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Force and torque on an electric dipole by spinning light fields
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We calculate the optical force and torque applied to an electric dipole by a spinning light field. We find that the
dissipative part of the force depends on the orbital energy flow of the field only, because the latter is related to the
phase gradient generalized for such a light field. As for the remaining spin energy flow, it gives rise to an optical
torque. The resulting change in the optical force is detailed for different experimentally relevant configurations,
and we show in particular how this change is critical when surface plasmon modes are involved.
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Introduction. Direct manipulation of particles through
light-induced forces has led to formidable progress which
has been impacting research in many areas ranging from
ultracold-matter physics to biology [1,2]. For the smallest
objects, which can be handled in the Rayleigh regime, the
optical forces induced by simple propagating laser beams
are usually separated into two components: gradient forces
directed towards the regions of highest field intensities and
radiation pressures directed along the Poynting vector [3,4].

The rise of nano-optics has offered the experimentalists new
types of optical excitations associated with inhomogeneous
fields and complex beam topologies [5]. Among these, surface
plasmon (SP) modes have revealed themselves to be particu-
larly efficient in trapping [6], propelling [7,8], and sorting [9]
nanoparticles, all in a great variety of environments, with, for
example, recent implications in microfluidics [10] and atomic
physics [11].

It was pointed out recently that the radiation pressure
applied on an electric dipole by an inhomogeneously spinning
light field is not given by the Poynting vector [12–17]. In this
article, a generalization of the phase gradient for a general
harmonic field allows us to demonstrate that the radiation
pressure is determined by the sole orbital part of the Poynting
vector, with no contribution from its spin part. This has
important consequences and we study how the modification of
the Poynting vector can affect experiments involving optical
forces generated by an evanescent field, such as total internal
reflection or surface plasmons.

Force and torque on an electric dipole. The Lorentz law
gives the instantaneous force exerted on an electric dipole by
general real electromagnetic fields (E,H), supplemented by
the torque acting on the dipole [3]:

F = (P · ∇)E + μ0Ṗ × H, � = P × E. (1)

We assume in this work that the electromagnetic fields are
monochromatic with an angular frequency ω. They thus write
in complex notations as E = Re(E) and H = Re(H) with
E(r,t) = E0(r)e−iωt and H(r,t) = H0(r)e−iωt . The electric
dipole P = Re(p) is initially fixed to be immobile at position
r in a medium of homogeneous and real refractive index n(ω).
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The complex dipolar moment p = p0(r)e−iωt is related to the
electric field through an isotropic complex polarizability α(ω)
with p0(r) = n2αE0(r) in SI units [18].

The substitution of complex fields and dipolar moment into
Eq. (1) leads to the time-averaged force [3,19]

〈F〉T = n2

2
Re[αf0], (2)

with

f0 = (E0 · ∇)E∗
0 − iμ0ωE0 × H∗

0 (3)

=
(

Ex∂xE
∗
x + Ey∂xE

∗
y + Ez∂xE

∗
z

...

)
. (4)

Equation (2) can be used to perform the usual decomposition
of the force into reactive and dissipative components, yielding
the gradient force and radiation pressure, respectively [4]. The
reactive force, proportional to Re[f0], is easily obtained from
Eq. (4) and can be interpreted as an intensity gradient so that

Freactive = n2

4
Re[α]∇(‖E0‖2). (5)

The dissipative force, proportional to Im[f0], writes from
Eq. (3) after some algebra as

Fdissipative = n2ωμ0Im[α]

(
� − ∇ × �E

2ωμ0

)
, (6)

where � = 1
2 Re[E0 × H∗

0] = 〈E × H〉T is the time-averaged
Poynting vector and �E = −Im[E0 × E∗

0]/2 = E × Ė/ω is
the time-independent electric polarization ellipticity.

This derivation gives the crucial result that the radiation
pressure exerted on an electric dipole is not proportional to
the Poynting vector as soon as the ellipticity of the acting
field has a nonvanishing curl. This observation has led to
interpreting the curl term in Eq. (6) as a third force component
associated with the spin density of the field [12–14,20–25].
But, as we now show through a generalization of the phase
gradient, the spin part of the Poynting vector does not play a
role in the radiation force. We emphasize that this conclusion is
reached from the same mathematical quantities as those used in
[12–14,20–25].

