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Multiple scattering of light in cold atomic clouds in a magnetic field
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Starting from a microscopic theory for atomic scatterers, we describe the scattering of light by a single atom
and study the coherent propagation of light in a cold atomic cloud in the presence of a magnetic field B in
the mesoscopic regime. Nonpertubative expressions in B are given for the magneto-optical effects and optical
anisotropy. We then consider the multiple-scattering regime and address the fate of the coherent-backscattering
(CBS) effect. We show that, for atoms with nonzero spin in their ground state, the CBS interference contrast
can be increased compared to its value when B = 0, a result at variance with classical samples. We validate our
theoretical results by a quantitative comparison with experimental data.
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I. PHYSICAL CONTEXT

Multiple scattering of waves is an important topic involved
in many branches of physics, from atomic physics to astron-
omy via condensed matter physics [1,2]. One of its most
fascinating aspects occurs when interference effects persist
in the presence of disorder. These interference effects man-
ifest themselves through deviations from the usual diffusive
behavior obtained at long times (weak localization). Under
suitable conditions they can even completely inhibit transport
(strong localization), leading to an insulating regime. During
the last two decades, both the weak- and strong-localization
regimes have been extensively studied in systems ranging from
electronic waves to ultracold atoms [3–12].

Coherent multiple scattering of light in cold atomic clouds
has been experimentally and theoretically studied for ten
years in the context of the coherent-backscattering (CBS)
effect [13]. Compared to classical scattering media, such as
semiconducting powders, cold atoms confined in a magneto-
optical trap (MOT) constitute a unique sample of identical
strongly resonant pointlike scatterers [14]. A key feature of
the atomic scatterers is the presence of quantum internal
degrees of freedom when their ground state is degenerate, i.e.,
possesses a nonzero angular momentum [15]. These internal
degrees of freedom are coupled to the polarization of light
waves during single scattering events. As they are traced out
when one observes the interference pattern of light, light
experiences decoherence during its diffusive propagation in
the atomic cloud. This leads to a reduction of the interference
between scattering amplitudes as exemplified by the CBS
contrast [16]. The saturation of the atomic transition [17] and
the finite temperature of the atomic gas [18] are two additional
mechanisms reducing the coherence of light. To restore the
contrast of the interferences, it has been suggested to use
a polarized atomic gas [19]. Unfortunately, this method is
efficient only in optically thin clouds. Another possibility is
to lift the degeneracy of the atomic ground state by applying
an external magnetic field B, which is one of the topics we
address here. The key idea is to use this degeneracy breaking to

single out a closed and isolated transition between two Zeeman
sublevels at sufficiently large magnetic field. On illuminating
the atomic cloud with a light wave resonant with this
transition, all the atomic scatterers will behave like identical
effective two-level atoms. Under these circumstances, light
traveling along a given scattering path will always probe
this closed-Zeeman-sublevel transition, whatever the atom
visited, and the atoms will always stay in their very same
initial Zeeman sublevel after the photon scattering process. In
short, the detrimental effect of the atomic internal degeneracy
is circumvented. As a consequence, the multiple-scattering
amplitudes associated with any given scattering path and with
its reverse partner are equal and the CBS contrast is restored.

In classical scattering media, the presence of an external
magnetic field is known to modify the interference pattern and
to reduce the CBS interference contrast [20]. The mechanism at
work here is the modification of the polarization of light during
its coherent propagation due to the Faraday effect [21,22]. As
this modification is not the same along a scattering path and its
reversed partner, a dephasing process takes place between the
scattering amplitudes associated with these two paths, in turn
scrambling their interference. Although the magneto-optical
effects are very strong in cold atomic gases [23], they actually
have a negligible impact on the shape of the interference
pattern itself [24]. More surprisingly, a full restoration of
the interference contrast is even possible under well-chosen
conditions [25]. In this article, we give a detailed explanation
of this result. We present a general, nonperturbative study of
the interaction between a cold atomic cloud and quasiresonant
light in the presence of a magnetic field.

The paper is organized as follows. In Sec. II, we derive the
scattering operator of a single atom exposed to monochromatic
quasiresonant light in the presence of a magnetic field B and
analyze the differential and total cross sections. In Sec. III,
we address the coherent propagation of light and derive the
refractive index tensor of the effective medium. In particular,
birefringence and magneto-optical effects are studied in
Secs. III D and III F. The CBS interference effect under a
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magnetic field is discussed in Sec. IV and the restoration of
the CBS contrast is studied in Sec. V.

II. SCATTERING OF LIGHT BY A SINGLE ATOM IN
THE PRESENCE OF A UNIFORM MAGNETIC FIELD

We start by studying the scattering of light by a single
atom in the presence of an external magnetic field. The
photon-atom scattering operator is described by a Lorentz-type
formula [Eq. (9)] encapsulating a differential Zeeman shift
for initial and final atomic internal states. By averaging out
the atomic degrees of freedom, we find the photon scattering
tensor 〈T 〉int [Eq. (13)] which embodies the effect of the
magnetic field on the photon polarization degrees of freedom
and gives rise to the usual magneto-optical effects. To complete
the section, we derive the scattering cross section of light
from an atom. In the subsequent Sec. III, we address light
propagation in the effective medium formed by many atoms.
Here magneto-optical effects are central. Finally, in Secs. IV
and V, we compute the CBS contrast in the presence of a
magnetic field using a Monte Carlo simulation to describe the
concatenation of individual scattering events and propagation
steps.

A. Physical setting and basic assumptions

We consider the situation where a gas of identical atoms,
with spatial density n, is exposed to both a uniform external
magnetic field B and a monochromatic-light plane wave with
wavelength λ, wave vector k (k = 2π/λ), angular frequency
ω = k (we use units such that h̄ = c = 1), and transverse
polarization ε. We first assume that the average distance
between atoms is much larger than the wavelength λ of the light
wave, nλ3 � 1, meaning that multiple scattering processes
take place in the dilute regime. In this case a semiclassical
description is appropriate and propagation of light in the
atomic medium is well described by partial waves propagating
along classical multiple scattering paths. Each path consists
in a succession of independent scattering events by a single
atom, separated by propagation in an effective medium with
refractive index Nr .

To further properly describe scattering of light by one
single atom, we assume that ω is very close to the transition
frequency ω0 between the atom internal ground state (with
total angular momentum F ) and an internal excited state
(with angular momentum Fe), hereby considering the case
of quasiresonant scattering. Introducing the light detuning
δ = ω − ω0, this condition reads |δ| � ω0. We further assume
that this transition is closed (the excited state with lifetime
1/� can decay by spontaneous emission only into the ground
state) and well isolated from any other allowed transition
connecting the ground state to any other hyperfine levels.
This is experimentally achieved for instance in the case of
the F = 3 → Fe = 4 transition of the D2 line of 85Rb [13].

The total atom-light Hamiltonian H = H0 + U is the sum
of the free atom-light Hamiltonian H0 and of the interaction
term U describing the coupling of the light modes to the
atomic degrees of freedom. When no magnetic field is applied,
the interaction between light and one single atom is well
documented [26,27] and we thus simply need to incorporate

the effect of the magnetic field. We will assume here that
weak fields are applied to the gas so that the linear Zeeman
effect is the relevant physical description. As the magnetic field
affects only the energy levels of the atom, the free atom-light
Hamiltonian H0 just reads

H0 = ω0P̂e + μgB · F + μge B · Fe +
∑
k,ε

ωka
†
kεakε . (1)

Here μ ≈ 1.4 MHz/G is the Bohr magneton and g and ge are
the Landé factors of the ground and excited states, respectively.
In the following we will choose B to be along the axis 0z

which we choose as the quantification axis for the internal
Zeeman states of the atom. Then P̂e = ∑Fe

me=−Fe
|Feme〉〈Feme|

is the projector onto the excited state, where |Feme〉 denotes an
atomic state of angular momentum Fe and magnetic quantum
number me referred to axis 0z.

To be consistent with our approximations, the Zeeman
shifts (of order μB) must be much smaller than the energy
difference between any other atomic hyperfine levels. Still
these shifts can be sufficiently large to fully split the Zeeman
structure and strongly modify the light scattering properties of
the atom. Indeed, as exemplified by the case of rubidium atoms,
Zeeman shifts comparable to the excited-state frequency width
(�/2π = 5.9 MHz), are achieved with moderate field strengths
of 5 G.

