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Three-dimensional finite-energy Airy self-accelerating parabolic-cylinder light bullets
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We investigate the propagation of localized three-dimensional spatiotemporal Airy self-accelerating parabolic-
cylinder light bullets in a linear medium. In particular, we consider the effects resulting from utilizing initial
finite-energy Airy wave packets to accelerate these localized beams in the absence of any external potential.
A general localized light bullet solution with the joint Airy pulse characteristics and parabolic-cylinder spatial
characteristics is obtained in the Cartesian coordinates, using parabolic-cylinder and Airy functions. Our results
show that the localized wave packets can retain their intensity features and still be accelerated over several
Rayleigh lengths.
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I. INTRODUCTION

In 1979, Berry and Balazs realized that the force-free
Schrödinger equation could give rise to solutions in the
form of nonspreading Airy wave packets [1] that freely
accelerate even in the absence of any external potential. In
one dimension (1D), the Airy wave is the only nontrivial
localized wave function that remains invariant with time
[1]. The possibility of realizing such an intriguing class of
beams in optics created quite a stir and it was explored in
many publications [2–23]. Christodoulides and co-workers
demonstrated an optical analog of Airy wave packets: specially
shaped beams of light which do not diffract over long distances
but could bend sideways [2,3]. Such self-accelerating Airy
beams have attracted a great deal of interest, owing to their
unique properties, and they provide the basis for a number of
proposed applications, including optical micromanipulation
[4], plasma guidance and light bullet generation [5], and
routing surface plasmon polaritons [6].

Diffraction-free beams are defined as the localized optical
wave packets that remain invariant during propagation. A
typical example of such a diffraction-free wave is the Bessel
beam, predicted theoretically and demonstrated experimen-
tally by Durnin et al. in 1987 [7,8]. Such nondiffracting wave
packets include various Bessel, Mathieu, and Weber beams,
and their higher-order versions [9,10]. The beams that exhibit
bidiffraction (part normal, part anomalous) appear in photonic
lattices as nondiffracting x waves and Bessel-like beams
[11–13]. These waves contain infinite power and consequently
do not diffract. However, once diffractionless beams pass
through finite apertures or are truncated in other ways, they
eventually become diffractive. Still, the size of diffraction
can be small, depending on the size of the aperture or the
degree of truncation. Concerning Bessel beams, Gori et al.
have investigated finite-beam effects in [14].

One of the problems with diffractionless wave packets is
their dimensionality. Curiously, unlike nonlinear optics, in lin-
ear optics the one-dimensional (1D) wave packets are a bigger
problem than the two-dimensional (2D) or three-dimensional
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(3D) packets; the above-mentioned beams commonly exist in
2D and 3D. The problem arises in 1D with the diffraction
of plane waves that carry infinite energy. Still, diffractionless
Airy waves in 1D are possible, as first discussed by Berry
and Balazs [1,15]. Such Airy waves are rather strange, in that
they accelerate during propagation [3]. In fairness, it should
be mentioned that actually, the whole wave packets do not
accelerate, only their points of maximum field. The “center of
mass” of such beams (of finite energy) moves with constant
velocity. The acceleration of these beams was explained by
Greenberger using the equivalence principle [16]. Recently,
3D Airy-Bessel bullets that are unaffected by both dispersion
and diffraction have been suggested [3,17] and successfully
demonstrated in dispersive media [5]. This versatile class of
optical wave packets can exist even in 1D. They are possible
irrespective of the dispersion properties of the material.

In this paper we investigate (3 + 1)D spatiotemporal accel-
erated Airy parabolic-cylinder light bullets with finite energy,
in which the temporal part comes from the Airy function, and
the spatial part comes from the parabolic-cylinder functions.
Our results show that even in this case, the 3D wave packets
can retain their intensity features and can still accelerate
(in the sense mentioned) over several Rayleigh lengths.
Thus, we demonstrate that a class of 3D spatiotemporal
parabolic-cylinder and Airy localized wave packets exists and
can self-accelerate in the absence of any external potential.
Such solutions, constructed using the method of separation
of variables, are written as products of complex modulation
functions and Gaussian beams in Cartesian coordinates, and
form localized linear light bullets that slowly expand over
several diffraction lengths.

