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Theory of Talbot lasers
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We provide a theoretical study of frequency-shifted feedback (FSF) lasers, i.e., lasers with an internal frequency
shifter, seeded with a monochromatic wave. The resulting spectrum consists in a set of equidistant modes, labeled
by n, whose phases vary quadratically with n. We prove the emergence of a temporal fractional Talbot effect,
leading to generation of Fourier-transform-limited pulses at a repetition rate tunable by the parameters of the
FSF cavity (cavity length and frequency shift per round trip), and limited by the spectral bandwidth of the laser.
We characterize in detail the output field of this so-called “Talbot laser” and emphasize its specific intensity
fluctuations. We evidence connections with some aspects of number theory by the appearance of Gauss sums and
theta series in the expression of the laser field. Our predictions are in full agreement with the experimental results
published in Guillet de Chatellus ez al. [Opt. Express 21, 15065 (2013)]. Practical applications and limitations

are discussed.
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Diffraction is a fundamental concept in optics. In the far
field of a grating shined with a monochromatic wave, the
waves diffracted by the slits can be considered as plane
waves with constant relative phase shifts. When the latter is a
multiple of 277, constructive interferences occur and the light
intensity is maximum. In the near field, however, things are
more subtle and inferring the diffracted pattern requires us
to consider the spherical nature of the waves diffracted by
the slits. Talbot reported in 1836 a rich variety of phenomena
in the vicinity of the grating: the repetition of the image of
the diffraction grating at distance multiples of the so-called
Talbot length, and most important for our point, the appearance
at fractional distances of the Talbot length, of light fringes
with a spatial frequency equal to (possibly large) multiples of
the fundamental frequency of the grating [1,2]. The Talbot
effect was later simply explained by the interference of
waves in the paraxial approximation, i.e., showing quadratic
phases [3,4]. Similar behaviors are also encountered in wave-
packet revivals in quantum systems [5—8]: when the energy
levels E, of the eigenmodes of a quantum system have a
small quadratic (or higher-order) dependence with n, the
dynamics of the system exhibits both periodic revivals of
the whole wave-packet and fractional revivals, that is, the
appearance of multiple mini-wave packets or clones. This
phenomenon, like the Talbot effect, is a particular illustration
of sums with quadratic phase shifts and connects to the
mathematical properties of Gauss sums or Jacobi theta sums
[9-11]. Note that the interest for physical systems showing
quadratic phase shifts has recently been boosted by the demon-
stration of physical protocols for factoring large numbers
[12-17].

It is interesting to reconsider the equivalent of the fractional
Talbot effect in the time domain. A frequency comb of
mode-locked optical modes is the temporal equivalent of a
grating of slits in the far field: constructive interferences occur
periodically with time, generating pulses at a repetition rate
equal to the mode spacing of the comb. Then, in the time
domain, the fractional Talbot effect corresponds to pulsing
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at (possibly high) multiples of the mode spacing (Fig. 1)
and constitutes therefore an exciting and promising challenge:
applications of ultrahigh repetition rate lasers concern the gen-
eration of THz waves, transfer of clock signals between remote
users, optical sampling, optical cadencers for analog-to-digital
converters, and ultrafast optical digital communications [18]
as well as spectroscopy of metallic nanoparticles [19,20]. By
analogy to the space domain, the demonstration of a laser
showing fractional Talbot effect requires a comb of modes, that
is, monochromatic waves with a constant frequency spacing,
with quadratic phases. A first solution has been provided by
engineering the dispersion undergone by a mode-locked laser
in specially designed Bragg gratings, so as to induce quadratic
phases to the modes of the comb [21,22]. This technique
has been successfully applied and led to multiplication of
the repetition rate by a factor up to 10 [23]. However, it is
technically challenging to increase further the repetition rate
and, moreover, the dispersion is fixed and the repetition rate is
not easily tunable.

Interestingly, a solution is brought naturally by a frequency-
shifted feedback (FSF) laser seeded with a monochromatic
wave [24,25]. A FSF laser is a cavity closed on the
first diffraction order of an acousto-optics frequency shifter
(AOFS): each time a photon makes a round trip in the cavity,
it undergoes a constant frequency shift. Typical diffraction
efficiencies of AOFSs reach 90%. The intracavity field consists
therefore in a frequency comb, with a mode spacing equal
to the frequency shift per round trip. However, contrary to
mode-locked frequency combs where all modes share the
same (or a linear) phase, the phases of the modes of the
FSF laser are quadratic. However, this property has been
somehow unexploited: most research on seeded FSF laser
has focused so far on the spectral characteristics of this
source to realize optical synthesizers and frequency combs
[26-29].

More precisely, regarding the temporal properties of the
light emitted by seeded FSF lasers, early work on both
passive and active FSF cavities reported the possibility to
generate mode-locked frequency combs when the frequency
shift is a multiple of the cavity-free spectral range [24,30].
A more recent theoretical work has shown numerically the
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FIG. 1. (Color online) Temporal fractional Talbot effect by the
interference of monochromatic waves with a constant frequency
spacing f;. (a) When the waves have constant (or linear) phases,
pulses are generated at repetition rate f;. (b) When the waves have
quadratic phases, the repetition rate is multiplied by an integer,
depending on the curvature of the parabola.

