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Rosenblum et al. showed recently that a three-level atom in a cavity can function as a perfect “photon turnstile.”
Here we explore how this device reshapes the incident pulses, generalize it to the case of an input coherent state,
and consider its use in reverse as a “photon adder.” We find that for initially unentangled pulses, adding one
photon to an |n〉 number state is possible with a success probability equal to 1/(n + 1).
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I. INTRODUCTION

In a recent paper, Rosenblum et al. [1] have shown that
a three-level atom inside a one-sided optical cavity, in the
configuration sometimes called a “one-dimensional atom” [2],
can function as a perfect “photon turnstile” (see [3–5] for
various demonstrations of the photon turnstile concept). One
may also think of it as a perfect “photon subtractor,” which
would turn an incident number state |n〉 of n photons with a
certain polarization, into the state |n − 1〉, plus a single photon
state with the orthogonal polarization.

The analysis in [1] was based on a concatenated cavity
approach [6], so it was limited in its treatment of the incident
pulse shapes. Here we use the general space-time treatment
for quantized fields interacting with cavities, developed in [7]
(see also [8,9] for equivalent approaches), to obtain closed-
form analytical expressions for the output pulses valid for
arbitrarily shaped input pulses, in the adiabatic limit. We also
present numerical results for Gaussian pulses (for the n = 2
case) showing the effect of working away from adiabaticity,
and extend the treatment to input coherent states. The latter
results are particularly interesting, since they show that this
system, with a “classical” field input, can become a near-
deterministic source of single photons on demand; the fact
that the classical field in this scheme is fed through the cavity
mirror, rather than through the sides, may make it easier to
implement experimentally than, e.g., the system demonstrated
in [10].

Finally, we consider the possible use of the one-dimensional
atom in reverse, as a photon adder. We find that, for initially
unentangled pulses, the photon addition only works proba-
bilistically, but one can in principle get an n + 1 photon pulse
with the same profile as the input pulses (containing n and 1
photons in orthogonal polarization states, respectively) with
probability 1/(n + 1). Hence this system may also be a useful
source of small-number Fock states, a problem that has also
been the subject of much interest lately [11–13].

II. THE PHOTON SUBTRACTION SCHEME

A. Basic equations

The system we will consider is illustrated in Fig. 1. There is
a single, three-level atom (in the � configuration) inside a one-
sided optical microcavity. The two atomic transitions (assumed
degenerate; see below) couple to two orthogonal polarizations
of light, which here we take to be horizontal and vertical
for definiteness, although they could also be right and left

circular. We assume the coupling to the cavity is strong enough
for spontaneous emission out the sides of the cavity to be
negligible. A polarizing beam splitter may be used to combine
or separate few-photon pulses with orthogonal polarizations.

We use the space-time description presented in [7]. The
general Hamiltonian has the form

H = −ih̄g

∫ √
κ/π

κ − iω
(|e〉〈gh|aω + |e〉〈gv|bω)e−i(ω+δ)t dω

+ H.c. (1)

Here the operators aω and bω annihilate horizontally and
vertically polarized photons, respectively, and obey continuum
commutation relations: [aω,a

†
ω′ ] = δ(ω − ω′). The frequencies

ω are measured from the cavity frequency �c (that is, if � is the
actual field frequency, ω = � − �c), and δ = �c − ωa is the
detuning of the cavity from the atom. As is customary in cavity
quantum electrodynamics, the parameter g (equal to one-half
of the “vacuum” or “one-photon” [14] Rabi frequency) denotes
the strength of the coupling between the atomic transition
and the cavity mode, which we take to be the same for both
transitions. The parameter κ is the cavity amplitude decay rate
for the field, here assumed to be entirely due to transmission
through the input mirror (see Sect. IV for further comments
on these and other assumptions).