As usual akε and a
†
kε in Eq. (1) are the annihilation and

creation operators of the electric field mode with wave vector k,
polarization ε ⊥ k, and frequency ωk. We further assume that
the light wavelength is much larger than the size of the relevant
atom electronic wave functions. The interaction between light
and an atom located at position r is then accounted for in the
dipolar approximation and reads U (r) = −de · E⊥(r). The
atomic electric dipole operator is written de = d + d†, where

d† = P̂edeP̂g (2)

is the operator describing transitions from the ground state
to the excited state. Here P̂g = ∑F

m=−F |Fm〉〈Fm| is the
projector onto the ground-state sector with |Fm〉 an atomic
state of angular momentum F and magnetic quantum number
m referred to axis 0z. The transverse radiation field operator
reads E⊥(r) = D(r) + D†(r) where

D(r) = i
∑
k,ε

Eωkεkakεe
ik·r (3)

describes photon annihilation in all possible field modes.
The field strength is Eωk = √

ωk/2ε0V , where V is the
quantization box volume (it disappears at the end of all physical
calculations).

The dipolar interaction operator U describes the possibility
for the atom to absorb or emit a photon, at the same time
changing its internal state, |Fm〉 → |Feme〉 or |Feme〉 →
|Fm〉. As the incident light is nearly resonant with the atomic
transition, we need to consider only resonant contributions
where the atom in its ground state can only absorb a photon
and the atom in its excited state can only emit a photon:

U (r) ≈ D(r) · d† + D†(r) · d. (4)

This is known as the rotating-wave approximation.
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It has to be noticed that the photons considered in this article
are associated with the transverse electric field, i.e., with the
electric displacement vector D and not with the electric field
E (hence our notation) [26]. This point is important for two
reasons: first, due to the magnetic field, light propagates in an
anisotropic medium where D and E are no longer collinear
and, second, former theoretical studies treated the propagation
of E [22].

B. Scattering amplitude

Starting from the incident state |i〉 = |kωε; Fm〉, describ-
ing a photon |kωε〉 impinging on an atom located at r with
initial ground state |Fm〉, we consider the scattering process
leading to the final state |f 〉 = |k′ω′ε′; Fm′〉, describing
a scattered photon |k′ω′ε′〉 leaving the atom in the final
ground state |Fm′〉. The probability amplitude for such a
transition is the matrix element 〈f |S|i〉 of the scattering
operator S = 1 − 2iπT acting on the atom-photon Hilbert
space H = Hat ⊗ HL. The transition operator for an atomic
point-dipole scatterer is written

T = 1

2V |r〉〈r| ⊗ T (5)

where T couples the photon polarization to the atomic internal
degrees of freedom. The (on-shell) matrix elements of T are

〈f | T |i〉 = 1

2V ei(k−k′)·r δ(E′ − E) Tf i(E), (6)

where the δ distribution ensures energy conservation. For the
initial and final states under consideration, E′ = ω′ + μgBm′
and E = ω + μgBm. It is important to note at this point that,
contrary to the case where there is no magnetic field, scattering
has now become inelastic, a feature that will complicate greatly
the analysis of the multiple-scattering situation. Indeed as
soon as m′ �= m, the atom experiences a net Zeeman energy
change. In turn, the angular frequency of the scattered photon
is accordingly modified to ω′ = ω + μgB(m − m′). It should
be noted that we simplified the problem further here by
neglecting momentum transfer to the atom during scattering.
This approximation, supposedly valid when the recoil energy
is negligible compared to the energy width of the excited
state, becomes nevertheless questionable when considering
the multiple-scattering regime as studied (without magnetic
field) in Ref. [18].

The matrix element Tf i(E) is calculated from Tf i(E) =
〈f |UGe(E)U |i〉 where Ge(E) = P̂e(E − H )−1P̂e is the
Green’s function of the system when the atom is in its excited
state. This operator can be computed by using resolvent
techniques [27], and we find

Ge(E) =
Fe∑

me=−Fe

|Feme〉 〈Feme|
E − gemeμB − ω0 + i�/2

, (7)

where � is the angular width of the atomic excited state due to
coupling to vacuum fluctuations. Technically speaking, there
is also a modification of the atomic frequency (Lamb shift) that
we get rid off by a proper redefinition of ω0. It is noteworthy
that neither the Lamb shift nor the linewidth depends on B.
This is so because the Zeeman operators do not couple to the
dipole interaction U .

Introducing the reduced atomic dipole operator d̂e = de/de

with d2
e ω3

0 = 3πε0c
3h̄� [27], the internal transition matrix

element then reads

Tf i(E) = 6π

k2

�/2

δ + i�/2
ε′ · tm′m · ε, (8)

where the dyadic transition operator in polarization space tm′m
is

tm′m =
Fe∑

me=−Fe

〈Fm′|d̂e |Feme〉 〈Feme| d̂e |Fm〉
1 − iφ(gm − geme)

. (9)

The dimensionless parameter

φ = φB

1 − 2iδ/�
, (10)

where

φB = 2μB

�
, (11)

quantifies the impact of B on the atomic scattering properties
and is generally complex valued except at resonance (δ = 0).
One can note in passing that, when B = 0, tm′m =
〈Fm′|dd†|Fm〉, which describes the usual absorption and
emission cycle from the degenerate ground state [28].

C. Scattering cross section

Probability conservation assures that, under the scattering
process, any incident photon is either transmitted in the same
mode or scattered in another mode. This is the essence of the
optical theorem, which relates the total scattering cross section
of the atom to the forward scattering amplitude:

σ = −2V Im 〈kωε| 〈T 〉int |kωε〉 , (12)

where 〈·〉int = Tr(· ρat) indicates an average over the initial
atomic internal degrees of freedom. As such, 2V〈T 〉int =
|r〉〈r| ⊗ 〈T 〉int acts only on the photon degrees of freedom. At
this point, we make the important simplifying assumption that
the initial atomic density operator ρat describes a completely
incoherent mixture of the ground-state Zeeman substates.
This is generally the situation for cold atoms prepared in
an optically thick magneto-optical trap, where all Zeeman
states are uniformly populated and no Zeeman coherence
is achieved. The initial atomic density operator then reads
ρat = P̂g/(2F + 1). Using the fact that d̂e, ε, and ε′ are
irreducible tensors of rank 1, one can express ε′ · 〈t〉int · ε in
terms of the irreducible components of the tensor ε′

iεj in the
Cartesian basis set (x̂, ŷ,ẑ). Introducing the dyadic projector
�a = 1 − aa/a2 onto the plane perpendicular to a, we find

〈T 〉int = MFFe

6π

k2

�/2

δ + i�/2
�k′T (FFe)�k, (13)

T (FFe) = 3

2Fe + 1

F∑
m=−F

tmm, (14)

where MFFe
= (2Fe + 1)/[3(2F + 1)] is a factor taking care

of the degeneracies of the ground and excited states. Both
projectors �k and �k′ ensure that the polarization vectors
always remain transverse to the direction of propagation.
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Using the totally antisymmetric tensor of rank 3 εijk (εxyz =
1), the dyadic tensor T (FFe) reads

T (FFe)
ij = ζ δij + ηεijk B̂k + ξ B̂i B̂j . (15)

With the z axis chosen along B̂, the matrix representing T (FFe)

is

T (FFe) =
⎛⎝ ζ η 0

−η ζ 0
0 0 ζ + ξ

⎞⎠ . (16)

The ζ , η, and ξ coefficients depend on φ and on the Clebsch-
Gordan coefficients of the atomic transition [29,30]:

ζ = 1

2

(
F∑

m=−F

〈FFe − mm + 1|11〉2

1 − iφ[(g − ge)m − ge]

+ 〈FFe − mm − 1|1 − 1〉2

1 − iφ[(g − ge)m + ge]

)

η = − i

2

(
F∑

m=−F

〈FFe − mm + 1|11〉2

1 − iφ[(g − ge)m − ge]
(17)

− 〈FFe − mm − 1|1 − 1〉2

1 − iφ[(g − ge)m + ge]

)
,

ξ = −ζ +
F∑

m=−F

〈FFe − mm|10〉2

1 − iφ(g − ge)m
.

As is expected from Onsager’s reciprocity relations [31], one
can check that ζ and ξ are even functions of φ, while η is
an odd function of φ. It can be checked that all these three
coefficients are real at resonance (δ = 0) since φ = φB is then
real. In the case of a F = 0 → Fe = 1 transition (g = 1), these
coefficients read

ζ = 1

1 + (geφ)2
,

η = − geφ

1 + (geφ)2
, (18)

ξ = (geφ)2

1 + (geφ)2
.