possibility of increasing the repetition rate by adjusting the
frequency shift and the cavity-free spectral range as the ratio
of two integers [31]. Very recently, our team provided an
experimental demonstration of this concept by injecting a dye
FSF cavity with a dye single-mode seed laser: the generation of
6-ps Fourier-transform-limited pulses was demonstrated with
repetition rates tunable by steps of 80 MHz between 0.24
and 36.6 GHz, that is, over two orders of magnitude [32].
Here, we explain this result in depth by providing an extensive
description of the fractional Talbot effect in cw-seeded FSF
lasers [3]. In the first part of the paper, we introduce a simple
model of a cw-seeded FSF laser. Then, we consider the case
where the optical spectrum of the cw-seeded FSF laser consists
in a set of N optical modes with the same amplitude showing a
constant frequency spacing and quadratic phases. We derive an
expression of the resulting electric field and intensity and show
that, depending on the curvature of the parabolic phases, it is
possible to generate a temporal fractional Talbot effect, i.e., the
generation of Fourier-transform-limited pulses with a tunable
repetition rate. We characterize the pulses and the intensity
fluctuations with respect to the curvature of the parabolic
phases and show the emergence of self-similarity when the
number of modes is increased. Our calculations are closely
related to properties of Gauss sums in number theory and
theoretical aspects of spatial Talbot effect. In the third part,
we consider a more realistic description of the cw-seeded
FSF laser by taking into account the spectral shape arising
from the gain and losses of the cavity and we derive generic
expressions for the output intensity and its fluctuations. Finally,
we discuss possible extensions of this work for generating
ultrastable ultrahigh repetition rates in broadband cw-seeded
FSF lasers and underline the fundamental limitations and the
related technical requirements.
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FIG. 2. (Color online) Left: generic sketch of a cw-seeded FSF
laser. The seed is injected in the cavity through the zero diffraction
(i.e., undiffracted) order of the AOFS. The output field is extracted
the same way. Right: resulting spectrum.

I. CW INJECTION-SEEDED FSF LASER

We consider a FSF cavity characterized by the round-trip
time 7, = 1/f. = 2n/w, and the frequency shift per round trip
fs = oy /27 (Fig. 2).

The cavity is injected continuously by the seeding field
Ege~i*(+7%) (The choice of the phase is made arbitrarily to
simplify the following expressions.) At each round trip in the
cavity, the angular frequency is shifted by w;. A leak of the
AOFS on the zero order enables us to extract a fraction of
the intracavity field. The output spectrum consists in a comb
of optical modes separated by the frequency f;. The angular
frequency of the mode 7 (i.e., after n round trips) is wy + nws.

We define 1 as the diffraction efficiency in amplitude of the
AOFS and neglect the dependence of n with the frequency.
We consider the dependence of the gain medium in the cavity
with the frequency by defining /(n) as the single-pass gain
in the laser medium of a optical mode at angular frequency
wp + nw;. The resulting field at the output of the AOFS is
therefore

E(t) = Eo(1 — n)*h(0)e "™’
+ Eon(1 = n)*h(0)h(1)e ) !
+ Eon*(1 = )’ h(O)h(1)h(2)e™ 2 2
+ Eon’(1 — n)*h(0)h(1)h(2)h(3)e (w3t ids
+ ... (1)

with ¢; = (wo + @y)Te, P2 = 1 + (w0 + 2w5)T., 3 = 2 +
(wo + 3w;)T. . ... Therefore, ¢, = nwot. +nn + Nw;t./2.

We define g(n) = n"(1 — n)zl'IZ:Oh(k). g can therefore be
seen as the envelope of the optical spectrum of the laser
resulting from the successive gain and losses of the FSF cavity
(Fig. 2). We set g(n) =0 when n < 0 and n > N, the cutoff
limit of g.

The expression of the electric field at the output of the FSF
laser seeded by a monochromatic wave is

<n(n+l>¢
)

E(t) = Eoe—iwol Z g(n)e—inwlteinwor(ez 5

n

2)

where ¢ = w7, = 27 f;/f.. Note the quadratic dependence
of the phases of the modes [24,31].
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II. INTERFERENCE OF N OPTICAL MODES OF
CONSTANT AMPLITUDE WITH QUADRATIC PHASES

In this section, we treat the ideal case where the laser output
consists in a set on N modes with identical amplitude. This
calculation is closely related to [3] and leads to interesting
connections to number theory.

Setting g as a top-hat function of width N and amplitude
unity, the electric field has the following expression:

N-1
s s . . n(n+1)
E(l) — E()e iwot 2 :e uuujtema)m:cet—2 ¢’ (3)
n=0

where ¢ = w,1, = 27 f;/f.. Here, E(t) appears as a Fourier
series with terms of equal amplitude and quadratic phases.
Since wy is orders of magnitude larger than wy, we consider the
frame rotating at wy where we study the envelope of electric
field. Writing 6 = w,t — wyT,, the electric field of the FSF
laser is described by the 27 -periodic function

N-1
F@O)=) e ™0, 4)
n=0
It is noteworthy that the electric field can be plotted in the
complex plane as a chain of N phasors with quadratic phases.
The resulting patterns consist in the repetition of Cornu spirals,
called “curlicues” and evolving with time (Fig. 3) [33].
In the following, we study the properties of this function of
the normalized time € depending on the values of ¢.

A. Expression of the electric field

We consider the specific case where ¢ = 2w p/q (p and g
coprimes) and ¢ < N. Then, the phases of the modes are given
by ¢, = nn(n + 1)p/q and we study F(0) depending on the
parity of integers p and g. We define K as the largest integer
satisfying N = Kq + r, r integer.