We write the overall state at any time as

|�(t)〉 = |ψh(t)〉|gh〉 + |ψv(t)〉|gv〉 + |ψe〉|e〉, (2)

where the field states |ψh(t)〉, . . . are defined as 〈gh|�(t)〉, . . . .
They satisfy the coupled equations

d

dt
|ψe〉 = −g

√
κ

π

∫
1

κ − iω
(aω|ψh〉

+ bω|ψv〉)e−i(ω+δ)t dω, (3a)

d

dt
|ψh〉 = g

√
κ

π

∫
1

κ + iω
a†

ω|ψe〉ei(ω+δ)t dω, (3b)

d

dt
|ψv〉 = g

√
κ

π

∫
1

κ + iω
b†ω|ψe〉ei(ω+δ)t dω. (3c)

We will assume that the atom-cavity detuning is zero, and
that the pulse is also resonant with the cavity, so the frequencies
ω appearing in Eqs. (3) are centered around zero. Then, if the
pulse duration T is very long, so that κT � 1 and adiabatic
following takes place, we can assume that the frequencies
which contribute significantly to the integrals in (3) are always
very small compared to κ . All our calculations below will be
based on this adiabatic approximation [note that this, by itself,
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FIG. 1. The “one-dimensional three-level atom” considered in
this paper (see text for details).

does not require either the “bad” (κ > 2g) or “good” (κ < 2g)
cavity limit to apply].

Neglecting ω versus κ in all the denominators in Eqs. (3),
we formally integrate Eqs. (3b) and (3c) and substitute in (3a):

d

dt
|ψe〉 = − g2

κπ

∫ t

0
dt ′

∫
dω

∫
dω′[aωa

†
ω′ |ψe(t ′)〉

+ bωb
†
ω′ |ψe(t ′)〉]e−i(ωt−ω′t ′)

− g√
κπ

∫
[aω|ψh(0)〉 + bω|ψv(0)〉]e−iωt dω. (4)

For the photon subtraction scenario we will assume that
initially we have only N horizontally polarized photons, and
zero vertically polarized ones. Then the last term in (4) is zero,
and also, there are no vertically polarized photons in the state
|ψe(t)〉. Then, if we use Eq. (2) to put (4) in normal order, we
get

d

dt
|ψe〉 = −
|ψe〉 − 


∫ t

0
dt ′ A†(t ′)A(t)|ψe(t ′)〉

−
√


A(t)|ψh(0)〉, (5)

where the “bad cavity” characteristic decay rate 
 = 2g2/κ

has been introduced, and the operator A(t) is defined as

A(t) = 1√
2π

∫
aωe−iωt dω (6)

satisfying

[A(t),A†(t ′)] = δ(t − t ′). (7)

As shown by Rosenblum et al. [1], the perfect photon
turnstile is obtained in the adiabatic limit, when the pulse
is very long compared to 1/
. We thus require 2g2T/κ � 1
in addition to the previous condition κT � 1. In this limit,
Eq. (5) can be simplified to

|ψe〉 � −
∫ t

0
dt ′ A†(t ′)A(t)|ψe(t ′)〉 − 1√



A(t)|ψh(0)〉, (8)

an implicit equation for |ψe〉 that can be solved by iteration.
Substituting the right-hand side of (8) back in itself, we obtain

|ψe〉 = − 1√



A(t)|ψh(0)〉

+ 1√



∫ t

0
dt ′ A†(t ′)A(t)A(t ′)|ψh(0)〉

+
∫ t

0
dt ′

∫ t ′

0
dt ′′ A†(t ′)A(t)A†(t ′′)A(t ′)|ψe(t ′′)〉. (9)

If we use the commutator (7) to put the last term of (9) in
normal order, we find that the integral over t ′′ of the term
proportional to δ(t − t ′′) vanishes for all t ′ except when t ′ = t ,
where it has a finite value. The integral (over t ′) of a finite

function that is zero almost everywhere is zero, so this term
does not contribute and we can simply rewrite (9) as

|ψe〉 = − 1√



A(t)|ψh(0)〉

+ 1√



∫ t

0
dt ′ A†(t ′)A(t)A(t ′)|ψh(0)〉

+
∫ t

0
dt ′

∫ t ′

0
dt ′′ A†(t ′)A†(t ′′)A(t)A(t ′)|ψe(t ′′)〉.