Physical interpretation of the force. Equation (6) gives a de-
composition of the time-averaged Poynting vector 2ωμ0� =
−Im[f0] + ∇ × �E , which actually corresponds to separating
� into its orbital and spin parts with respect to the electric
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field. To explain this point, let us first write the complex
polarization of the electric field as E0(r) = A(r) + ıB(r) with
real vectors A(r),B(r). One can show, following [26], that
�E = A × B is normal and proportional to the surface of the
ellipse formed by the electric field over a time period 2π

ω
.

This justifies the interpretation of �E as the direction and
magnitude of ellipticity of the electric field, also related to the
electric chirality flow of the field [27].

Moreover, �E is proportional to the local expectation value
S for the spin operator of the field with �E = 〈‖E‖2〉T S [26].
The curl component of the time-averaged Poynting vector can
thus be written as

∇ × �E

2ωμ0
= ‖E0‖2

4ωμ0
∇ × S + 1

4ωμ0
∇(‖E0‖2) × S, (7)

and is identified with the spin part. Then the decomposition of
� into orbital and spin parts can be written as

�
(E)
O = − Im[f0]

2ωμ0
, �

(E)
S = ∇ × �E

2ωμ0
, (8)

in agreement with [15]. The connection with the spin operator
S drawn in Eq. (7) is important as it shows that the field must
have either an inhomogeneous spin or a nonzero spin with an
inhomogeneous intensity in order to have �

(E)
S different from

zero. When neither of those conditions are met, � ≡ �
(E)
O and

the usual form of the radiation pressure is recovered.
Finally, this decomposition shows that subtracting the curl

term to the time-averaged Poynting vector in the dissipative
force only leaves the orbital energy flow to contribute to the
radiation pressure [15–17]:

〈F〉T = n2

4
Re[α]∇(‖E0‖2) + n2ωμ0Im[α]�(E)

O . (9)

This statement will be supported below by interpreting, in
specific cases, the orbital component as a phase gradient.

Let us first recall that for electric fields with linear
polarization E0(r) = E0(r)ŷ, with a scalar component written
as E0(r) = ρ(r)eiφ(r), the term f0 in Eq. (2) reduces to

f0 = ρ∇ρ − iρ2∇φ (10)

and yields the usual interpretation of the reactive Re[f0] and
dissipative Im[f0] components of the force proportional to
amplitude and phase gradients, respectively [4].

In the general polarization case, however, each component
E

j

0 = ρjeiφj

has its own amplitude and phase. From Eq. (4),
Re[f0] can still be written as an amplitude gradient, hence
the expression for the reactive force in Eq. (5). In contrast,
Im[f0] = −∑

j (ρj )2∇φj is a weighted average of the phase
gradients of each component involved. This expression can
be seen as a generalization of the phase gradient. Indeed,
when the additional assumption is made that the three
phase gradients are identical (∇φx = ∇φy = ∇φz =: ∇φ),
the usual expression (10) is recovered, showing therefore
the fundamental connection between the phase gradient and
the orbital component of the Poynting vector. In this sense,
�

(E)
O = � − (∇ × �E)/(2ωμ0) has to be seen as a modified

Poynting vector in the transfer of electromagnetic energy. It is
noteworthy that this modification operated via a curl term still
satisfies ∇ · �

(E)
O = ∇ · � and therefore amounts to a different

choice of gauge that does not affect Poynting’s theorem.

Physical interpretation of the torque. Meanwhile, the time-
independent torque turns out to be directly proportional to the
field ellipticity with

� = n2Im[α]�E, (11)

as suggested in [17]. To clarify its physical meaning, one
first notes that, when time evolves, the dipolar moment P(r)
rotates in the same plane as the electric field E(r), normal
to the ellipticity: P × Ṗ = |n2α|2E × Ė = ω|n2α|2�E . The
nonzero value of the vector product � = P × E then exhibits
a phase lag between the source E and the linear response P .
With Im[α] � 0, P is delayed with respect to E . Similarly to
the case of a driven damped harmonic oscillator, this delay
is due to dissipation in direct relation to the factor Im[α] in
Eq. (11). The torque thus works towards aligning P to E ,
trying to follow the field source. The amount of energy given
away by the torque to the dipole is simultaneously lost through
dissipation (heat).