1. Case p even or q odd
When p is even or when ¢ is odd, one has

Gurqg =T(* +2ng +q* +n+q)p/q
= ¢, +2nnp +7plg+1) = ¢,. )

¢, is periodic with a period equal to g. Therefore,

N-1
§ e_”’@e”z’”

Kq
F@O)=>) e e +
n=0

n=Kqg+1
q—1 K-1 N-1
— Zefiné)eiqﬁ,, Z e*ikqé + Z e*in06i¢”. (6)
n=0 k=0 n=Kq+1

The geometric series can be easily calculated and, finally,

1 — eikeo 4=1 N-re o
F(Q) = 1—_“]9 Z e*lneel(ﬁn + Z e*lneetq},l. (7)
- n=0 n=Kq+1

In the following, we suppose that g divides N (N = Kq)
and therefore the second term on the right-hand side of the
equation vanishes. Note that in the general case where g
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FIG. 3. (Color online) Representation in the complex plane of
F(0) as a sum of N = 200 phasors with quadratic phases. We set
¢ =2mp/q. Inall six cases, p = 1 and ¢ = 7,15,25,27,51,89 from
left to right and top to bottom. For each value of ¢, we plot F(6;)
for six consecutive values of 0: 6, = 2km /1000 with 0 < k < 5.
The resulting total field corresponds to the straight line and evolves
clockwise with k.

does not divide N and for a large value of K (r < Kq), the
contribution of this term becomes indeed negligible (this point
is discussed at the end of this section). Therefore, the field
reduces to

| —e-ivoe izt
FO) =7 D el (8)
n=0
The intensity of the laser is
_ 2
1(9) |F(9)|2 Sinz(NQ/z) qu\ —inb Jig (9)
= = e e
sin?(g6/2) =

When K is large, that is when ¢ is much smaller than N,
the fraction tends to a peaked function localized at values of
0 given by 6, = 2w 1 /q, X integer. This behavior corresponds
to the generation of g optical pulses per period. In the time
domain, this corresponds to a repetition rate equal to gf; =
pfe. The amplitude of the pulses is a priori modulated by the
second term of the product: the peak intensity of the Ath pulse
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FIG. 4. (Color online) Intensity of the FSF laser /(0) computed

with N = 45 modes when p/q = 0 (top left), p/q = % (top right),
p/q = % (bottom left), and p/q = % (bottom right). A slight

modulation of the peaks appears when the relation ¢ < N is no
longer satisfied.

is given by
q—1 2
10:) = (N/q)*| Y e 21 (10)
n=0
q—1 2
— (N/q)z Z ein(n(n+1)p72)un)/q (11)
n=0

We obtain the expression of the square modulus of a Gauss
sum that can be calculated relatively easily (see Appendix A):

1(6,) = N*/q. (12)

It is remarkable that the intensity of the Ath pulse does not
depend on A: the resulting intensity consists in a set of g
pulses per period with identical amplitude (Fig. 4).

We now demonstrate that the width of the pulses when
q divides N is Fourier transform limited. The intensity is
given by Eq. (9). The first term is the familiar diffraction
function of a grating of slits. The width of the pulses is equal
to2mw/Kq = 2w /N. The second term is a function defined as a
Fourier series whose highest frequency is ¢ — 1, which means
that the shortest variation scale of this term is 2w /(g — 1).
Therefore, this function can be considered as constant and
equal to ¢ during a pulse, and the width of the pulse is therefore
27 /N. Note that the pulse width is limited only by the number
of modes: the pulses generated by fractional Talbot effect are
therefore Fourier transform limited. We recover here the fact
that the width of the diffraction fringes in fractional spatial
Talbot effect is independent from the spatial frequency of the
pattern. It is also noteworthy that the average intensity per
period is equal to (I)y = 1/2m x g x 1(6)) X 2n/N = N,
which is consistent with the hypothesis of N optical modes
with amplitude unity.
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2. Case q even and p odd

Similar conclusions can be obtained in the case where ¢ is
even and p is odd. We have then

Gnig =M +20g + > +n+q)p/qg =+ 7. (13)

We also assume for simplicity reasons that g divides N (N =
K¢q). Then,

q—1 K—1
F(G) — Zefirﬁeiqﬁn Z(_l)kefikqe (14)
n=0 k=0
| — p—iK@o+m) =1 n
— —ind iy
= Ty 619
n=0

The intensity of the laser is therefore

B 2
B ,  sin’[N(q0 + 7)/2q] = —inb i
10) =|F@®)|" = Sinz[(q9+71)/2] ;e ¢

(16)

When K is large, that is when ¢ is much smaller than N, and
the fraction tends to a peaked function localized at values of 6
given by 6, = w/q + 2w A/q, X integer. As before, there are g
pulses per period 27 and the repetition rate in the time domain
in gf;. Contrary to the previous case, the pulses are shifted
from the origin of times by 7 /q.

The peak intensity of the Ath pulse is given by

q-1 2
1(6,) = (N/q)*| )_ e Cmrtmnlaeitn (17)
n=0
q-1 2
— (N/q)z Z ein[n(n+1)p—n(2)»+1)]/q (18)
n=0
A calculation similar to the previous case leads to
1(6,) = N*/q, (19)
10)] 1)
A
0 2n 4n g0 21 4 g
16)] 1(6)

0 2n 4r g0 2n 47 0

FIG. 5. (Color online) Intensity of the FSF laser /(6) computed

with N = 48 modes when p/q = 0 (top left), p/q = % (top right),

p/q = i (bottom left), and p/q = % (bottom right).
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FIG. 6. (Color online) Intensity of the FSF laser /(6) computed
with N = 200 modes when p/q = 5 (topleft), p/q = 5 (topright),
p/q = 5 (bottom left), and p/q = 5= (bottom right).

which shows that the pulses have a constant amplitude (Fig. 5).
The demonstration that the pulses are Fourier transform limited
follows the same scheme as the case where p is even or g
is odd.

3. Remarks

Case where q does not divide N . In this case, the amplitude
of the peaks is modulated because of the remaining terms
in Eq. (7). The modulation rate depends qualitatively on the
distance between N and the closest multiple of g. Figure 6
shows that when N is not a multiple of g, the amplitude of
the pulses is not constant. For instance, when p/q = %, only
the two last terms of the sum in Eq. (6) are not taken in
the sum (200 = 2 mod 22), which results in relatively small
amplitude fluctuations, while in the case p/q = % seven
terms are not included in the sum (200 = —7 mod 23), which
results in larger amplitude fluctuations.