The dyadic tensor T (FFe) embodies the effect of the
magnetic field on the photon polarization degrees of freedom
and gives rise to the usual magneto-optical effects. The ζ term
is responsible for normal extinction (Lambert-Beer law). The η

term describes the magnetically induced rotation of the atomic
dipole moment (Hanle effect) [24,32] and induces Faraday
rotation and dichroism effects observed when k ‖ B [33]. The
ξ term is responsible for the Cotton-Mouton effect observed
when k ⊥ B [33].

From expression (13) and the optical theorem (12) we
deduce the total scattering cross section of a photon by an
atom initially prepared in an incoherent mixture of Zeeman
internal ground states:

σ (φ) = σRe

[(
1 + 2i

δ

�

)
(ε · T (FFe) · ε)

]
= σRe

[(
1 + 2i

δ

�

)
[ζ + η(ε × ε) · B̂ + ξ |ε · B̂|2]

]
,

(19)

where

σ = σ0

1 + (2δ/�)2
, σ0 = MFFe

6π

k2
. (20)

In the case of an F = 0 → Fe = 1 transition (g = 1), and for
resonant light (δ = 0), the scattering cross section boils down
to the simpler form

σ (φ) = σ0
1 + (geφB)2|ε · B̂|2

1 + (geφB)2
. (21)

As one can see, in the presence of a magnetic field, the total
scattering cross section depends explicitly on the incident
polarization ε. More precisely, it depends on the relative
direction of ε with respect to B. We recover here the well-
known fact that an external magnetic field induces optical
anisotropy in otherwise isotropic media. In the absence of a
magnetic field, T (FFe) reduces to the identity matrix 1 and we
get σ (φ = 0) = σ , giving back the result found in Ref. [28].

D. Impact of optical pumping

Our previous calculation in fact just considered the scat-
tering of one quasiresonant photon by one atom assumed
to be initially prepared in an incoherent mixture of Zeeman
internal ground states. In a real experiment, however, the atom
is illuminated by many quasiresonant photons. For a given
incident polarization, the repeated scattering of photons by the
atom induces changes in the populations of the ground-state
Zeeman sublevels and creates coherences between them. This
effect is known as optical pumping and is enhanced in the
presence of a magnetic field. Our previous calculations thus
apply to the case where optical pumping can be neglected. This
is the situation considered in Sec. V. One can note however that
our results can be easily extended to include optical pumping.
Indeed, the most general tensor of rank 2 that can be written
with the components of B is still given by expression (15) but
with arbitrary coefficients now. Thus Eqs. (13), (16), and (19)
remain valid. Only the detailed expressions (17) of ζ , η, and ξ

will be modified. In the following, all our analytical results are
expressed in terms of these three coefficients. They thus remain
valid in the presence of optical pumping if the coefficients are
given their appropriate expressions and values.

E. Differential scattering cross section

We now turn to the impact of B on the radiation pattern
of the atom. The intensity of light scattered in the direction k′

with polarization ε′ as the atom changes its internal state from
|Fm〉 to |Fm′〉 is proportional to the differential scattering
cross section

dσm′m

d�
(kε → k′ε′) = V2ω2

(2π )2
|〈k′ε′,Fm′|T |kε,Fm〉 |2

= 9σ

8π

2F + 1

2Fe + 1
|ε′ · tm′m · ε|2. (22)

Starting with an atom prepared in state |Fm〉, the differential
cross section for a photon to be scattered in mode |k′ε′〉 is thus

dσm

d�
(kε → k′ε′) =

F∑
m′=−F

dσm′m

d�
(kε → k′ε′). (23)
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The total photon scattering cross section is then obtained by
averaging over the initial internal atomic density matrix, which
we assumed to describe a fully incoherent mixture of ground-
state Zeeman sublevels. We thus arrive at

dσ

d�
(kε → k′ε′) = 1

2F + 1

F∑
m,m′=−F

dσm′m

d�
(kε → k′ε′)

= 9σ

8π

F∑
m,m′=−F

|ε′ · tm′m · ε|2
2Fe + 1

. (24)

When the ground state is nondegenerate (F = 0, Fe = 1, g =
1), the tensors t00 and T (01) coincide and the differential cross
section takes the simple form

dσ

d�
(kε → k′ε′) = 3σ

8π
|ε′ · T (01) · ε|2 (25)

with

ε′ · T (01) · ε = ζ ε′ · ε + η (ε′ × ε) · B̂ + ξ (ε′ · B̂)(ε · B̂),

(26)

the coefficients ζ , η, and ξ being given by (18).
Since the resonant denominator in Eq. (9) explicitly

depends on the magnetic quantum numbers m and me, standard
irreducible tensor methods [28] are of little practical use to
reduce the total differential cross section (24) to a much simpler
form. However, it can be easily and efficiently computed for
any transition line by using the symbolic calculus software
MAPLE. As a side note, the reader is invited to appreciate the
power of the optical theorem by deriving the total scattering
cross section (19) by direct computation from (24).

III. COHERENT PROPAGATION OF LIGHT

The propagation of an incident-light field mode |kε〉 in a
scattering medium, also known as coherent propagation, is
efficiently described by replacing the scattering medium by a
homogeneous effective medium having a complex refractive
index tensor Nr . When B = 0, Nr is a scalar and exerts no
action on the incident polarization. Its imaginary part gives rise
to an exponential attenuation (Lambert-Beer law), its charac-
teristic length scale being known as the extinction length. Since
true absorption (i.e., conversion of electromagnetic energy into
another form of energy) is absent in our case, depletion of
the incident mode can occur only through scattering. The
extinction length is thus identified with the scattering mean
free path � and one has Im(Nr ) = 1/(2k�).

The presence of a magnetic field B modifies the interaction
between light and atoms and the coherent propagation of light
in the atomic cloud is accordingly altered. As B induces a pref-
erential orientation of space, it will cause an optical anisotropy
in the atomic gas. In this case, the refractive index tensor
is no longer a scalar and will act on the polarization space:
the coherent propagation of light will exhibit birefringence
and magneto-optical effects. These magneto-optical effects are
well documented in the literature [21–23]: for a given wave
vector k, there are two eigenpolarization modes propagating
in (possibly) different directions, with different velocities and
attenuations.

In this section, we extend the techniques developed in
Refs. [22] and [34] to the case of atoms with a degenerate
ground state. We will always assume that the atomic gas is
dilute. In this case, nλ3 � 1 (n being the number density),
and � = 1/(nσ ). Furthermore, since for resonant scatterers σ

is at most of the order of λ2, � will always be much larger
than the average interatomic distance n−1/3. As a whole, for
point-dipole resonant scatterers, the dilute medium condition
nλ3 � 1 implies the condition k�  1. The properties of the
effective medium will then be directly related to the individual
scattering properties of the atoms under the magnetic field.

A. Average Green’s function for light propagation

The first step in finding the refractive index tensor Nr and
describing the coherent propagation of light is to determine the
Green’s function for light once all atomic degrees of freedom
have been averaged out. Let N be the total number of atoms
in the gas and their respective positions be labeled by r i (i =
1, . . . ,N). The Hamiltonian of the system {atoms + light} is

H =
N∑

i=1

H0(r i) +
N∑

i=1

U (r i)

= H0 + U , (27)

where H0 and U are given by expressions (1) and (4). The
Green’s functions of the whole system G(z) = (z − H)−1

and of the uncoupled system G0(z) = (z − H0)−1 satisfy the
recursive equation

G(z) = G0(z) + G0(z)UG(z)

= G0(z) + G0(z)UG0(z) + · · · . (28)

Since we are interested in the situation where all atoms start
and end in their ground state, we merely look for the Green’s
function projected onto the atomic ground-state manifold
P̂gG(z)P̂g . In this case, only expansion terms containing
U an even number of times can contribute. The average
over the atomic degrees of freedom will generate a Dyson
equation for the average Green’s function G(z) = 〈P̂gG(z)P̂g〉.
Under the dilute medium assumption, and since all atoms are
identical and uniformly distributed in space (at least on the
scale of the scattering mean free path), the corresponding
self-energy is given by �(z) = N〈Ti(z)〉int where Ti(z) =
U (r i) + U (r i)G0(z)U (r i) + · · · is the transition operator of
the ith atom. The average over the internal degrees of freedom
is given by (13).

The matrix elements of the average photon Green’s function
are then given by

〈k′ε′|G(ω)|kε〉 = δkk′ ε′ · G(k,ω) · ε, (29)

G(k,ω) = �k
1

ω − k − �(k,k̂)
�k, (30)

�(k,k̂) = 1

2�0

�/2

δ + i�/2
�kT (FFe)�k, (31)

where �0 = 1/(nσ0). The Kronecker symbol δkk′ features the
restoration of translation invariance under the spatial average.
The self-energy tensor �(k,k̂) contains all the information on
the effective medium. It has an explicit dependence on the
incident direction because, in the presence of the magnetic
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field, the scattering medium develops an optical anisotropy
(see Sec. II C).