The paper is organized as follows. In Sec. II we introduce
the classes of 3D spatiotemporal parabolic-cylinder and Airy
localized wave packets, described by the general 3D linear
Schrödinger equation in the absence of any external potential.
Using the separation of variables, we construct a class of
3D spatiotemporal wave packets or linear light bullets. In
Sec. III, we present some solutions as interesting examples,
for some specific parameters. We find that the 3D spatiotem-
poral parabolic-cylinder and Airy localized wave packets can
display various forms. In the final section, we summarize our
results.
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FIG. 1. (Color online) Intensity profiles of a finite-energy Airy wave packet at various propagating distances (z = 0,2,4) for different decay
factors (a) a = 0.1, (b) a = 0.2.

II. THE MODEL AND ITS LOCALIZED
WAVE-PACKET SOLUTIONS

To demonstrate a class of spatiotemporal parabolic-cylinder
and Airy localized waves, we consider a 3D diffractive
and dispersive optical paraxial system in a linear dielectric
medium. This situation can arise in anomalous dispersive
planar waveguides, where diffraction is two dimensional
and paraxial propagation is perpendicular to the transverse
plane. By equalizing diffraction and dispersion effects, the
spatiotemporal evolution of the wave packet can be described
by the (3 + 1)D linear Schrödinger equation in the absence of
any external potential [3,18]:

i
∂V

∂z
+ 1

2
∇2V = 0, (1)

where V is the complex slowly varying envelope of the optical
pulse, ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂τ 2 is the spatiotemporal Laplacian,
x and y are the normalized transverse coordinates, τ stands for
the local (retarded) dimensionless time in a frame of reference
moving with the pulse, and z is the propagation distance in
units of Rayleigh length. In Eq. (1), without any loss of
generality, an anomalously dispersive system is assumed. It
is interesting to note that if one interprets z as time and τ as
the longitudinal coordinate, then Eq. (1) is equivalent to the
Schrödinger equation for the wave function of a particle in
free space, in units where m and h̄ are set equal to 1. In optics,
the same equation allows the propagation of wave packets
of special form that are practically nondiffracting in linear
dielectric media but also partially accelerating [1–3].

Equation (1) has many solutions, obtained by many solution
methods. To find different solutions of Eq. (1), we resort to a
partial separation of variables and assume a solution of the
form

V (x,y,τ,z) = T (τ,z)u(x,y,z). (2)

Direct substitution of Eq. (2) into Eq. (1) gives two Schrödinger
equations of lower dimensions:

i
∂T

∂z
+ 1

2

∂2T

∂τ 2
= 0, (3a)

i
∂u

∂z
+ 1

2

(
∂2u

∂x2
+ ∂2u

∂y2

)
= 0, (3b)

in the temporal and spatial domains. Further analysis may
proceed along different paths. Here, we specifically investigate

the dynamics of finite-power Airy beams in the temporal τ

domain, by considering a specific input into the system (at
z = 0) of the form T (τ,z = 0) = Ai(τ ) exp(aτ ), where Ai(τ )
is the Airy function and a (0 � a � 1) is a decay factor. This
ensures the containment of the infinite Airy tail, which enables
a physical realization of the beam with finite energy [19]. The
spatial dependence is confined to the beam amplitude u in
Eq. (3b).