Influence of the seed frequency. The previous calculations
involve the normalized time 8 = w,t — wyT.. A notable influ-
ence of wy is to shift temporally the train of pulses. It can be
of interest to describe the FSF laser as a system transforming
a seed monochromatic field (i.e., a spectral Dirac) into a train
of pulses (i.e., a temporal Dirac comb) with a temporal shift
proportional to the seed frequency. The seeded FSF laser can
be seen somehow as a temporal optical Fourier transform
processor, where the spectrum of the seeding field is recorded
in the temporal trace of the output of the laser. This could
lead to applications in high-speed signal processing using
space-time duality [34].

B. Phase and coherence of the pulses

We now characterize the phase of the pulses, which
corresponds to the phase of the complex numbers:

() F6:) =2 077%™ when g is oddor p is
even. _ . @ntDh - np(itl)

(i) F(,) = % YTl e ™ ™ when g is even and
p is odd.
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A complete determination of the phase of the Gauss sum
arising in the expression of F(6,) is cumbersome but can be
found in the following [4,35,36]:

(a) For g odd and p even,

pioa =2 (DYewfin 150 2([4] )
(2]

(b) For g odd and p odd,
N -1 2p[1

F6,) = — <1’) exp —in[q— + —p[—}
Ja \4 4 q L2],

o] o

(c) For g even (and p odd),
_ N (»p fe_p(T1]Y
F(ek)_ﬁ(‘I)eXp{m[Z qqu)
2
X<p+22)»+1> “ 22)

where [%]q is the (unique) positive integer smaller than g

satisfying a[%]q = lmodgq. (}) is the Jacobi symbol, equal
to +1 if there is an integer m such that m? = a[b] and —1
otherwise. The resulting phases are plotted on Fig. 7.

C. Pulse-to-pulse coherence
We determine the coherence properties between two pulses
at times 6, and 6,4, by calculating F* (2 %)F 2r 3). (We
assume here that p is even or ¢ is odd but the other case would

80 g

FIG. 7. (Color online) Two-dimensional plot of cos{arg[ F(6,)]}
as a function of ¢ and A, when p =1 (top left), p = 2 (top right),
p =7 (bottom left), and p = 11 (bottom right). The grayscale is
adjusted between black (—1) and white (+1).
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be treated similarly.) It can be shown (see Appendix B) that

2
< (2 H—“)F(er&>> N sumoedg).  (23)
q q) 15 q

where 6(umodg) = 1 when u divides g and O else. (...);
denotes the average over A.

The interference term between two pulses separated by
2m /g vanishes in average when p is not a multiple of q.
Note that this constitutes a substantial difference with mode-
locked lasers where all pulses show the same phase. This
property accounts for the fact that when an interferometric
autocorrelation is performed by second harmonic generation
of the output of the cw-seeded FSF laser, the satellite peaks
(arising from the correlation of two different pulses) show
no interference fringes, contrary to the central autocorrelation
trace [32].

D. Intensity spectrum

We now turn to the intensity spectrum of the cw-seeded
FSF laser by deriving an expression if /(6) as a Fourier series.
Starting from

N—
10) = |[FOF = Y e 0mmi ™55 (o4

n,m=0

we divide the double sums into three terms, according to
I N—1 N—1N—1

N-—
ZAnm—ZAnn+ ZAnnl+ZZAnln

n,m=0 =1 n=l =1 n=l
(25)

The first term is equal to N. The third term is simply the
complex conjugate of the second one and

N-1N-1
I(0) =N+ 2Re< Z Z e_ime"mz_%)

=1 n=l
N—-1

_i 1(1+|) 1— ell(N—lm
=N+2Re< e 19 ¢W . (26)
=1

Assuming ¢ = 2np/q,

N—1 o 1 B znll)(N )
(+I - a
1(6) = N +2Re (Z e 1™ 1#> 27
I=1 —e 1

The intensity is expressed as a Fourier series whose coefficient

e ll)(N )

of order [ is proportional to ! . Provided N is large

/,7
-

enough compared to ¢, this term vanishes except when [ is a
multiple of g. Defining [ = sq, with s integer, leads to

E(X=D)

Z (N _ Sq)e—isqeeiﬂps(sq-‘rl) , (28)

s=1

1(6) = N +2Re

where E(x) is the integer part of the real number x. Finally,
E(Y
I@)=N+2 Y (N —sq)cos[sqf — mps(sq + D).
s=1
(29)
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Psn

FIG. 8. (Color online) Top-hat optical spectrum (left) and cor-
responding intensity spectrum when g = 3 (right). The horizontal
axis represents the optical and the radio frequencies (rf), respectively.
Note the decimation in the intensity spectrum.
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It is noteworthy that contrary to the optical spectrum,
which consists in a comb with a frequency spacing equal to
fs, the intensity spectrum shows a frequency spacing equal
to qfs (Fig. 8): the optical field is 27 periodic while the
intensity is 27 /q periodic. The corresponding decimation
in the spectral components results from the interference of
waves with quadratic phases. Actually, the difference between
the optical and the intensity spectrum is a general feature
of FSF lasers [37]. Recall that in the case where the FSF
laser is injected with spontaneous emission (modeless laser),
the same kind of behavior is observed: the optical spectrum
is continuous while the intensity spectrum is discrete [38].
The counterpart in the temporal domain temporal is the fact
that the degree of first-order coherence is peaked around null
delay, while the degree of second-order coherence is periodic
in modeless lasers [39].