We emphasize how Eqs. (9) and (11) display a remarkable
balance between the radiation pressure and the orbital energy
flow on the one hand, and the exerted torque and the
spin energy flow on the other hand. We conclude that the
incoming electromagnetic field transfers mechanical energy
to the electric dipole through dissipation via two different
channels: after time averaging, the orbital part �

(E)
O gives rise

to a dissipative net force (i.e., radiation pressure), while the
spin part �(E)

S can be related to the torque applied to the dipole
to maintain it rotating with the electric field.

We finally note that the decomposition in orbital and spin
parts for the Poynting vector is asymmetrically driven by the
electric field with � = �

(E)
O + �

(E)
S because our model of an

electric dipole only reacts to E . Considering a magnetic dipole
M = Re[βH] gives, by symmetry, a similar result with an
H-driven � = �

(H )
O + �

(H )
S decomposition [16,17].

We now describe a few specific field distributions that
enable one to illustrate this discussion most appropriately. All
of the cases discussed below are associated with transverse
magnetic (TM) polarized waves, either in the near or far field.

Evanescent TM-polarized waves. We start from the Carte-
sian general expression for a TM-polarized evanescent wave,
invariant in the y direction with

E0 = E0e
ikxeiqz(q̃,0, −k̃)t ,

H0 =
√

n2ε0/μ0E0e
ikxeiqz(0,1,0)t ,

where the complex k = k′ + ik′′ and q = q ′ + iq ′′ fulfill k2 +
q2 = (ωn/c)2, and the dimensionless k̃ = c

nω
k and q̃ = c

nω
q

fulfill k̃2 + q̃2 = 1. We note that while the x and z components
of E0 have different phases, allowing for ellipticity, their phase
gradients are identical with ∇φ = (k′,0,q ′)t . The associated
time-averaged Poynting vector and spin expectation value are
simply evaluated as � = (|E0|2/2ωμ0)e−2k′′x−2q ′′z(k′,0,q ′)t
and

S = 2
q̃ ′k̃′′ − k̃′q̃ ′′

|k̃|2 + |q̃|2 (0,1,0)t .

The spin vector is homogeneous so that the second term
in the right-hand side of Eq. (7) gives the only contribution
to �

(E)
S . After some algebra, one can show that the orbital

and spin components of the Poynting vector are collinear to it
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with �
(E)
O = [1 + 2(k̃′′)2 + 2(q̃ ′′)2]� and �

(E)
S = −2[(k̃′′)2 +

(q̃ ′′)2]�, meaning that � and �
(E)
S are in opposite directions.

This collinearity allows us to define the relative difference

 between the Poynting vector and its orbital component as
�

(E)
O − � = 
� with 
 = 2[(k̃′′)2 + (q̃ ′′)2] � 0 as a measure

of the increase of the energy flow after this substitution. As
seen on the latter equation, 
 stems from the evanescence of
the field due to the homogeneous spin of such a field.

The gradient force and radiation pressure of the TM-
polarized field can be expressed as

Freactive = −(n2‖E0‖2/2)Re[α](k′′,0,q ′′)t ,
Fdissipative = (n2‖E0‖2/2)Im[α](k′,0,q ′)t ,

with ‖E0‖2 = |E0|2e−2k′′x−2q ′′z[1 + 2(k̃′′)2 + 2(q̃ ′′)2]. Given
that k′k′′ + q ′q ′′ = 0, these two components are perpendicular
to each other. Moreover, as all E

j

0 have the same phase
gradient ∇φ, the two components of the force can be simply
expressed in terms of the imaginary and real parts of the
wave vectors. This directly supports the interpretation of
the reactive and dissipative forces as amplitude and phase
gradients, respectively.

Total internal reflection. The phenomenon of total inter-
nal reflection (TIR) is described by such a TM-polarized
evanescent field with real k̃ = n1/n2 sin θ1 and imaginary
q̃ = i

√
(n1/n2)2 sin2 θ1 − 1 components of the wave vec-

tor, given an incidence angle θ1 greater than the critical
angle θC = arcsin(n2/n1) at the (z = 0) interface between
two dielectrics of refractive indices n1 � n2. The relative
change in the dissipative force then follows with 
TIR =
2(n1/n2)2(sin2 θ1 − sin2 θC).