B. Optical anisotropy

Equation (30) receives a simple interpretation in a basis
where �(k,k̂) is diagonal. It corresponds to polarization modes
which propagate in the direction k̂ without deformation. The
poles ofG(k,ω) then give the corresponding dispersion relation
for the eigenmode.

Trivially, k is an eigenvector of �(k,k̂) with eigenvalue
0. This is a consequence of the transversality of light, and
this eigenvector is not physically relevant. To find the other
complex eigenmodes and complex eigenvalues �(k,k̂)V̂ ± =
�±V̂ ±, we parametrize k̂ by its spherical angles θ and ϕ in a
coordinate frame with the z axis parallel to B̂. We find

�±(k̂) = ζ + ξ
sin2 θ

2
±

√
−η2 cos2 θ + ξ 2

sin4 θ

4
. (32)

Their explicit dependence on the angle θ between B̂ and k̂
expresses the optical anisotropy of the atomic cloud induced
by the magnetic field. The corresponding eigenmodes are

V̂ ±(k̂) ∝
(

η cos2 θ cos ϕ + ξ
sin2 θ

2
sin ϕ

∓ sin ϕ

√
−η2 cos2 θ + ξ 2

sin4 θ

4

)
x̂

+
(

η cos2 θ sin ϕ − ξ
sin2 θ

2
cos ϕ

± cos ϕ

√
−η2 cos2 θ + ξ 2

sin4 θ

4

)
ŷ

− η cos θ sin θ ẑ. (33)

To allow relative ease of reading, these vectors have not been
normalized.

One difficulty arises when [−η2 cos2 θ + ξ 2(sin4 θ )/4] = 0
for nonvanishing η and ξ . This situation can happen only if η

and ξ are real (thus for φ real), i.e., at resonance (δ = 0). The
solutions are of the form (±θ0,π ± θ0), which means, because
of the invariance around the z axis, that the photon has to
propagate along a cone of apex θ0. When this is the case, �+ =
�− but V̂ + = V̂ −, and the self-energy is nondiagonalizable.
However, this situation is largely unphysical in the sense that it
arises from the first-order approximation in the atomic density
used to compute �(k,k̂). At the next order in density, this
difficulty disappears. However, this could lead to interesting
effects for the propagation of light near the apex angle. We
chose to neglect such effects in the following.

Noticeably, V̂ + and V̂ − are not orthogonal vectors in
general. Indeed, scattering depletes the coherent mode and its
energy decays. This is reflected by the fact that the self-energy
is not a Hermitian operator. Thus its eigenvectors have no
reason to be orthogonal. When B = 0, T (FFe) reduces to the
identity and �(k,k̂) is then proportional to the projector �k.
In this case alone, all polarization states orthogonal to k are
eigenmodes and it is then possible to choose an orthogonal
basis. One can note, however, that V̂ + and V̂ − are nearly
orthogonal when |η| � |ξ | or when |η|  |ξ |. This happens

in the limit of small or strong magnetic fields (μB � δ,�,
μB  δ,�), or at a very large detuning (δ  μB,�).

C. Refractive index

In the polarization eigenbasis, the poles of the Green’s
function (30) give the dispersion relation for V̂ ±. We find

ω±(k) = k + 1

2�0

�/2

δ + i�/2
�±(k̂). (34)

The refractive index tensor Nr is diagonal in the polarization
eigenbasis and the polarization vectors V̂ ± each propagate
with different complex refractive indices:

N±
r (k) = k

ω±(k)
≈ 1 − 1

2k�0

�/2

δ + i�/2
�±(k̂) (35)

since k�0  1. As a consequence, the two eigenpolarizations
propagate with different phase velocities and experience dif-
ferent attenuations (dichroism). In turn, the effective medium
acts as an absorbing polarization filter for the incoming light.

The index mismatch between the two eigenpolarizations is

�Nr = N+
r − N−

r = i

2k�0

1

1 − 2iδ/�
(�+ − �−) (36)

= i

2k�0

1

1 − 2iδ/�

√
−η2 cos2 θ + ξ 2

sin4 θ

4
(37)

and it vanishes for θ = θ0, i.e., when the two eigenpolarizations
collapse onto each other, rendering the refractive index tensor
no longer diagonalizable.

D. Group velocity and birefringence

Let us consider a polarized monochromatic wave packet
propagating in the atomic cloud with a central wave vector
k, and let us assume the polarization is one of the vectors
V̂ ±. Then the maximum of the wave packet propagates with
the group velocity vg = Re[∇kω(k)]. As ω(k) depends on
the angle θ between B and k, vg possesses a component
orthogonal to k: in general, the wave packet does not propagate
parallel to the wave vector. Since each polarization eigenmode
has its own direction of propagation, a birefringence effect
takes place, as is well known in anisotropic media [35]. This
magnetically induced birefringence has already been observed
[36], although under conditions differing from those described
in the present article.

We have checked that, provided |δ| is not much larger
than μB, the deviation of the wave packet from the direction
of k is negligible: the walk-off angle remains smaller than
0.05/(k�0) [37]. Birefringence effects will thus be neglected
in the following.

E. Propagation in real space

To study the propagation properties of the coherent mode
in the atomic cloud, we need the Green’s function of light in
real space, Gω(r). It is the Fourier transform of G(k,ω) (30):

Gω(r) =
∫

d3k
(2π )3

�k
eik·r

ω − k − �(k,k̂)
�k. (38)
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Neglecting birefringence effects, the angular part of the inte-
gral can be calculated with a stationary-phase approximation
around the direction r̂:

Gω(r) = 1

2π2r
�r Iω(r) �r , (39)

Iω(r) =
∫ ∞

0

k sin(kr) dk

ω − k − �/2
2�res(δ+i�/2)�rT (FFe)�r

. (40)

The Iω(r) integral has an ultraviolet divergence (k → ∞)
which needs to be regularized. It expresses the fact that
the interaction between two atoms separated by less than
one optical wavelength cannot be reduced to the exchange
of one resonant photon. The divergent part of the integral
comes from the contact term of the radiated field [26]. As the
average interatomic distance is much larger than the optical
wavelength, we are interested only in the far-field component.
The latter can be obtained from the regular part of (39) and
calculated with the help of the residue theorem. The final result
reads

Gω(r) = − ω

2πr
�r eikrNr �r (41)

featuring the refractive index tensor

Nr (k,r̂) = 1 − �r
�(k,r̂)

k
�r . (42)

In the presence of a magnetic field, Nr is represented by a
matrix with an antisymmetric part proportional to η, as can
be seen from (31) and (16). This implies that Gω(r) is not a
symmetric operator: the transposition operation is equivalent
to flipping the sign of η, or equivalently to flipping the
sign of B:

Gω(r,B) = tGω(r,−B). (43)

This property is closely related to the reciprocity theorem
[38]. As a simple illustration, assume a light beam is going
successively through a linear polarizer ε, the atomic cloud,
and a linear analyzer ε′. The amplitude of the transmitted
light is then proportional to Adir = ε′ · Gω · ε. If we now
consider the reverse situation where the light beam is traveling
through the system along the opposite direction, its transmitted
amplitude will now be Arev = ε · Gω · ε′ = ε′ · tGω · ε. We see
that Adir = Arev if and only if Gω(r) is symmetric, which is
not the case in the presence of the magnetic field. This is in
essence the underlying principle behind optical isolators (or
optical “diodes”), which are devices realizing Arev = 0 while
Adir �= 0.

F. Magneto-optical effects

The impact of B on the coherent propagation of light is
embodied in the refractive index tensor Nr (42). As already
mentioned in Sec. III C, it concerns a differential dephasing
and attenuation of the eigenmodes of propagation. These
magneto-optical effects have been extensively studied when
light propagates parallel (Faraday effect) or perpendicular
(Cotton-Mouton effect) to B. We present below both effects
in terms of our formalism, giving substance to the physical
interpretation of the parameters ζ , η, and ξ .

B

(a)

B
V+

V-

(b)

V+

V-

FIG. 1. (a) Resonant Faraday effect (δ = 0). A linearly polarized
light beam propagates parallel to B. The polarization eigenmodes
are the circular polarizations. In the course of propagation the
polarization of the light beam remains linear but rotates around B.
(b) Resonant Cotton-Mouton effect (δ = 0). A linearly polarized light
beam propagates perpendicular to B. The polarization eigenmodes
are linear, one being parallel and the other perpendicular to B. In
the course of propagation the polarization of the light beam remains
linear but rotates around the propagation axis.

