t) = |Ẽ(t)|2, (A11)

substituting Eq. (A11) into Eq. (A10), and formally integrating
the obtained result from 0 to t , we arrive at

Ẽ(t) = Ẽ(0) exp
∫ t

0
dt ′{[�ρee(t ′) − iX̃(t ′)∂t ′X̃(t ′) − �2X̃

2(t ′)

+ igcavX̃(t ′)G(t ′) − iγLX̃2(t ′)]/iρee(t ′)}, (A12)

where Ẽ(0) = √
ρoffset represents the initial offset, i.e., the

probability amplitude of finding the system in the excited state.
Finally, we can obtain Eq. (28) by substituting Eq. (A12) into
Eq. (A3) and separating the real and imaginary part of the
complex driving pulse �(t).
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