(10)

Now we can continue the iteration by substituting (8) into (10),
and again rewriting the result in normal order introduces no
extra terms. We clearly end up with the series

|ψe〉 = − 1√



[
A(t)|ψh(0)〉 −

∫ t

0
dt ′ A†(t ′)A(t)A(t ′)|ψh(0)〉

+
∫ t

0
dt ′

∫ t ′

0
dt ′′ A†(t ′)A†(t ′′)A(t)A(t ′)A(t ′′)|ψh(0)〉

+ · · ·
]
, (11)

which terminates after N terms for an initial N -photon state.
This can be used back in (3b) and (3c) to determine the final
state.

B. N-photon initial wave packet

An N -photon initial wave packet can be described by

|ψh(0)〉 = |N〉 ≡ 1√
N !

(∫
f̃ (ω)a†

ω dω

)N

|0〉, (12)

where, by normalization, the function f̃ (ω) must satisfy∫ |f̃ (ω)|2 dω = 1. It is straightforward to see that

A(t)|N〉 =
√

N
1√
2π

∫
f̃ (ω)e−iωt dω |N − 1〉

=
√

N f (t)|N − 1〉, (13)

where the function f (t), defined by the above equation and
also normalized to unity, gives the pulse profile. We assume
throughout that at the initial time t = 0, one has f (t) � 0; that
is, the initial time t = 0 is chosen to be long before the pulse
reaches the cavity. With this assumption, the result (12) and
repeated integration by parts can be used to reduce the series
Eq. (11) to the closed form

|ψe〉 = 1√



f (t)
N∑

n=1

(−1)n
√

N !

(N − n)!

× 1

(n − 1)!

(∫ t

0
f (t ′)A†(t ′)dt ′

)n−1

|N − n〉. (14)

If the function f (t) is negligible for t < 0, the lower limit of
integration can be formally taken to be −∞ in Eq. (14). It can
then be simplified further by noting that

|N − n〉 = 1√
(N − n)!

(∫ ∞

−∞
f (t ′)A†(t ′) dt ′

)N−n

|0〉 (15)
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since the time integral in this expression simply produces the
frequency components f̃ (ω) appearing in Eq. (12). Substitut-
ing (15) in (14) and using the binomial theorem then yields

|ψe〉 = −
√

N√
(N − 1)!

f (t)√



(∫ ∞

t

f (t ′)A†(t ′)dt ′
)N−1

|0〉.
(16)

This can now be used in Eq. (3b) to calculate the part of the
final state associated with finding the atom in the |gh〉 ground
state. In the adiabatic limit, and with δ = 0, Eq. (3b) can be
written as

d

dt
|ψh〉 =

√

A†(t)|ψe(t)〉. (17)

Clearly, by inspection, this equation is satisfied by

|ψh(t)〉 = 1√
N !

(∫ ∞

t

f (t ′)A†(t ′)dt ′
)N

|0〉 (18)

since its derivative equals the right-hand side of (17), and its
value at t = 0 [same as t = −∞ if f (t) is negligible for t < 0]
is the correct N -photon state |N〉 [according to Eq. (15), with
n = 0].

It follows immediately from Eq. (18) that |ψh(∞)〉 = 0.
Hence, in this (adiabatic) limit the atom makes the transition
to the other ground state with unit probability, and a single
vertically polarized photon is certain to be produced. The field
state is then given by |ψv(∞)〉, which is obtained by integrating
the equation (3c):

d

dt
|ψv〉 =

√

B†(t)|ψe(t)〉. (19)

Here the operator

B(t) = 1√
2π

∫
bωe−iωt dω (20)

has been defined for the vertically polarized modes, by analogy
to A(t). Substituting Eq. (16) in (19), the result for the final
field state is then

|ψv(∞)〉 = −
√

N√
(N − 1)!

∫ ∞

−∞
dt ′ f (t ′)B†(t ′)

×
(∫ ∞

t ′
f (t ′′)A†(t ′′)dt ′′

)N−1

|0〉. (21)

Note that, in general, the vertically polarized (v for short)
photon is quite entangled with the horizontally polarized (h)
photons.