1. Faraday effect

The Faraday effect occurs when a light beam with linear
polarization propagates along B in the atomic cloud. For the
sake of simplicity, we consider here that the frequency of light
is exactly at resonance with the atomic transition (δ = 0) so
that φ = φB , ζ , η, and ξ are all real in the following discussion.
From (32) and (33), the eigenmodes and their associated
eigenvalues are

V̂ ± =
(

x̂ ± i
|η|
η

ŷ
)

, �± = ζ ± i|η|. (44)

The eigenmodes are thus identified with the left and
right circular polarization vectors [see Fig. 1(a)]. Their index
mismatch �Nr = −|η|/(k�0) is real, meaning that the two
eigenmodes develop a phase shift in the course of propagation.
An elementary calculation shows that the polarization of the
traveling beam remains linear but rotates around B̂ by an
angle � = ηL/(2�0) proportional to the traveled distance L.
Hence, the parameter η describes the Faraday effect. As one
can also see, the parameter ζ plays the same role for the two
eigenpolarizations: it acts as an isotropic refractive index.

At low magnetic fields (μB � �), η is proportional to B,
and so is the rotation angle �. The proportionality constant
between this angle and the product BL is known as the Verdet
constant VB . For the F = 3 → Fe = 4 transition of 85Rb, one
finds

VB = −3

4

μ

��0
∼ −8 × 106 rad/(T m) (45)
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with �0 ∼ 100 μm. This value is three orders of magnitude
larger than those of classical materials, and comparable to the
value measured in Ref. [23].

2. Cotton-Mouton or Voigt effect

This effect describes the modification of the polarization
of a light beam propagating perpendicularly to B. As for the
Faraday effect, we assume δ = 0 to simplify the discussion.
The eigenmodes and their eigenvalues now read

V̂ + = ẑ, �+ = ζ + ξ, V̂ − = ŷ, �− = ζ. (46)

The eigenmodes are now the linear polarization vectors [see
Fig. 1(b)]. Their index mismatch �Nr = iξ/(2k�0) is now
purely imaginary, showing that V̂ + gets more attenuated
than V̂ − by a factor e−ξL/(2�0) after traveling the distance L.
Here again, the parameter ζ plays the same role for the two
propagation eigenmodes and acts as an isotropic refractive
index.

If the incident polarization is linear, it can be written as a real
linear combination of V̂ + and V̂ −. During the propagation,
the component along V̂ +, i.e., along B̂, will decrease more
than that along V̂ −, i.e., perpendicular to B̂. As a whole, the
polarization of the light beam remains linear, but rotates around
k̂ by an angle which depends on ξ , which is thus the parameter
describing the Cotton-Mouton effect.

In Ref. [35], the Cotton-Mouton effect is rather described
as the transformation of an incident linear polarization into an
elliptical one in the course of propagation, this transformation
being a consequence of the accumulated phase shift between
the two propagating eigenmodes. This apparent contradiction
can be resolved if one realizes that, contrary to our discussion,
the Cotton-Mouton effect described in Ref. [35] is in fact
the one usually observed for light frequencies which are far
detuned from any resonance frequencies. Working out our
theory at a very large detuning δ, we indeed recover the
description given in Ref. [35].

3. General case

When the direction of propagation k̂ is neither along nor
perpendicular to B̂, both effects mix. The Faraday effect will
dominate when k̂ is roughly parallel or antiparallel to B̂, i.e.,
essentially when k̂ is well inside the cone with apex angle θ0

for which (37) vanishes. On the contrary, the Cotton-Mouton
effect dominates when k̂ is essentially well outside this cone,
i.e., roughly perpendicular to B̂. To give orders of magnitude,
η and ξ are comparable when φ � 1, which corresponds to
B � 2 G for 85Rb atoms. The apex angle is then θ0 ≈ 65◦.
The Cotton-Mouton effect then dominates for directions of
propagation making an angle between 65◦ and 90◦ with B̂. In
classical media, this would happen only in a narrow angular
width of order 10−4 rad around the direction orthogonal to
B̂. This big difference in orders of magnitude is due to the
strongly resonant character of the atoms. All in all, the giant
Faraday effect and the large zone of preponderance of the
Cotton-Mouton effect make it necessary to take both effects
into full account when studying the coherent propagation of
light.

When δ �= 0, ζ , η, and ξ are complex valued. Then the
index mismatch is neither purely imaginary nor purely real.

The two polarization eigenmodes still experience different
phase shifts and different extinctions but the calculations and
physical pictures lack the previous simplicity.

IV. THE CBS EFFECT

A. Independent-scattering approximation

At low optical density nλ3 � 1, a semiclassical description
of propagation along scattering paths consisting of rays
between consecutive scatterers is justified. For resonant
scatterers, it implies k�  1. As a consequence, scattering
paths involving different scatterers are uncorrelated and the
associated interference averages to zero. Recurrent scattering
sequences (visiting a given scatterer more than once) can
also be neglected, defining the independent-scattering approx-
imation (ISA) [34]. In this regime, the wave amplitude A
is constructed as the coherent superposition A = ∑

P AP of
the partial waves scattered along all quasiclassical scattering
paths P joining the positions of the scatterers. Between two
successive scatterers the partial waves experience the effective
medium. In the ISA regime, the scattering amplitude AP is
thus computed using two building blocks, scattering by an
individual atom and coherent propagation.

B. Multiple scattering and interference

The average intensity of the wave I = 〈|∑P AP |2〉 breaks
into an incoherent contribution Ii = ∑

P〈|AP |2〉 and a co-
herent contribution Ic = 2Re(

∑
P,P ′ 〈AP ′AP〉). The incoherent

contribution itself breaks into the sum of a single scattering
contribution Is and a diffuse one, Id , involving scattering paths
containing more than two scatterers. All these contributions
depend on the polarization of the incoming light and on the
detected polarization of the outgoing light.

As is well known, the disorder average does not scramble
two-wave interference effects between scattering loops trav-
eled in opposite directions [3,39,40]. This is at the core of the
CBS effect where interference between amplitudes associated
with reverse scattering pathsP and P̃ (i.e., paths with the same
sequence of scatterers but traveled in opposite order) contribute
a constructive interference in a narrow angular cone around the
backscattering direction [8,34,40].

C. Backscattered intensity and the CBS contrast

In this section, we compute the amplitude of multiple
scattering paths and the backscattered intensity. We use the
contrast of the interferences to determine the degree of
coherence of light, which we express in term of a phase
coherence length.

Denoting by ϑ the angle between k and the outgoing wave
vector k′, the total average backscattered signal is I (ϑ) =
Is(ϑ) + Id (ϑ) + Ic(ϑ) where

Ic(ϑ) = 2
∑
P�2

Re〈aPaP̃ ei(k+k′)·RP 〉. (47)

Here P � 2 means that scattering paths with at least two
scatterers are included in the sum, Rp being the vector joining
the end points of path P . The CBS signal Ic varies on a
very small angular scale ∼1/(k�) � 1, whereas the angular
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variations of Is and Id follows Lambert’s law and takes
place over an angular range of order 1 rad. The incoherent
contributions appear to be constant at the angular scale of the
CBS cone and can be safely evaluated at ϑ = 0.

As a two-wave interference, the CBS signal gives access to
the degree of coherence of the outgoing wave and, in turn, at the
coherence length of the scattering medium. The interference
contrast is quantified by the CBS enhancement factor α =
1 + Ic/(Is + Id ) computed at ϑ = 0. which is the ratio of the
total intensity at exact backscattering to the total intensity
out of the backscattering cone. As single scattering events do
not participate in the interference process, they decrease the
contrast even if no dephasing mechanism is at work. When Is

can be made to vanish or is negligible, the coherence loss is
directly associated with the ratio Ic/Id . For classical scatterers,
Is = 0 in the helicity-preserving polarization channel and
reciprocity arguments show that Ic = Id and α = 2 in the
absence of a magnetic field [13,28,34]. When a magnetic field
is present, Ic < Id and the coherence length of the medium
becomes finite [20–22]. The situation for atoms with nonzero
spin in the ground state proves more subtle and will be
addressed in the next section.