E. Intensity fluctuations

We now turn to the dependence of the intensity fluctuations
of the laser with ¢. This constitutes a pertinent parameter to
study the time properties of seeded FSF lasers since it enables
us to characterize the pulsing regime and the repetition rate of
the laser. Moreover, the intensity fluctuations can be measured
experimentally with second harmonic generation (SHG). We
define the relative fluctuations of the intensity as W(¢) =
(1(9)2)9/(1(9))5@2) where (...)g denotes the average over
time (6). Recall that when ¢ = 2w p/q with ¢ much smaller
than N, the laser output consists in Fourier-transform-limited
pulses with a repetition rate equal to ¢g. The peak intensity of
the pulses is N2 /g and the pulse duration is 27t /N. Therefore,
(I(0)*)g ~ N3/q and (1(9))5 ~ N? which leads to a rough
approximation of W(¢):

(1))
(105

When N increases, this function tends to the so-called self-
similar Thomae’s function defined by function defined on [0, 1]
by T(p/q) = 1/q when p and g are coprimes, and T'() = 0
when 7 is irrational.

A more rigorous expression of the intensity fluctuations can
be derived using the expression of the intensity as a Fourier
series. Starting from Eq. (27), one has (/(9))3 = N* and

W(p =2m

P/ = (¢ =27p/q)~ N/q. (30)

2[I(N — D¢ /2]
sin?(lp/2)

(10))($) = N> +2 Z oin (31)
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Therefore,

2 X sin?[7l(N = Dp/q]

WQnp/q) =1+ — N2 sin?(wlp/q)

(32)

A significant contribution to the sum arises only from
indices [ satisfying /p/q integer. Since p and g are coprimes,
[ is then a multiple of g, i.e., I = kq. Then,

)
Werp/g)=1+5 > (N—kg?.  (33)
k=1
In the case where ¢ is much smaller than N, Zk(l (N —
kq)? ~ (l/q)fo x2dx = N3/3q. Therefore, we obtain
2N
WQR2rp/q) =1+ -— (34)

34

and we recover the previous link to the Thomae’s function
as in Eq. (30). Note that this expression is valid in the limit
where g is much smaller than N. This expression shows a good
agreement with the computed intensity fluctuations plotted on
Fig. 9. Note the agreement with the experimental variation
of the intensity fluctuations measured by SHG and reported
in [32].

Finally, an interesting situation occurs when p =1 and
q = N. In this case, we have

2 "2 sin2[7Il(N — 1)/N]
WEr/N) =1+ 33 sin2(l/N)

(35)

It can be proven that the sum in this expression scales as N3/2
[40], which ensures that W (277 /N) tends to 1 when N is large.
In this case, the relative intensity fluctuations tend to vanish.
Note that by tuning ¢ between 0 and 27 / N, and with a constant
spectral content, the FSF laser can be used as a source of
intensity fluctuations tunable continuously between 1 + 2N /3
and 1. In fact, W can be identified as gz(r = 0), that is, the

W(g) W(g)
= L N =100
ol N=20 50
40t
8t ‘ 30L
Jl | |20
J J ) / 10} ‘ |
0 ) ) ) ) ¢ NE |l ‘A..Lmlmh FINRATAMTS ¢
0 2n/3 n 4n/3 2n 0 2n/3 m 4n/3 27
W(g) W(9)
20} ‘ =100 6k =100 ‘
15¢ > [ | ‘
| 4l ‘ ‘
10} ‘ M | ‘
\ ‘ | “ 3" mm\ ‘“ \ “‘ {
T L] Ay Ml 2 m“”‘ “\H ARl
0 A ¢ | Ve Hm hwr i I O A ¢
273 57/8  3n/d 0 /10 s
FIG. 9. (Color online) Intensity fluctuations W(¢) = ’,(Z;) 2 (¢p)

computed when N = 20 (top left) and 100 (top right). Bottom left

(resp. right): zoom around ¢ = 57/8 (resp. ¢ =0) for N =

100.

Note the dip in the intensity fluctuations when ¢ = 27 /N = 7/50.
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degree of second-order coherence at zero delay. Recall that
a chaotic source (resp. a single-mode laser) shows g2(0) =2
(resp. 1) [41]. A source with tunable intensity fluctuations
could find applications in the field of quantum imaging [42],
while the possibility to lower the intensity fluctuations of a
broadband laser could be used to cancel deleterious nonlinear
effects. Finally, it is interesting to reconsider the equivalent
of this temporal effect in the spatial domain. The spatial
equivalent of a comb of optical modes showing a constant
intensity would consist in a grating with isotropic diffraction
or constant albedo. It is remarkable that this concept has been
developed for years in acoustics [43] where quadratic residue
diffusers enable isotropic scattering of sound and applied in the
design of concert halls [44,45]. Similarly in the optical domain,
the use of quadratic residue diffusers could be applied as a
technique of speckle suppression in light projection devices.

III. ARBITRARY AMPLITUDE OF THE OPTICAL MODES

We now provide a more realistic description of a seeded
FSF laser by taking into account the spectral properties of
the laser as defined in the first section. In fact, it turns out
that the results are basically unchanged, which corresponds to
the fact in the spatial domain that when shining a grating of
slits, the diffraction pattern does not critically depend on the
amplitudes of the secondary sources or, equivalently, on the
intensity of the light incident at each slit. Moreover, it turns
out that a smooth spectral shape results in a suppression in the
modulation of the amplitude of the pulses observed on Fig. 6.

A. Electric field at the output of a FSF laser

We consider the general expression for the electric field at
the output of the cw injection-seeded FSF laser

E(l) — Eoe—zwot Zg(n)e—znwst znwgt(e
n

where ¢ = 2n fit. = 2 f;/ f.. The resulting field is therefore
defined by a theta series consisting of a sum of phasors with
nonconstant amplitudes and quadratic phases. The correspond-
ing plot in the complex plane consists therefore in a succession
of Cornu spirals with variable sizes, in contrast to the previous
case (Fig. 10).

n(n+l)¢

(36)

B. Intensity
The intensity of the laser field is I(t) = E(t) E*(¢). Writing
Iy = |Eo|?, one has

I([) — IoZg(n—l—m)g(n)e im(wgt—woT.) tnmzp i

n,m

m(m+l)¢

(37

The resulting intensity in the case of a Gaussian spectrum is
plotted on Fig. 11. Note that the amplitude of the pulses shows
no temporal modulation for all values of g, contrary to Fig. 6.