By directly solving Eq. (3a) under such an initial condition,
we find that this optical pulse will evolve according to [2,19]

T (τ,z) = Ai

(
τ − z2

4
+ iaz

)
exp

[
aτ − 1

2
az2

+ i

(
1

2
τz + 1

2
a2z − 1

12
z3

)]
. (4)

Note that in the limit a = 0 this solution reduces to the
nondispersive wave packet found in Ref. [1]. Equation (4)
clearly shows that the diffraction-free Airy wave packets
remain invariant during propagation, while they experience
acceleration of their most intensive lobes [19]. If a �= 0,
Eq. (4) represents the solution in the form of a finite-energy
Airy beam that slowly diffracts. Figure 1 displays intensity
profiles [I = |T (τ,z)|2] of a finite-energy Airy wave packet
at various propagation distances, for different decay factors
a. It is seen that for small a (�1), the beam displays
similar features as the diffraction-free Airy wave packet and
remains invariant over finite propagating distances. However,
for nonzero a, diffraction and dissipation effects eventually
take over as z increases, and the finite-energy Airy beam
gradually diminishes. Crucial in this regard is the factor
exp(–az2) figuring in the intensity of the finite-energy Airy
beam.

Next, we search for the spatial solution of Eq. (3b); again,
this can be accomplished in many ways. We opt for a solution
that is the product of a complex modulation function uF (z,x,y)
and the localized Gaussian beam uG(z,x,y),

u(z,r) = uF (z,x,y)uG(z,x,y), (5)

where uG(z,r) is of the form [20,21]

uG(z,x,y) = q0

q(z)
e
− x2+y2

2q(z) . (6)
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Here q(z) = z − izR , q(0) = −izR , and zR is the Rayleigh
range assumed to be the unit of length. Substituting Eq. (5)
into Eq. (3b) and using Eq. (6), we get an equation for uF :

i
∂uF

∂z
+ 1

2

(
∂2uF

∂x2
+ ∂2uF

∂y2

)
+ i

1

q

(
x

∂uF

∂x
+ y

∂uF

∂y

)
= 0.

(7)

We have encountered a similar equation in our earlier
work [22]. To find solutions of Eq. (7), we resort again to the
separation of variables; we split Eq. (7) into two independent
equations [21–24]. We obtain (1 + 1)D partial differential
equations in each of the transverse dimensions, for example,
in the x direction:

i
∂uF

∂z
+ 1

2

∂2uF

∂x2
+ i

q
x

∂uF

∂x
= 0. (7a)

We assume uF (z,x) = A (z) F (�), where A (z) is the
amplitude of the beam, and � (z,x) = x

μ(z) ; here μ (z) is a
z-dependent scaling factor, to be determined. Substituting
uF (z,x) into Eq. (7a), and separating variables, one finds the
following equations:

∂μ2

∂z
− 2μ2

q
= 1, (8a)

2μ2

A

∂A

∂z
= −

(
λ + 1

2

)
, (8b)

∂2F

∂�2
− i�

∂F

∂�
− i

(
λ + 1

2

)
F = 0, (8c)

where λ is the separation constant. From Eqs. (8a) and (8b),
one obtains a particular solution: μ2 = izR − z and A(z) =
A0(z − izR)

λ
2 + 1

4 . Here, the choice of A0 = (−izR)−
λ
2 − 1

4 nor-
malizes the amplitude, A (z = 0) = 1. Assuming F (�) =
G(�) exp( i

4�2), Eq. (8c) is transformed into the well-known
parabolic-cylinder differential equation,

∂2G

∂�2
+

(
1

4
�2 − iλ

)
G = 0. (9)

There are two independent—even and odd—parabolic-
cylinder functions, Ge

λ (z,x) and Go
λ (z,x), that are the solutions

to Eq. (9) [25]:

Ge
λ (�) = e−i �2

4 1F1

(
1

4
+ i

2
λ,

1

2
,

i�2

2

)
, (10a)

Go
λ (�) = �e−i �2

4 1F1

(
3

4
+ i

2
λ,

3

2
,

i�2

2

)
, (10b)

where 1F1 is the confluent hypergeometric function. If we
choose λ = i

(
n + 1

/
2
)
, these solutions can be rewritten as

Ge
n (z,x) = e

−i x2

4(izR−z) 1F1

[
−n

2
,

1

2
,

ix2

2 (izR − z)

]
, (11a)

Go
n (z,x) = x√

(izR − z)
e
−i x2

4(izR−z)

× 1F1

[
−n − 1

2
,

3

2
,

ix2

2 (izR − z)

]
. (11b)

Note that we have changed the subscript to n in Eq. (11), which
can be taken as an integer. Hence, n can be interpreted as the
quantum number of the beam mode along the x-axis direction.