The joint probability to detect a v photon at the space-time
point τ1 and an h photon at τ2 (where τ can be, for instance,
t − z/c, for a pulse traveling to the right) is proportional to the
expectation value of the operator B†(τ1)B(τ1)A†(τ2)A(τ2) in
the state (21). This can be calculated by using the commutation
relations to move all the annihilation operators to act on the
vacuum state. The result is

Ivh(τ1,τ2) ∝ N (N − 1)|f (τ1)|2|f (τ2)|2θ (τ2 − τ1)

×
(∫ ∞

τ1

|f (t ′)|2dt ′
)N−2

, (22)
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FIG. 2. The incoming pulse with N = 2 horizontally polarized
photons (short-dashed line), and the outgoing single-photon v pulse
(solid line) and N − 1 photon h pulse (long-dashed line). Time is in
units of T ; if |f |2, Ih, and Iv are interpreted as probability distribution
functions, the vertical axis is in units of 1/T .

where θ is the Heaviside theta function. This shows that it
is impossible to detect an h photon before a v photon, a
very strong correlation already pointed out by Rosenblum
et al. This is a feature of the adiabatic approximation and
does not generally hold in other regimes, as seen in Fig. 8
below. Formally it is due to the fact that in (21) the creation
operators for the h photons only act after the v photon is
created; this, in turn, follows directly from the form (16) of
|ψe(t)〉, which ultimately must result from the interference
between all the absorption and reemission processes indicated
in expression (11).

Integrating (22) over τ2 gives the unconditioned distribution
for the v photon:

Iv(τ1) = N |f (τ1)|2
(∫ ∞

τ1

|f (t ′)|2dt ′
)N−1

(23)

[here normalized to unity by dividing out the factor N − 1
which appears on the right-hand side of Eq. (22)], whereas
integrating over τ1 gives the distribution for h photons:

Ih(τ2) = N |f (τ2)|2
[

1 −
(∫ ∞

τ2

|f (t ′)|2dt ′
)N−1

]
, (24)

which in this form is normalized to N − 1. Note Ih(τ2) =
N |f (τ2)|2 − Iv(τ2), so in some sense the wave packet for
the N − 1 h photons is obtained by subtracting from the
incoming wave packet (with an appropriate weight factor) the
wave packet for the single v photon. Alternatively, we can say
that the sum of the two unconditioned distributions equals the
original one, normalized to the original number of photons N .

These results are illustrated in Figs. 2–5 for an initial
Gaussian pulse with a profile given by

|f (t)|2 = 1

T
√

π
e−t2/T 2

(25)

[note that the quantity T used here to characterize the duration
of a Gaussian pulse is different from the T used in previous
papers such as [7]; one has T (this paper) = Tprev/

√
2].

033832-3



JULIO GEA-BANACLOCHE AND WILLIAM WILSON PHYSICAL REVIEW A 88, 033832 (2013)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-3 -2 -1  0  1  2  3

input pulse
v pulse
h pulse 

t/T

I [
un

its
 o

fT
−1

]

FIG. 3. Same as in Fig. 2, for N = 5.

Equations (23) and (24) become

Iv(t) = N

2N−1T
√

π
e−t2/T 2

[
1 − erf

(
t

T

)]N−1

,

(26)

Ih(t) = N

T
√

π
e−t2/T 2

{
1 − 1

2N−1

[
1 − erf

(
t

T

)]N−1}
.

Note that this has a very symmetric form for N = 2, as shown
in Fig. 2.

For larger N , in Figs. 3 and 4 we have plotted Ih/(N − 1),
since this is normalized to unit area. Clearly as the number
of photons in the original pulse increases, the removal of one
photon has less and less of an effect, and asymptotically, for
large N , Ih just approaches |f (t)|2. The single-photon v pulse,
on the other hand, starts appearing earlier and earlier, and it
also becomes narrower.