The Poisson summation formula applied to the sum over n
yields

m(m+l)¢

I(I) =1 Z G(m n— m¢/2ﬂ)€ im(wst— wOIc) i

n,m

(38)

where G(x1,x2) = [ g(y + x1)g(y)e *™*dy. In the two-
dimensional plane, G(x;,x;) is a function localized at the
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FIG. 10. (Color online) Representation in the complex plane of
F(0)asasumof N = 200 phasors with the Gaussian envelope defined
on Fig. 11 and quadratic phases. The resulting field corresponds to
the straight line. Six consecutive values of 6 are considered: 6 =
2k /1000, 0 < k < 5. The resulting field evolves clockwise. For all
cases p = 1, and ¢ = 7,15,25,27,51,89 from left to right and top to
bottom.

origin. It is important to observe that the width of G along
the first coordinate evolves proportionally to N, the cutoff
limit of g while the width along the second coordinate
scales as 1/N. Therefore, only integers n and m satisfying
m < N and n —m¢/2m < 1/N contribute to the intensity.
It is particularly interesting to consider the case ¢ = 2mp/q
where p and g are coprime integers and ¢ < N. In this specific
case, the main contribution arises from integers n and m
satisfying n/m = p/q (i.e., m = kq and n = kp, k integer)
and the intensity rewrites as

I(t)=1p ) Glkq,0)e™ 1! eimpkkath —(39)
k

One assumes for simplicity that p is even (the
case of odd p can be treated similarly). Then, I(¥) =
Ip )", G(kg,0)e*a(@+@) Since G(kq,0)is real, this Fourier
series corresponds to pulses at the repetition rate g f; = pfe,
according to ¢ = 2 f;/f. = 2w p/q [31]. We recover here a
repetition rate multiple of the frequency spacing f; due to the
temporal fractional Talbot effect.
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(@) (b)
. L,
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“‘HH‘KH‘m’HJ1”|“M|liﬂ|iﬂl“ﬂ ‘HM\\HMM’W“H.x\Hh!hmm.lﬂ

0 2n 4T 90 2n 4n f

FIG. 11. (Color online) (a) Envelope of the (Gaussian) spectrum
of the FSF laser. (b) Zoom on the first modes. Bottom: intensity of
the FSF laser /() computed with the previous Gaussian spectrum
when p/q = 55 (), p/q = 55 (), p/q = 55 (), and p/q = 5 (D).
Contrary to the case where all modes have the same amplitude, the
pulse-to-pulse fluctuations tend to disappear.

C. Temporal width of the pulses

It is also instructive to derive the temporal width of the light
pulses when ¢ = 27 p/q. The intensity is maximum at time
tn = —woT./ws. We assume again that p is even, but the other
case would be treated similarly. Then, /(1,,) = Io )_, G(kgq,0).
Defining 7 so that I(¢,, + t/2) = I(t,)/2, a Taylor expansion
of I(t) around t,, leads to

Zk G(kq ) 0)
> (kq)*G(kq,0)

Provided N > 1 that is, w; < Aw, we have (w,7/2)>~
[ G(x,0)dx/ [ G(x,0)x*dx ~ (w;/ Aw)* =1/N?. Therefore,
the pulse duration when ¢ is a rational multiple of 2w, is
independent from ¢, and also inversely proportional to the
spectral width of the laser. We conclude that the pulses emitted
by the seeded FSF laser are Fourier transform limited and
independent from the repetition rate.

(wsT/2)* ~ (40)

D. Intensity spectrum

In the spectral domain, going back to the general case and
defining 1(Q) = [ 1(t)e *dt, Eq. (38) leads to

Q=1 [Z 82— mws)ei‘/’m:| [Z G(Q/wg,n — Q /wc)],

(41)
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where 1, = mwgt, + w(m + 1)2/w.. The intensity spec-
trum of the seeded FSF laser appears as the product of a
frequency comb with a spacing of w, by a second comb of
peaks separated by w.. The width of the low-frequency modes
of the second comb can be estimated by using the fact that
when 2 < Aw, Q2/w; < N and then G(Q2/wg,n — Q/w,) =
G(0,n — 2/w,). Therefore, the width of the peaks is §Q2 =
w./N = w.0;/ Aw. Interestingly, §$2 can be interpreted as the
inverse of the photon cavity lifetime.

E. Intensity fluctuations

One now focuses on the intensity fluctuations in the general
case (i.e., p can be odd or even). One has

W(@) =Y Gm.n—me/2m)G*(m.n — m¢/27 + 1),

n,m,l

(42)

The leading contribution comes from [/ = 0. Then, W(¢) =
> um |G(m,n —me/2m)|* which shows maxima when ¢ =
2np/q according to Eq. (38). In the neighborhood of each
maximum we set ¢ = 27 (p/q + €) and obtain in the limit
ws < Aw and € small the continuum approximation

1
Wian(p/g + e~ - / Gr.eoldx.  (43)

The intensity fluctuations when ¢ = 2w p/q are therefore
proportional to 1/q, and we recover the generic self-similar
Thomae’s function. When N = Aw/w; increases, the function
f |G(x,ex)|?dx becomes sharply peaked around € = 0. This
result is in full agreement with the experimental results
reported in [32] where the peaks in the plot of the intensity
fluctuations measured by SHG get narrower when the spectral
bandwidth of the laser (i.e., the total number of modes) is
increased.