D. The intricacies of scattering under a magnetic field

Consider a scattering path P containing s atoms, located
at r i , whose initial and final magnetic numbers are mi and m′

i

(i = 1, . . . ,s). The incoming light’s angular frequency is ω

and its polarization vector ε. Along path P , light propagates to
the first atom, is scattered, propagates to the second atom, and
so on. After the sth scattering event, light exits the medium
and is detected in the polarization channel ε′. One crucial point
is that the internal Zeeman state of an atom with a degenerate
ground state can change under scattering, which means that,
when a magnetic field is present, the scattered photon can
have a different frequency from the incoming one. In other
words, single scattering under a magnetic field is inelastic,
the frequency change being of the order of μB. When μB

is larger than or comparable to δ and/or �, this effect is
not negligible: the effective medium and the magneto-optical
effects experienced by the photon depend on its frequency.

If ω′ denotes the outgoing frequency, the amplitude associ-
ated with path P reads

AP = ε′ · Gω′(r ′ − rs)tm′
sms

Gωs−1,s
(rs − rs−1)

· · · · · Gω1,2 (r2 − r1)tm′
1m1Gω(r1 − r) · ε, (48)

where

ωi,i+1 = ω + gμB

i∑
a=1

(ma − m′
a) (49)

is the frequency of light between the ith and the (i + 1)th
scatterers. The tensor tm′m has been defined in Eq. (9).

For the reverse path P̃ , the incoming angular frequency
is still ω and, by energy conservation, the outgoing angular
frequency is still ω′. The amplitude associated with P̃ reads

AP̃ = ε′ · Gω′ (r − r1)tm′
1m1Gω2,1 (r1 − r2)

· · · · · Gωs,s−1 (rs−1 − rs)tm′
sms

Gω(rs − r ′) · ε (50)

with

ωi+1,i = ω + gμBB

p∑
a=i+1

(ma − m′
a). (51)

The angular frequency of light traveling between atoms
i and (i + 1) is ωi,i+1 for path P and ωi+1,i for path P̃ . In
general, they differ and satisfy ωi,i+1 + ωi+1,i = ω + ω′. As
the magnetic field introduces an explicit difference between
AP and AP̃ , the interference contrast will be reduced unless
the change of frequency does not occur or is unlikely. This
happens, for example, when the atom does not change its
internal state under scattering (mi = m′

i). The conditions for
this situation will be examined in the next section.

As a consequence of this frequency change, the average
over the internal degrees of freedom involves the whole scat-
tering path. Indeed, because of the magneto-optical effects and
the frequency change under scattering, the atomic internal and
external degrees of freedom are interwoven in a complicated
way: after a scattering event takes place, the location of the
next one depends on the value of the scattering mean free
path, hence on the frequency of the emitted photon, hence on
the change or not of the internal state. In such a situation,
Is , Id , and Ic can be computed only numerically. In practice
one calculates the dimensionless bistatic coefficients γx =
4πV2ω2Ix/(4π2A) (x = s,d,c), where A is the illuminated
area.

E. Monte Carlo simulation

Analytical results about the properties of the CBS cone
can be obtained only in specific cases. In the absence of
a magnetic field, the problem has been exactly solved for
vector waves in a random medium of Rayleigh scatterers with
a uniform density and a slab geometry [41]. Following the
same lines, the solution has been extended to quasiresonant
atomic scatterers with degenerate ground states [42]. For other
geometries, numerical calculations are necessary [43].

Reference [22] contains a generalization of the analytical
methods developed in Ref. [41] for Rayleigh scatterers in the
presence of a magnetic field but unfortunately fails to describe
some aspects of the experimental results reported in Ref. [20].
This has to be related to the approximations made to compute
the CBS cone, and in fact to the complexity of the exact
calculation. For atomic scatterers, the intertwining between
the external and internal degrees of freedom makes it almost
impossible.

The average intensity 〈|A(s)
P |2〉 contributed by a scattering

path P with s scatterers contains an average over the positions
of the scatterers, i.e., a 3s-tuple integral, and an average over
the internal degrees of freedom, i.e., a sum over the final and
initial Zeeman sublevels of each scatterer in the ground state.
To compute this multiple integral and these sums, we use a
Monte Carlo simulation able to extract at the same time A

(s)
P

and A
(s)
P̃ for a large number of paths. This numerical simulation

allows us to take into account some experimental constraints,
such as the shape and the density profile of the atomic cloud
or the finite spectral width of the laser probe. Its principle is
as follows:
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Step 1. A photon with frequency ω, wave vector k = kû,
and polarization ε enters the atomic cloud. It propagates over
a distance r along û chosen according to the probability
distribution

P (r) = 1

�(r)
exp

(
−

∫ r dr ′

�(r ′)

)
. (52)

Here �−1(r) = n(r)σ (φ) is the inverse local scattering mean
free path. It depends on the position of the photon if the atomic
number density n is nonuniform. The propagator is the Green’s
function in the real space (41).

Step 2. The photon at position rû from the entrance point
in the cloud is scattered by an atom. The atomic initial and
final states |Fm〉 and |Fm′〉 are chosen randomly with a uni-
form probability distribution. The scattering operator is tm′m,
Eq. (9). It transforms the incident polarization into the scattered
polarization.

Step 3. The photon angular frequency is changed by
gμB(m − m′).

Step 4. A contribution to the single-scattering bistatic
coefficient γs is computed: the scattered photon is propagated
along the backscattering direction ϑ until it exits the atomic
gas, yielding the amplitude from which the contribution to γs

is obtained.
Step 5. The scattered photon is propagated toward a second

scatterer. The direction of propagation is chosen according
to an isotropic probability distribution to save computation
time. The propagation distance is computed with the help of
the distribution law Eq. (52), the change of frequency and
polarization being taken into account.

Step 6. The doubly scattered photon is propagated along the
backscattering direction ϑ until it exits the atomic gas, yielding
the amplitude from which a contribution to γ

(2)
d is obtained.

Step 7. A photon, identical to the incident one, enters
the atomic cloud, propagates along the previous double-
scattering path in reverse order, and exits the medium in
the backscattering direction ϑ . The scatterers experience
exactly the same atomic transitions. This yields the amplitude
associated with the reverse previous double-scattering path
from which, together with step 6, a contribution to γ (2)

c is
obtained.

Step 8. The process is continued (triple scattering, etc.) until
the photon finally exits the atomic cloud.

Step 9. Another incident photon is sent into the cloud and
the whole process is repeated as many times as necessary to
obtain a good signal-to-noise ratio. Typically, one needs to
launch between 106 and 109 photons to obtain well-converged
values for γs , γd = ∑

s γ
(s)
d , and γc = ∑

s γ (s)
c .

Up to the statistical errors, this method is quasiexact and
limited only by computer resources in the limit k�  1.

When the magnetic field vanishes, the results of the Monte
Carlo simulations reported in Ref. [43] are recovered. At large
magnetic fields, the moduli of the amplitudes associated with
reverse paths are very sensitive to the scattering parameters of
the paths. Any change in the direction of propagation modifies
significantly the refractive index of the effective medium. As
a consequence, the Monte Carlo simulation needs to average
over more and more fluctuating quantities when the magnetic
field increases. The statistical error on the total diffuse intensity

can be estimated by its standard deviation. It remains smaller
than 1% for small magnetic fields (μB/� < 1), and smaller
than 5% for magnetic fields up to μB/� � 10 for the results
presented in Sec. V C.

V. RESTORATION OF THE CBS CONTRAST

In the following, we apply the results of the previous
sections to compute the CBS cone for quasiresonant light
propagating in a cold 85Rb cloud. The frequency of light
is chosen close to the frequency of the F = 3 → Fe = 4
transition of the D2 line (wavelength λ = 780 nm, linewidth
�/(2π ) = 5.9 MHz). The Landé factors of the ground and
excited states are g = 1/3 and ge = 1/2. For this particular
transition, a Zeeman shift μB = � corresponds to B = 4.2 G.

At B = 0, CBS experiments have reported very low
enhancement factors, e.g., α ≈ 1.05 in the helicity-preserving
channel [43–45]. This is in marked contrast with experiments
with spherically symmetric classical scatterers where reci-
procity guarantees that α takes its maximal value 2 in the
same polarization channel [46]. A detailed analysis shows
that the low α value observed with cold atoms comes from
an imbalance between the amplitudes associated with reverse
paths [13]. This imbalance is noticeably absent for an F =
0 → Fe = 1 transition where α = 2 is recovered [47]. It is our
goal in this section to show that the interference contrast can
be fully restored with the help of an external magnetic field.