This behavior of the v-photon pulse with increasing N can
be qualitatively understood as follows. First, note that in this
adiabatic (or very-fast-cavity) limit, the photon absorption and
emission processes are essentially instantaneous. This can be
seen by taking N = 1 in Eq. (23): The probability to get a v

photon is in that case at every moment directly proportional
to the probability (given by |f (t)|2) for the h photon to just
be there. Similarly, in the N > 1 case, all it takes to generate
the v photon is for one of the N h photons to be present in the
cavity. As N increases, this becomes more and more likely for
earlier times. This explains the shifting of the pulse towards

 0
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FIG. 4. Same as in Fig. 2, for N = 15.
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FIG. 5. Average (solid line) and standard deviation (dashed line)
of the distribution Iv(t) as a function of N (in units of T ).

earlier times. Also, note that the v pulse should go to zero once
it becomes all but certain that a v photon has been emitted,
which is to say as soon as it is all but certain that at least one h

photon has arrived at the atom. The more photons one has, the
earlier this happens also, and hence the earlier the v pulse goes
to zero. Finally, the narrowing happens because with more
photons available it takes comparatively less time to reach that
certainty.

The narrowing of the v pulse may cause some concern
that the adiabatic approximation may become invalid for
large N , but fortunately the effect is a very slow function
of N . Figure 5 shows the numerically calculated average and
standard deviation of the function Iv , in units of T , as a function
of N . Note that even for N = 1000, the standard deviation is
still ∼0.25T , or about 0.25

√
2 = 0.35 times what it was for

the incoming pulse. As Fig. 5 shows, the shift of the pulse
towards earlier times is a more substantial effect.

C. Numerical results for N = 2

The results in the previous section are expected to be valid
in the doubly adiabatic limit κT � 1, 
T � 1. It is possible
to check this numerically in the simplest case of a two-photon
h pulse (N = 2). We have used a discrete-mode approximation
to the Hamiltonian (1) (see [7] for details).

Figure 6 shows contour lines for the error probability
1 − Pv , defined as the probability that the atom may not end
up in the |gv〉 state. The lines have been drawn at logarithmic
intervals, so error probability decreases by a factor of 2 from
one line to the next. As expected, it is not enough to just make
one of κT and 
T large, but moderate values of both actually
suffice to make 1 − Pv relatively small. For instance, κT = 4,
gT = 4 is enough to get 
T = 8 and a failure probability of
0.0118 [15].

Figure 7, calculated for these values of κT and 
T , shows
that even for these very low failure probabilities there is still
some visible disagreement between the numerically calculated
pulses and the theoretical results derived in the previous
section, although, as expected, we find that the agreement
improves as κT and 
T increase. For smaller values of these
parameters, we may find much more dramatic disagreement.
For instance, for κT = 4 but gT = 1 (which means 
T = 0.5)
one obtains the result in Fig. 8, which shows the vertical pulse
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FIG. 6. Contour lines for the error probability 1 − Pv , calculated
numerically for N = 2.

coming out after the horizontal one (the failure probability,
that is, the probability that there may, in fact, be no vertical
pulse, is about 0.26, or 1/4, in this case).

D. Initial coherent state pulse

A multimode coherent state is typically written as

|α〉 =
∏
k

|αk〉, (27)

where the index k runs over a (discrete, for convenience) set
of modes. The total average number of photons is

n̄ = 〈α|
(∑

k

a
†
kak

)
|α〉 =

∑
k

|αk|2 (28)

and the pulse shape is given by the probability to detect a
photon at the space-time point τ , which, as usual, goes as

I (t) ∝ c

L
〈α|

(∑
k

a
†
ke

iωkτ

) (∑
k′

ak′e−iωk′ τ

)
|α〉

= c

L

∣∣∣∣∣
∑

k

αke
−iωkτ

∣∣∣∣∣
2

≡ n̄|f (τ )|2, (29)
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FIG. 7. Numerically calculated results for Ih and Iv , compared to
the asymptotic predictions Eq. (27), for κT = gT = 4.
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FIG. 8. Numerically calculated results for Ih and Iv , compared to
the asymptotic predictions Eq. (27), for κT = 4, gT = 1 (
T = 0.5).

where L is the quantization length and the function f (τ ) =√
c/L

∑
k αke

−iωkτ /
√

n̄ has unit norm over the interval L/c,
according to (28). Clearly, the state (27) can alternatively be
written as

|α〉 = e− ∑
k |αk |2/2e

∑
k αka

†
k |0〉

= e−n̄/2
∞∑

n=0

n̄n/2

n!