IV. PERSPECTIVES AND LIMITATIONS

A. Generation of ultrahigh repetition rates

The cw-seeded FSF lasers are a promising solution to
generate Fourier-transform-limited pulses with tunable and
possibly ultrahigh repetition rates (in fact limited only by
the spectral bandwidth of the laser). We now address the
problem of the stability of the repetition rate of the pulse
train when ¢ is set close to 2w p/g. Then, the repetition
rate is equal to ¢f;, that is a multiple of a rf frequency. We
assume that the latter can be driven by a high-precision rf
clock and we evaluate the requirement on the stabilization
of the cavity length to maintain this repetition rate. The
question is how precisely the cavity must be controlled to
generate Fourier-transform-limited pulses at repetition rate
qfs. A convenient criteria is given by the width of the intensity
fluctuations W(¢) in the vicinity of ¢ = 2np/q.

Starting from Eq. (43), it can be intuitively shown (Fig. 12)
that the cutoff value corresponds to €cyorf = 1/N 2. Therefore,
the requirement on the precision of ¢ is 8¢ = 27 /N?: a plot
of the intensity as a function of ¢ in the vicinity of 27w p/gq
is given on Fig. 13 and confirms that within a range equal
to 1/N? around p/q, the repetition range is unchanged. The
corresponding requirement on the cavity length, that is, on w,

PHYSICAL REVIEW A 88, 033828 (2013)

A X2

e>1/N?
e=1/N?
UNT e<1/N?
7/ 740 N X|

FIG. 12. (Color online) Interpretation of the width of the peaks in
the intensity fluctuations. The gray rectangle represents the function
|G(x1,x2)|?. The intensity fluctuations at ¢ = 27 (p/q + €) are given
by the integration of |G(x;,x,)|? performed along the lines x, = €x;.
When € > 1/N?, the integral, and consequently the intensity fluctu-
ations, decrease.

is 8w, /w, = w./(N*wy). This requirement was not critical yet
in the experiment we described [32], but becomes challenging
for THz rates: typically for a spectral bandwidth of 10 THz,
a cavity-free spectral range and a frequency shift per round
trip both close to 300 MHz, a repetition rate of 1 THz (i.e.,
g ~ 3000) the cavity needs to be stabilized at the scale of
10 nm. It is instructive to compare this requirement with the
case of a mode-locked laser whose repetition rate is fixed
by the cavity length. In the case of a cw injection-seeded
FSF laser, provided the cavity-free spectral range is stabilized
within dw, = wf /(N%wy), the pulses can show some distortion
but the repetition rate is unchanged (Fig. 13). In the case
of a mode-locked laser, the repetition rate would change
by dw./2m. Finally, another advantage of cw-seeded FSF
lasers for stable high repetition rates is the possibility to

1(0) 1(6)

0 g 0 2n @
1(8) 1(8)

0 2n g O 2n 9
1(6) 1(6)

0 2n 0 0 2n @

FIG. 13. (Color online) Intensity of the FSF laser 1(0)
computed with the Gaussian spectrum defined on Fig. 11 for
different values of ¢ in the vicinity of 2w (1/25). The vertical
scale is unchanged. From left to right and top to bottom:
¢ =27 (1/25),27(1/25 + 1/200%),27(1/25 + 2/200),27 (1/25 +
5/200%),27(1/25 + 10/200),27(1/25 4 20/200?).
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lock the cavity length simply to the local maximum of the
intensity fluctuations W(¢). The latter is easily accessible
experimentally since it is proportional to the second harmonic
generation (SHG) signal: the cavity stabilization does not
require a comparison with an external rf clock signal as in
mode-locked lasers.

B. Jitter and linewidth of the seed laser

As previously mentioned, the frequency stability of the
seed laser plays a determining role on the spectral purity of
the repetition rate of the pulse train. From Eq. (2) it is clear
that a frequency jitter of dwp induces a time jitter equal to
ot = ‘Swﬂtc. Note that this expression is valid in the case where
the frequency jitter of the seed laser occurs on a time scale
larger than the photon cavity lifetime in the cavity, that is to say
Nr,.. For faster fluctuations, the timing jitter is accompanied
by a temporal broadening of the pulses. Therefore, a special
care must be dedicated to the spectral properties of the seed
laser. A standard ECDL (extended cavity diode laser) has a
linewidth of about 100 kHz, which results in a typical time
jitter of 3 ps. To reach time jitter below 10 fs as required in
optical sampling systems [18,46], a seed linewidth no larger
than a few kHz is needed, which can be achieved by distributed
feedback fiber lasers [47]. Finally, the stabilization of the
seed laser to a reference molecular absorbtion line or to an
ultrastable optical cavity can lower significantly the time jitter
of the train of pulses at the output of the FSF laser. Therefore,
a FSF laser seeded with a single-mode laser is expected to
be a robust source of high-fidelity clock signals and shows
promising perspectives for optoelectronic applications like
optical sampling of electric signals.

C. Dispersion and nonlinear effects

Finally, to ensure Fourier-transform-limited pulses in
broadband ultrahigh repetition rate FSF lasers, intracavity
dispersion becomes crucial. Consider in the cavity a medium
of length L showing both first- and second-order disper-
sion terms. The wave vector is k(w) = ko + a(w — wg) +
B/2(w — wp)* where ky = k(wy), @ = (3k/dw)(wy), and B =
(3%k/dw*)(wp). The additional phase shift acquired during
round trip 7 is

O — Pu—1 = (wo + nwy)t: + k(wy + nwy)L

2
L
= woT. + koL + n(wst, + awsL) + nz'Bw—A.

2
(44)
Finally, the phase of mode 7 is

nn+1)
2

Bw?L. (45)

d)n = n(a)OTc + kOL) +

nn+ 1H2n+1)
12

The first-order dispersion « results in an additional contri-
bution to the quadratic phase and can therefore be compensated
by tuning the cavity length or changing the frequency of the
AOFS. On the contrary, the group velocity dispersion § leads
to the appearance in the phase shift of a cubic term, which is
expected to have a strong influence on the output laser field.