A. Filtering out a closed transition

The key idea in restoring the CBS contrast in the helicity-
preserving channel is simply to lift the degeneracy of the
atomic ground state and to filter out the closed transition.
This is done by splitting the Zeeman sublevels with an
external magnetic field (Zeeman effect) and by illuminating
the atomic cloud with a light wave which is resonant with
the |F = 3,m = 3〉 → |Fe = 4,me = 4〉 transition. To achieve
this, one needs to impose δ = (4ge − 3g)μB = μB. This
transition is closed since an atom in the excited state |44〉 can
only make a transition to the ground state |33〉. At sufficiently
large B, the other Zeeman sublevels of the ground and excited
states are sufficiently split and are out of resonance, meaning
that the |33〉 → |44〉 transition is isolated. Thus, at large B,
the atomic cloud consists of (i) atoms which are in the substate
|33〉 and can scatter light, and (ii) atoms which are not in the
substate |33〉 and cannot scatter light because the frequency is
too far detuned from the other transitions. These |33〉 scatterers
behave like effective two-level atoms which can absorb
and emit only σ+ radiation, i.e., light with positive helicity
along B̂.

Under these circumstances, it makes no difference for light
to travel a scattering path in one direction or the other. The
multiple scattering amplitudes associated with any path P and
with its reverse partner P̃ are equal and the CBS contrast is
restored. This restoration is expected to be most spectacular
in the helicity-preserving channel, because it is in this channel
that the contrast is the lowest without any magnetic field. If the
incident light beam is parallel to B and B is sufficiently large,
it is easy to see that one gets a nonvanishing CBS signal only in
the helicity-nonpreserving polarization channel. We will thus
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choose in the following the “Cotton-Mouton” configuration
where B is perpendicular to the incident light beam and
analyze the CBS signal in the helicity-preserving polarization
channel. In this configuration, the incident light is not polarized
with positive helicity along B̂. One might thus wonder whether
the restoration of the interference contrast is not at risk. Indeed,
very generally, an incoming polarization propagating in the
atomic cloud before the first scattering process will be distorted
due to magneto-optical effects. The same is true for the
propagation of light leaving the sample after the last scattering
event. This means that the reversed paths may not have
equal multiple-scattering amplitudes as restoration of the CBS
contrast would require. If this conclusion is generally true,
it however does not hold when the incident light propagates
perpendicularly to the magnetic field in the helicity-preserving
channel. Indeed, in this configuration, the projection of the
incident polarization on the positive-helicity state along B̂ is
always equal to the projection of the positive-helicity state
along B̂ on the circular analyzing polarization at the exit of
the atomic cloud. The direct and reversed amplitudes between
the first and last scatterers will thus be equal. Furthermore, the
magneto-optical effects during the propagation of light before
the first and after the last scatterer will also be identical. These
very facts ensure the restoration of the CBS contrast in this
configuration.

B. Small magnetic fields

From the previous discussion, it seems that the contrast
restoration only occurs at sufficiently large B. In fact, it turns
out that the contrast restoration starts even at small magnetic
fields and gets larger as B is increased. To demonstrate this, we
study analytically the single- and double-scattering signals in a
uniform, semi-infinite medium in the limit μB � � (meaning
B � 2.1 G for 85Rb). It is then possible to neglect the magneto-
optical effects, and to propagate photons with the propagator
(41) evaluated at B = 0. This will be justified below in
Sec. V D. Expanding the scattering matrices tm′m at second
order in φB = 2μB/�, and noticing that φ ≈ φB + iφ2

B at
the same order, we then use expressions (48) and (50) to
compute the single- and double-scattering amplitudes. In the
chosen geometry, the average over the external degrees of
freedom when computing γs , γ

(2)
d , and γ (2)

c can be obtained
analytically [28]. The calculations have been made here with
the symbolic calculation software MAPLE and yield

γs

/
γ

(2)
d = 0.305 + 0.468φ2

B, (53)

γ (2)
c

/
γ

(2)
d = 0.217 + 0.143φ2

B, (54)

α(2) = 1.166 + 0.048φ2
B. (55)

As one can see, all quantities increase with B, meaning that
the coherence length of the system is increased.

C. Monte Carlo simulations

When the magnetic field is neither small nor large, there
is no simple approximation that allows one to compute
analytically the bistatic coefficients, but they can at least
be computed numerically with the help of the Monte Carlo

FIG. 2. (Color online) Plot of the CBS enhancement factor α as
measured in the parallel-helicity channel h ‖h for different values of
B (circles) for light backscattered by a cold 85Rb atomic cloud in the
Cotton-Mouton configuration k ⊥ B. For each value of B, the light
is tuned on resonance with the |33〉 → |44〉 transition (δ = μB). The
spherically symmetric atomic cloud is characterized by a Gaussian
density and an optical thickness b = 31 when δ = 0 and B = 0. One
witnesses a dramatic increase of the CBS contrast compared to the
situtation at B = 0 despite the fact that the time-reversal symmetry
is broken. The solid line is the result of the Monte Carlo simulation
with no adjustable parameters.

simulation described in Sec. IV E. It is then possible to take
into account a more realistic model of the atomic cloud than
a semi-infinite uniform medium. We present results here for
a spherically symmetric atomic cloud with Gaussian density
and optical thickness b = 31 (measured at B = 0 and δ = 0).
We take a laser probe beam with spectral width equal to 0.3�.
This allows a realistic comparison with our experiment done
with a fixed total number of atoms. The computed values
of α are compared to the experimental ones for various
values of B in Fig. 2. As one can see, α increases with B,
starting from α = 1.05 at B = 0 up to α � 1.35 at B = 40 G.
The agreement between theory (solid line) and experiment
(circles) is quite satisfactory. This shows that the Monte Carlo
simulation contains the essential ingredients that play a role in
the restoration of the contrast. In the following, we will depend
on the results of the Monte Carlo simulation to elucidate the
mechanisms at work by computing quantities which are not
accessible to experiment, e.g., the bistatic coefficients for each
scattering order.

In Fig. 3(a), we plot γc/γd as a function of B. This ratio
is a measure of the degree of coherence of the outgoing light.
This ratio grows when B increases, and tends to 1 for large B

(not shown in the figure). This confirms that the contrast of the
interference, and in turn the coherence of the outgoing light,
are actually restored by a magnetic field.

In Fig. 3(b) we show how γs (triangles), γd (crosses), and
γc (circles) change with B. γd decreases strongly with B

because the atomic scattering cross section itself decreases.
Meanwhile, γc increases for magnetic fields up to 8 G. This
shows the efficiency of the mechanism restoring interference.
At larger fields, however, the decrease of the scattering cross
section takes over and γc decreases again, although more
slowly than γd . At large B, γc and γd tend to the same value
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FIG. 3. (Color online) Results of the Monte Carlo simulations
under the same experimental conditions as Fig. 2. (a) The coherence
ratio γc/γd increases with B. (b) The bistatic coefficients γs

(triangles), γd (crosses), and γc (circles) in the backward direction
as functions of B. The solid lines are drawn to guide the eyes. As
one can see, γc first increases and then decreases with B without
varying too much. At the same time, γd decreases strongly. At large
B, γc = γd and the coherence is restored. However, the enhancement
factor α < 2 because γs is not negligible.

(yielding perfect coherence) but are outgrown by γs , meaning
α < 2. This behavior is not generic: at larger optical thickness,
γs would have been smaller than γd .

We also mention that the values of the bistatic coefficients
are independent of the value of k�  1. However, the angular
width of the backscattering cone depends on k�.

D. Impact of Faraday and Cotton-Mouton effects

To study the impact of magneto-optical effects on the
enhancement factor, the simplest way is to discard them in the
Monte Carlo simulation, and compare the obtained result with
the experimental data in Fig. 2. The magneto-optical effects
distort the polarization of a propagating wave. Discarding them
means here that polarization is propagated without distortion,
only with attenuation. To ensure energy conservation, the
attenuation length (i.e., the scattering mean free path) must
be equal to � = 1/[n(r)σ (φ)] where n(r) is the local density
of atoms and σ (φ) the total scattering cross section of an atom
given by Eq. (19). All other parameters in the simulation are
left unchanged.