(∑
k

αk√
n̄

a
†
k

)n

|0〉

= e−n̄/2
∞∑

N=0

n̄N/2

√
N !

|N〉. (30)

This is just a superposition of multimode number states of
the same form as the ones appearing in Eq. (12), only for a
discrete set of modes; however, the continuum limit in Eq. (30)
poses no problems. The essential point is that for all the |N〉
states, the pulse profile is given by the same function f (τ ),
proportional to the Fourier transform (discrete or continuous)
of the amplitudes αk , and normalized to unity over an interval
that may be extended to (−∞,∞).

All the states in the sum (30) with N � 1 will be
transformed according to Eq. (21), so the final state of the
field associated with the |gv〉 state of the atom will be

|ψv(∞)〉 = −e−n̄/2
√

n̄

∫ ∞

−∞
dt ′ f (t ′)B†(t ′)

× exp

(√
n̄

∫ ∞

t ′
f (t ′′)A†(t ′′) dt ′′

)
|0〉. (31)

Once again, this is a highly entangled state. For each value of
t ′, the state of the h field is a coherent state with a different
(complex) amplitude, whereas the corresponding state of the v

field is a one-photon state. The norm of (31) is not, in general,
equal to 1, since there is a probability equal to e−n̄ that the
initial state of the field may have been the vacuum, in which
case the atom will not transition to the state |gv〉. The failure
probability of the photon subtraction scheme with a coherent
state input is therefore equal to e−n̄.

The v pulse shape can be obtained most simply by adding
the probabilities (23) with the appropriate weights, given
by (30). Once again, the sum can be carried out, with the
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FIG. 9. Single-photon v-polarized pulses generated from
h-polarized coherent states with n̄ = 2, 5, and 15, respectively.

result

Iv(τ1) = e−n̄n̄|f (τ1)|2 exp

(
n̄

∫ ∞

τ1

|f (t ′)|2 dt ′
)

= n̄|f (τ1)|2 exp

(
−n̄

∫ τ1

−∞
|f (t ′)|2 dt ′

)
. (32)

It is easy to see by direct calculation that this indeed
integrates to 1 − e−n̄, confirming our expectations for the
failure probability.

For the Gaussian pulses considered earlier [Eq. (25)], this
becomes

Iv(t) = n̄

T
√

π
exp

{
− t2

T 2
− n̄

2

[
1 + erf

(
t

T

)]}
. (33)

The single-photon v pulses corresponding to n̄ = 2, 5, and 15
are shown in Fig. 9. Note that they do not look significantly
different from the ones generated from initial number states
(Figs. 2–4). Their areas give their probabilities, and as
indicated above, they are given by the general formula 1 − e−n̄;
they are 0.865, 0.993, and 1.0 (to six significant figures),
respectively. Hence, coherent states (classical pulses) with as
few as five photons on average could be used in this scheme
as effective near-deterministic generators of single-photon
pulses.

III. PHOTON ADDITION

It is tempting to think that one could run the photon
subtractor in reverse, so that an input of one v photon and N

h photons would be converted into a number state with N + 1
h photons; one could then generate large number states in this
way. Unfortunately, since the subtractor’s output states (21)
are highly entangled, the reverse operation will not work
for initially unentangled pulses; or, rather, it will only work
probabilistically.

The description of the “photon adder” starts with the same
equations (3), but different initial conditions. Referring to
Eq. (4), now we assume that |ψh(0)〉 is zero (the atom starts
in the |gv〉 ground state). As before, however, there are no v

photons in the state |ψe(t)〉, so after putting (4) in normal order

we get

d

dt
|ψe〉 = −
|ψe〉 − 


∫ t

0
dt ′ A†(t ′)A(t)|ψe(t ′)〉

−
√


B(t)|ψv(0)〉. (34)

The same methods as in Sec. II A can be used to derive the
equivalent of Eq. (11):

|ψe〉 = − 1√



[
B(t)|ψh(0)〉

−
∫ t

0
dt ′ A†(t ′)A(t)B(t ′)|ψh(0)〉

+
∫ t

0
dt ′

∫ t ′

0
dt ′′ A†(t ′)A†(t ′′)A(t)A(t ′)B(t ′′)|ψh(0)〉

+ · · ·
]
. (35)

Assuming that the initial state consists of a pair of number
states, with (in general) different temporal profiles,

|ψh(0)〉 = 1√
N !