(wsTe +awyL)
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However, standard techniques of cancellation of group velocity
dispersion should enable a precise control of this deleterious
effect, to recover Fourier-transform-limited pulses. Finally, it
is worth pointing out that possible nonlinear effects in the
laser cavity (Kerr effect, self-phase modulation) have a limited
impact in high repetition rate FSF lasers: indeed the energy is
spread over p pulses per round trip, and third-order nonlinear
effects are accordingly divided by p3.

V. CONCLUSION

We have given a comprehensive theoretical description of
Talbot lasers, i.e., cw injection-seeded FSF lasers, sufficient
to account for all experimental results published in [32]. We
provided a simple model of a Talbot laser, consisting in a set
of optical modes separated by a constant frequency spacing f;
and exhibiting quadratic phases defined by ¢, = n(n + 1)¢/2.
The resulting properties have been related to the fractional
Talbot effect in optical diffraction and are connected to number
theory by the appearance of Gauss sums and theta series. First,
we detailed the case where N equidistant optical modes have a
constant amplitude. We gave a description of the electric field,
of the intensity in the case where ¢ is a rational multiple of
2m: when ¢ = 27 p/q, with g < N the resulting field consists
in a train of regular light pulses at the repetition rate equal
to ¢ f,;. The pulses are shown to be Fourier transform limited
and the phases of the pulses are uncorrelated on average. We
characterized the intensity fluctuations of the resulting light
field and proved, among others, that Talbot lasers can also
be used as a broadband light source with tunable intensity
fluctuations. Then, we considered a more realistic description
of a cw-seeded FSF laser by taking into account the spectral
shape of the resulting field. In this case, we have shown a
cancelation of the pulse-to-pulse fluctuations, while results
similar to the previous case have been obtained.

This work is expected to have significant outcomes in the
domain of high repetition rate lasers. On the basis of the
experimental results obtained in [32], we anticipate that much
higher values of the repetition rate can be obtained: a recent
demonstration of a seeded Ti:Sa FSF laser with a spectral
bandwidth as large as a few nm [47] leads to the possibility
to generate lasers with THz repetition rates, which can be
used for the generation of THz waves, for ultrafast digital
communications systems, for the time transfer of remote
clocks and ultrafast optical cadencers for analog-to-digital
converters, or for the optical sampling of microwave signals.
Another advantage of this source in optoelectronics relies on
the fact that contrary to conventional mode-locked lasers where
the repetition rate is set by the cavity length, the stability of
the repetition rate in cw injection-seeded FSF lasers is directly
linked to the stability of the shift frequency which can be
controlled with an extremely high precision through standard
quartz or atomic clocks. Finally, we also expect Talbot lasers
to find applications in spectroscopy by enabling the resonant
excitation of acoustic modes of metallic nanoparticles [19,20].
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APPENDIX

1. Calculation of the amplitude of the pulses

We consider the case where ¢ is odd or p is even (the other
case would be treated similarly). The amplitude of the pulse

e ol _ q—1 iz[n(n+1)p—2inl/q
#A is given by F(6,) =(N/q)Y | _oe . Note
that F(6y14) = F(6,), which shows that the field reproduces
itself after g pulses, a direct consequence of the fact F(0) is
2m periodic. It can be shown that changing n into n + g leaves
the sum invariant. Then,

F(6,) = ﬁ Z Tt Dp=2hnl/q

nmod g

(AL)

where the summation modulo g can be performed over any set
of ¢ consecutive integers. The square modulus is given by

2

[FO,) = N Z T =mH)pni=m)(p=20)/q  (AD)
2
m,n mod g
Writing [ = n — m leads to
N? ;
|F(9)\.)|2 — — Z el?‘[l[(1+2m+l)p—2)u]/q
4 I,m mod g
N? I[(I+1)p—2x]/ 2xlmp/
_ inl[(I+1)p— q i2mlmp/q
S > o)
I mod g m mod g

The second term of the product vanishes except when g divides
Ip. Since p and g are coprimes, [ must be a multiple of g
chosen modulo ¢g. Therefore, [ = 0, which leads to 1(6;) =
[FOI> = N*/q.

2. Pulse-to-pulse coherence

We consider the case where ¢ is odd or p is even (the
other case would be treated similarly). The interference term
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between two pulses at times 0, ,, = 27 HTM and 6, = 2713 is

F* 051 F(63)
2
_M S et mdp -2 mla
q2
n,m mod g
N2 i lzp+ltp—2}\) i m(u+lp)
P DD DI R
[ mod ¢ m mod g

If u is a multiple of g, the second sum vanishes excepted
when [ = 0. In this case, F*(0y4,)F(6,) = N?/q and the
phases of the pulses are identical: we recover here the fact that
F(6,) = F(61.4)-

If ¢ does not divide p, the second sum does not vanish
only when /p + p is a multiple of g. Then, there is an integer
lp satisfying Ip = sq — . Note that [y # 0. In fact, a single
integer [ in the range ]0,n — 1] satisfies the previous condition:
assume that [ and [’ are solutions, that is, [p = sq — u and
U'p=s'q— . Then,!'=1—(s'—s)q/p. Since p and g are
coprimes, s’ — s is a multiple of p and then [’ — [ is a multiple
of g, which proves the previous assertion. Therefore, for

lop =59 — i,

2
N7 irtiluorp-2211/0.

FX(004,)F (6,) = (AS)
The average over g pulses is
N2 inl(’ +1)p 7[7_[14
(F @) FOh =~ 3 e (A6)

Amodg

This expression vanishes since [y is not a multiple of g (Iy 7% 0
and 0 < [y < g — 1). Finally,

A A N?
<F* (27‘[ %)F(2n5>> =~ -dumodg).
A

where 8(u mod g) = 1 when u divides g and O else.

This peculiar correlation property could also have been
demonstrated from the direct expressions of F(6,) [Egs. (19)
to (21)]. The lack of average correlation between different
pulses of the pulse train is in fact a general feature of Gauss
sequences [45].
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