TABLE I. Different possible combinations of the exact analytical
solution (13).

Type Solution combination

1 Ge
n(z,x)Ge

m(z,y)
2 Go

n(z,x)Go
m(z,y)

3 Go
n(z,x)Ge

m(z,y)
4 Ge

n(z,x)G0
m(z,y)

By collecting the partial results and rearranging the terms, we
obtain the solution to Eq. (7a):

u
(e,o)
F (z,x) =

(
1 + i

z

zR

) i
2 (n+ 1

2 )+ 1
4

e
ix2

4(izR−z) G(e,o)
n (z,x) , (12a)

where G(e,o)
n is determined by Eq. (11).

Using the same process, we obtain the following solution
of Eq. (7) along the y-axis direction:

u
(e,o)
F (z,y) =

(
1 + i

z

zR

) i
2 (m+ 1

2 )+ 1
4

e
iy2

4(izR−z) G(e,o)
m (z,y) , (12b)

where Ge
m(z,y) = e

−i
y2

4(izR−z)
1F1[−m

2 , 1
2 ,

iy2

2(izR−z) ] and Go
m(z,y)

= y√
(izR−z)

e
−i

y2

4(izR−z)
1F1[−m−1

2 , 3
2 ,

iy2

2(izR−z) ]; here m is the
quantum number of the beam mode in the y-axis direction.
The complete class of 3D solutions of Eq. (1) in Cartesian

FIG. 2. (Color online) The 3D spatiotemporal localized wave-
packet structures of the combination Ge

n(z,x)Ge
m(z,y) and equal

modal numbers. The parameters are a = 0.1 and (a) n = m = 0;
(b) n = m = 2. The vertical (τ -axis) direction depicts the accelerating
temporal direction; horizontal is the (x,y) plane. Left column is at
z = 0, right column at z = 5zR .
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coordinates can be readily constructed as products of 1D
solutions of the form (4) and (12),

V (z,x,y,τ ) = 1

1 + iz/zR

u
(e,o)
F (z,x) u

(e,o)
F (z,y)

× T (z,τ ) e
− x2+y2

2(z−izR ) . (13)

Thus, in Eq. (13) any combination of parities is possible.
Equation (13) is the exact solution of Eq. (1). It is hence
demonstrated that the shape of the spatiotemporal even and
odd parabolic-cylinder Airy localized wave packets can be
described by the two mode numbers (n,m).

III. ANALYSIS AND DISCUSSION

In this section, we discuss solutions given in Eq. (13) for
different possible combinations of mode numbers. It should
be stressed that, according to the choice of the parity, there
exist four types of spatiotemporal wave packets in the form of
Eq. (13) (see Table I). Thus, different classes of even and odd
parabolic-cylinder Airy wave packets can be constructed by
making different choices of (n,m). In the following, different
combinations of the even and odd parabolic-cylinder functions
are investigated.