(∫
h̃(ω)b†ω dω

) (∫
f̃ (ω)a†

ω dω

)N

|0〉,
(36)

one obtains

|ψe(t)〉 = − 1√



[
h(t)|N〉h

−
√

N f (t)
∫ t

0
dt ′ A†(t ′)h(t ′)|N − 1〉h

+
√

N (N − 1) f (t)
∫ t

0
dt ′ A†(t ′)f (t ′)

×
∫ t ′

0
dt ′′ A†(t ′′)h(t ′′)|N − 2〉h + · · ·

]
|0〉v. (37)

This can now be substituted in Eq. (3b), and integrated from
0 to t ; the integration interval can be extended to (−∞,∞) as
before, to obtain the final state of the system, and then repeated
integration by parts can be used to bring all the h’s to the front:

|ψh(∞)〉 = −
∫ ∞

−∞
A†(t)h(t)dt

[
|N〉h

−
√

N

∫ ∞

t

dt ′ A†(t ′)f (t ′)|N − 1〉h

+
√

N (N − 1)
∫ ∞

t

dt ′ A†(t ′)f (t ′)

×
∫ ∞

t ′
dt ′′ A†(t ′′)f (t ′′)|N − 2〉h + · · ·

]
|0〉v,

(38)

which can be put in the compact form

|ψh(∞)〉 = − 1√
N !

∫ ∞

−∞
h(t)A†(t)dt

×
(∫ t

−∞
f (t ′)A†(t ′) dt ′

)N

|0〉. (39)
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It is now easy to see that, if h = f ,

|ψh(∞)〉 = − 1√
N + 1

|N + 1〉h|0〉v [h(t) = f (t)], (40)

that is, the photon is removed from the v mode and added to
the h mode, but only with a probability 1/(N + 1). This is
already as small as 0.5 for N = 1 (generation of a two-photon
state), and only gets smaller as N increases.

On the other hand, the advantage of the choice h = f is
that the resulting pulse has the same profile as the incoming
ones. Also, in any case, the failure to produce the state (39) is
heralded: One only needs to look for the original v photon in
the output state to know that the conversion did not take place.
So we could produce two-photon states with probability 1/2,
and know when we have succeeded (of course, only if we have
unit efficiency photon detectors); then, given a one-photon and
a two-photon state, we could make a three-photon state with
probability 1/3, and so on. As long as one does not need a
number state with a lot of photons, these odds are probably
tolerable.

Alternatively, one could try to choose f and h so as to
maximize the conversion probability, but this comes at the
cost of having to deal with differently shaped pulses at every
stage of the process.

IV. FEASIBILITY

The main constraint that needs to be satisfied to implement
this scheme is the doubly adiabatic condition κT ,
T � 1.
In addition to this we have made a number of simplifying
assumptions, some of which also amount to experimental
requirements; these include neglecting spontaneous emission
in out-of-cavity modes, degenerate atomic transitions, and
equal couplings for both transitions. Also, cavity losses other
than transmission through the input mirror have also been
neglected.

Since the hope was expressed in the Introduction that the
design presented here might simplify the implementation
of some optical-cavity-based single-photon sources, such
as Ref. [10], by eliminating the need to excite the atom
with an external beam through the side of the cavity, we
may take the cavity parameters of [10] as a starting point
for a feasibility discussion. For this experiment, involving
a cesium atom, McKeever et al. reported g/2π = 16 MHz,
κ/2π = 4.2 MHz, γ (spontaneous emission rate) = 2.6 MHz.
From this we get 
 = 2g2/κ = 122/2π MHz. Under these
conditions (compare Fig. 6), a T of the order of 3 × 10−7 s
should suffice to ensure very high conversion efficiency. This
can be done with the atom held in place in a trap, as in [10],
or even with an atom freely falling through the cavity, as in
the experiments reported in [16], where transit times of the
order of 100 μs were reported.