Figure 4 shows the plot of this expurgated enhancement
factor α̃ as a function of B (dotted line), together with its
quantitative comparison to the real theoretical curve taken
from Fig. 2 (solid line). For B � 4 G (μB � �), the impact of
Faraday and Cotton-Mouton effects is negligible. For larger
fields, the true value α is slightly lower than α̃, the two
curves being roughly parallel to each other. This means that
magneto-optical effects do decrease the phase coherence of the
sample but this detrimental effect is more than counterbalanced
by a more powerful mechanism restoring coherence. As a
matter of fact, at large B and after the first scattering event,
a single eigenmode can propagate in the scattering medium,
exemplifying why phase or extinction differences between the
polarization eigenmodes cannot scramble the contrast. Thus,
the phenomenon explaining the restoration of the CBS contrast
with B is really the modification of the scattering properties of
the atoms which, because of the Zeeman splitting, behave more

FIG. 4. Impact of magneto-optical effects occurring during prop-
agation (Faraday and Cotton-Mouton effects) on the CBS enhance-
ment factor α. The solid line is the theoretical curve obtained in Fig. 2.
The dotted line is the enhancement factor α̃ calculated by discarding
the magneto-optical effects. As one can see, the Faraday and Cotton-
Mouton effects do decrease the contrast but their detrimental effect
is more than counterbalanced by an efficient mechanism restoring
the contrast. This mechanism is the modification of the scattering
properties of the atoms which, because of the Zeeman splitting,
behave more and more as effective two-level atoms when B is
increased and the light is tuned on resonance with a closed transition.

and more as effective two-level atoms when B is increased and
the light is tuned on resonance with a closed transition. This
is in marked contrast with classical scatterers where no such
mechanism counterbalancing the detrimental magneto-optical
effects exists.

E. Influence of higher and higher scattering orders

When B = 0, the CBS effect observed with atoms having
a degenerate ground state is dominated by double-scattering
paths, while higher-order scattering paths contribute signifi-
cantly to the diffuse background [43,45]. This is shown in the
first line of Table I. As B increases, the contrast is restored and
higher and higher scattering orders contribute significantly to
both γc and γd ; see the second line of Table I.

However, at the same time, the optical thickness of the
atomic cloud decreases. Higher-order scattering paths become
less and less probable and the two effects compete. The dotted
line in Fig. 5 shows the enhancement factor calculated from
the single- and double-scattering contributions alone. This
approximation overestimates the height of the backscattering
cone at small magnetic fields, but underestimates it at large
magnetic fields. This shows that high scattering orders do

TABLE I. CBS coherence factor γc/γd for the first scattering
orders when B = 0 and 30 G. The parameters of the incoming light
and atomic cloud are given in Fig. 2. The atomic cloud is spherically
symmetric with Gaussian density.

Scattering order

2 3 4 5

γc/γd B = 0 G 0.21 0.08 0.04 0.02
B = 30 G 0.81 0.75 0.69 0.38
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FIG. 5. Influence of higher and higher scattering orders on the
CBS enhancement factor. The parameters of the incoming light
and atomic cloud are given in Fig. 2. We compare the theoretical
enhancement factor (taken from Fig. 2) with the one obtained by
considering only single- and double-scattering orders. At small B,
high scattering orders contribute mostly to the diffuse signal. At large
B, they contribute equally to the coherent and diffuse signals, making
the CBS cone height increase.

contribute to the CBS cone and cannot be discarded for a
quantitative comparison.

F. Role of optical pumping

In Sec. II D, we mentioned that our theory does not take
optical pumping into account (although it could be extended
to do so). In the present section, we give conclusive evidence
that optical pumping is indeed negligible in our experiment
by measuring the coherent transmission of the atomic cloud.
The results are presented in Fig. 6, for an incoming wave
vector perpendicular to B and a circular incoming polarization.

FIG. 6. Coherent transmission of the atomic cloud as a function
of B for an initial optical thickness b = 31 measured at B = 0
and δ = 0. Crosses: experiment for δ = 0. Dashed line: theory for
δ = 0. Solid circles: experiment for δ = μB. Solid line: theory for
δ = μB. When δ = μB the incoming light is kept on resonance with
the closed atomic transition |33〉 → |44〉. When δ = 0, the coherent
transmission increases in time and converges to the plotted value.
In this case, optical pumping is at work, a situation not accounted
for by our theory. For δ = μB, no time variation of the coherent
transmission is observed. This is a strong indication that optical
pumping is negligible in this case.

If δ = 0, the coherent transmission varies in time and its
stationary value is shown in Fig. 6 as a function of B

(crosses). Our Monte Carlo simulation (dotted line) is unable
to reproduce these results for B > 10 G, indicating that
optical pumping is indeed present in our sample when δ = 0.
However, when the incident light beam is kept at resonance
with the atomic transition |33〉 → |44〉 (i.e., δ = μB), no time
evolution of the coherent transmission is observed. This shows
that the populations of the various Zeeman substates are almost
constant. The experimental data (circles) are well reproduced
by the Monte Carlo simulation (solid line). This is a strong
indication that optical pumping is indeed negligible when
the incoming light is continuously kept at resonance with the
closed atomic transition.

G. Coherence length

The notion of the phase coherence length Lφ is a very
important concept in mesoscopic physics. It is the length
scale at which, because of some dephasing mechanisms, the
interference effects as produced by the medium are effective.
The larger is Lφ , the stronger is the impact of interference, and,
in the case of the CBS effect, the larger is the CBS contrast. In
the case of cold atoms, at B = 0, the degeneracy of the atomic
ground state causes a loss of phase coherence between reversed
scattering paths giving rise to a finite value of Lφ of the order of
a few mean free paths � [13]. The increase of the CBS contrast
when a magnetic field is applied is accordingly accompanied
by a growth of Lφ . The Monte Carlo simulation allows us to
estimate the phase coherence length in the following way. In
the presence of dephasing, the interference term γc associated
with two reversed scattering paths of length L is related to the
diffuse term γd by

γc � γd e−L/Lφ = γd e−s/sφ , (56)

where L/� = s, s being the scattering order, and Lφ/� = sφ .
In Fig. 7 we plot sφ as a function of B as obtained numerically.
It increases roughly linearly.

One should note that our definition of the coherence
length differs from the usual one where the distance traveled
diffusively by the light inside the disordered sample is
introduced [3]. With this convention, L ∝ √

s and Lφ ∝ √
sφ .

H. Analogy with paramagnetic impurities in solid-state physics

The surprising fact that a magnetic field can restore
weak-localization effects under well-chosen circumstances
although it breaks time-reversal invariance is already known
in solid-state physics [48,49]. In this context, one considers
the propagation of electrons inside a metal at low (but finite)
temperature, containing paramagnetic impurities. Thermal
fluctuations make the spin of these impurities fluctuate in time.
The scattering of an electron by such a fluctuating impurity
randomizes the electron spin and the weak-localization cor-
rections to electronic transport are reduced. This is similar
to the loss of contrast due to the degeneracy of the atomic
ground state. When a large enough magnetic field is applied
to the metal, the spins of the impurities are all aligned along
B. The fluctuations of the spin component of the electrons are
suppressed and the weak-localization corrections to transport
are restored.
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FIG. 7. (Color online) Plot of sφ = Lφ/� as a function of B, as
extracted from our Monte Carlo calculation. The parameters of the
incoming light and atomic cloud are given in Fig. 2. The dispersion of
the points reflects the numerical accuracy. As one can see, sφ increases
with B, roughly linearly (the solid line is drawn to guide the eye).
This is due to the lifting of the Zeeman degeneracy which makes
atoms behave as effective two-level atoms when the light is tuned on
resonance with a closed transition. This behavior is in sharp contrast
with classical scatterers, where sφ decreases when B increases.

Finally, in both cases, the magnetic field freezes the internal
degrees of freedom and restores the interference effect. The
main difference from our case is that in solid-state physics,
the magnetic field populates a unique spin state, whereas
the Zeeman substates of the atoms are equally populated.
It could be possible to realize an atomic cloud containing
almost only atoms in the ground state |33〉, by using optical
pumping. However, this would only restore the interference
between reverse double-scattering paths [19]. Nevertheless, it
would be possible to first populate the |33〉 state and then
to apply an external magnetic field. This would increase

the number of atoms participating in the scattering of light.
Multiple scattering would then play a more important role and
the enhancement factor would be larger than reported in the
present article.

VI. CONCLUSION

To summarize, we have accurately described in this paper
the propagation of light in cold atomic gases in the multiple-
scattering regime where k�  1 and in the presence of an
applied external magnetic field. In this regime, a semiclassical
description is very suitable, and transport is described through
a series of individual scattering events separated by coherent
propagation in an effective medium. We have studied the
impact of the magnetic field on the scattering of light by
atoms with a degenerate ground state (differential and total
cross sections) and the magneto-optical effects (Faraday and
Cotton-Mouton effects) embodied in the refractive index
tensor of the effective medium. Our results generalize previous
works [23,24]. We then applied our theory to the study of the
coherent backscattering effect and showed that the magnetic
field can lead to a full restoration of the two-wave interference
contrast provided the incoming light is continuously set on
resonance with a closed atomic transition as B is increased.
The reason for the restoration of contrast is that the atoms
behave as effective two-level atoms for which scattering
amplitudes associated with reverse scattering paths have the
same strength.
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