This parameter 
TIR is plotted in Fig. 1 as a function of
the incident angle θ1 and it displays interesting features. For
θ1 just above θC , 
TIR 	 0 and the Poynting vector is equal
to its orbital part. However, as the evanescence of the field in
the z direction increases with θ1, 
TIR reaches non-negligible
values, manifesting the onset of a spin contribution to the
Poynting vector.

Surface plasmon field. Such contribution is actually always
present in the case of a plain SP field launched at an
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FIG. 1. (Color online) Relative change 
TIR, as a function of
the incidence angle θ1 � θC for experimentally relevant values of
the index contrast n1/n2 between the two dielectrics, with n1 ∈
{1.46,1.75} for SiO2 or quartz and n2 ∈ {1,1.33} for air or H2O.

FIG. 2. (Color online) Relative change 
SP for optical data
(blue solid curve) and Drude model (blue dashed line) for a Au-H2O
(n = 1.33) interface. Remarkably, an evaluation based on a Drude
model strongly depart from using optical data. The y-component of
the spin is the red dotted curve, multiplied by −1.

interface (z = 0) between a metal and a dielectric, with
dielectric functions εm(ω) and εd (ω). Here, the wave vector
of the field is a complex quantity in both x and z directions
with k̃ = √

εm/(εd + εm) and q̃ = √
εd/(εd + εm). It follows

that the relative change in the dissipative force, due to
the substitution of � by its orbital part, is in this case
frequency dependent with 
SP = 2{Im[

√
εm/(εm + εd )]}2 +

2{Im[
√

εd/(εm + εd )]}2. The evaluation of this factor for an
Au-H2O interface is presented in Fig. 2 as a function of the
incident wavelength, together with the y component Sy of the
spin, thereby stressing the relation. We see that the Poynting
vector always differs from its orbital part, in agreement with
the intrinsic spinning nature of SP modes [27]. The induced
relative difference 
SP for the dissipative force is maximal
at λ 	 520 nm using optical data for gold. Interestingly, this
points to the crucial role of the interband transitions in the
generation of the ellipticity of the plasmonic field and stresses
the importance of using optical data for realistic and reliable
evaluations of plasmonic forces.

Intersecting standing waves. Finally, our different interpre-
tation becomes totally clear when considering the situation of
two TM-polarized intersecting standing waves (SW) addressed
in [14]. We start from the fields

Esw = Esw(eiϕ0 cos kz,0, −cos kx)t ,

Hsw = i
√

n2ε0/μ0Esw(sin kx + eiϕ0 sin kz)(0,1,0)t ,

with real k = ωn/c and real phase shift ϕ0 between the two
standing waves. Here too, the two components of Esw have
different phases (φx �= φz), but their phase gradients both equal
zero. As a consequence, the dissipative force, i.e., the radiation
pressure, vanishes for this electromagnetic field and the optical
force reduces to the gradient force.

It is possible to obtain a field for which � and �
(E)
O

are not colinear by merely adding a plane wave Epw =
Epweiky(1,0,0)t to the SW intersection. In this case, the
generalized phase gradient ∇φ induces a nonzero orbital
Poynting vector in the (y,z) plane with no component along
x. The evaluations are straightforward and reveal that in the
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(x,z) plane of the two SW, the dipole is only pushed by �
(E)
O

along the z direction, while � has a nonvanishing component
along x. This constitutes thus a simple situation for which the
radiation pressure is clearly directed off the orientation of �.

Conclusion. To summarize, we stress that the optical force
on an electric dipole is the sum of two terms only: the gradient
force and the radiation pressure. The latter component is solely
related to the orbital part of the Poynting vector of the driving
field, while the spin part is related to the optical torque exerted
on the dipole. We have shown how the evanescent character
of the TM-polarized field is directly related to the strength of
this spin part, and in the case of SP fields, how the relative
change in energy flow 
SP between the Poynting vector and
its orbital part depends strongly on the incident wavelength λ.

Our work reveals how crucial it is to substitute properly this
orbital part for the Poynting vector when expressing the dissi-
pative force acting on the electric dipole. This has important
consequences in the context of plasmonic manipulations of
nanoparticles.

Note added. Recently, Ruffner and Grier [28] gave a
similar expression of the radiation pressure as a phase gradient
generalized to arbitrary polarization in a Comment to Ref. [14].
Like us, these authors emphasize that the curl of the spin
angular momentum density does not contribute to the force
experienced by a Rayleigh object.
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