As for the effect of spontaneous emission, if we assume
the atom is only excited for a time of the order of 1/
, the
associated error probability would be of the order of

γ



= κγ

2g2
, (41)

which is equal to 0.02 for the above parameters.
A more significant problem for high-finesse optical micro-

cavities are absorption and scattering losses at the mirrors,

which are typically not negligible compared to the transmis-
sion losses [17]. If we write the total decay rate of a photon
in the cavity as κtrans + κabs, then the photon lifetime in the
cavity is of the order of 1/(κtrans + κabs), and the probability
that it may be absorbed in this time is κabs/(κtrans + κabs),
which according to [17] may be as large as 0.4, or 40%.
This is a potentially serious difficulty, since it essentially
turns the photon generation into a random (as opposed to a
near-deterministic) process, but clearly any scheme based on
these types of high-finesse optical cavities would be afflicted
by the same problem.

Alternatives to conventional Fabry-Perot microcavities
certainly exist (see, for instance, the review [18]), and there
are studies that indicate that, for instance, for dielectric mi-
crospheres below a certain size the losses are overwhelmingly
dominated by radiative processes [19], so such systems (which
still can reach very large quality factors) may be better suited
for practical single-photon sources. For such systems, their
ability to channel spontaneous emission into the cavity mode
is often characterized by the so-called Purcell number P ;
for a Fabry-Perot cavity, 1/P is essentially the same as
the quantity (41) above. For microposts and micropillars,
Vahala [18] quotes Purcell factors in the 10–100 range.

For many of these solid-state systems, a better source of
photons might be a quantum dot, instead of a three-level
atom. Then our scheme requires a way to get a three-level,
� configuration in a quantum dot. This has been the subject
of numerous studies, beginning with the work of Imamoğlu
et al. [20]; as a relatively recent reference, we mention [21].
We are not really knowledgeable enough about these systems
to venture a guess as to how easy or hard it may be to realize
the present scheme in them.

Regarding some of our other assumptions, unequal cou-
plings g (or, more precisely, 
) for the two atomic transitions
do degrade the performance of our scheme, but not very
dramatically. Interestingly, this is an error that decreases with
increasing N . By redoing the calculations in Sec. II with
different 
h and 
v , one obtains an error probability [basically,
the norm squared of |ψh(∞)〉] given by

Pe =
(


h − 
v


h + 
v

)2N

. (42)

For example, if 
h = 1.5
v , then Pe = 0.04,0.0016, and 6.4 ×
10−5 for N = 1, 2, and 3, respectively. We believe this is
because for classical fields the adiabatic following that takes
the atom from one ground state to another is “exact” (for
an infinitely slow pulse) regardless of the magnitude of the
couplings.

For an atom in free space, if the ground states merely
correspond to different values of the z component of the total
angular momentum, the transitions should be automatically
degenerate, and the couplings to the orthogonal polarizations
identical, by global rotational symmetry. However, in many
cases, in practice, one may want to break the degeneracy
(for instance, with an external magnetic field). Nondegenerate
transitions and unequal couplings also arise naturally in
quantum dot systems.

For quantum logical gates based on this system (origi-
nally proposed in [22]) the consequences of dealing with
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nondegenerate atomic transitions have been explored quite
thoroughly in [23]. For the simpler use suggested here, they
do not, in fact, pose a problem; all that is required is to set the
cavity frequency halfway between the two atomic transitions,
so that the effective coupling to both modes, g2κ/(κ2 + �2), be
the same (it might also be possible to use different values of �h

and �v to compensate in part for different values of gh and gv).
The fields should still be resonant with the atomic transitions
themselves, which means that the different polarizations would
also have different frequencies in this case.

V. CONCLUSIONS

The results presented here add to the already impressive
list of useful properties of this “one-dimensional three-level

atom” setup. It has the potential to serve for storing the
state of a single photonic qubit [24], to mediate photon-
photon gates that enable universal quantum computing [22],
to function as an effectively deterministic source of single-
photon pulses, with a “classical field” input, and to generate
probabilistically, but in a heralded way, Fock states of
relatively low numbers of photons. A photonic quantum
computer could, in principle, be built entirely out of these
basic modules, plus appropriate optical elements and photon
routers.
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