First, we pick the even-even combination of the parabolic-
cylinder functions Ge, i.e., Ge

n(z,x)Ge
m(z,y). Obviously, the

simplest possibility in the family of solutions given by Eq. (13)
is obtained when n = m. Figure 2 shows the intensity of
localized wave packets in the spatiotemporal three dimensions
(x,y,τ ) for several values of n and m, in propagation from

FIG. 3. (Color online) Three-dimensional spatiotemporal wave-
packet solutions (13) for the combination Go

n(z,x)Go
m(z,y). Setup

and the parameters are the same as Fig. 2, except for (a) n = m = 1;
(b) n = m = 4.

z = 0 (left column) to z = 5zR (right column), respectively.
The lowest energy should occur when n = m = 0; the beam
then forms a train of 3D ellipsoidal pulses that represent
the combination of the fundamental Gaussian state with the
finite-energy Airy pulse. An isosurface intensity contour plot
of this wave packet is depicted in Fig. 2(a), at two z points. It is
seen that the array of pulses broadens and accelerates, but stays
structurally stable. In Fig. 2(b) we display the case when n =
m = 2; there exist now similar layered structures in which four
adjacent ellipsoids are connected to each other. The intensity
is not zero along the τ axis for this combination. Obviously, as
seen in Fig. 2, the localized wave packet accelerates along the
vertical (τ -axis) direction and remains essentially invariant in
the finite propagation distance. However, as mentioned above,
these bullets must diffract and dissipate with the propagation
distance, owing to the factor exp(–az2) in the intensity of the
finite-energy Airy beam, which figures in the overall solution.
These effects are visible in the slightly diminished size of the
bullets in the right column.

For the combination solution containing odd parabolic-
cylinder functions Go, Go

n(z,x)Go
m(z,y), one obtains another

class of the parabolic-cylinder and finite-energy Airy wave-
packet solutions. Figure 3(a) shows the intensity distributions
of such localized wave packets for the mode parameters
n = m = 1 and Fig. 3(b) for n = m = 4.

Next, we investigate the intensity distributions of spatiotem-
poral solutions with the mixed combinations of parabolic-
cylinder functions Go and Ge. As a typical example, we
choose Go

n(z,x)Ge
m(z,y). When n = m, the wave packets form

a square matrix of ellipsoids in the horizontal plane; the
structures are plotted in Fig. 4. When we choose n = m = 1,

FIG. 4. (Color online) Examples of solutons (13) with the mixed
combination Go

n(z,x)Ge
m(z,y). The setup and parameters are as in

Fig. 2, except for (a) n = m = 1; (b) n = m = 2.

033824-4



THREE-DIMENSIONAL FINITE-ENERGY AIRY SELF- . . . PHYSICAL REVIEW A 88, 033824 (2013)

FIG. 5. (Color online) Examples of the mixed solutions (13) with
unequal modal numbers. The setup and parameters are as in Fig. 4,
except for (a) n = 2, m = 1; (b) n = 3, m = 2.

the 3D wave packet is composed of four ellipsoids at the same
time, which form a train of pulses; the structure is presented
in Fig. 4(a). In general, the 3D wave packets consist of
(n + 1)(m + 1) ellipsoids in the horizontal plane. If we choose
n = m = 2, the wave packet is formed by nine ellipsoids of
different sizes and shapes; see Fig. 4(b). Optical intensity is
zero at the center (that is, along the τ axis) when n (or m) is
odd. On the other hand, optical intensity is the maximum at
the center when n is even.

Finally, we investigate the case with unequal n and m

(n �= m), in the mixed combination of parabolic-cylinder func-
tions, Ge

n(z,x)Go
m(z,y). In Fig. 5, we depict some properties

of the arbitrary n and m solution (13). For n = 2 and m = 1,
Fig. 5(a) displays six ellipsoids in the horizontal plane. When
n and m increase to n = 3 and m = 2, six ellipsoids become
twelve ellipsoids that are separated from each other; see
Fig. 5(b). There still exist (n + 1)(m + 1) horizontal ellipsoids.
The farther the position of the ellipsoid from the center of the
transverse axes, the smaller the optical intensity. It is noted that
the vertical (τ -axis) direction still stands as the accelerating
direction.

IV. CONCLUSIONS

We have demonstrated the existence of 3D spatiotemporal
finite-energy Airy parabolic-cylinder localized wave pack-
ets, which are governed by the 3D spatiotemporal linear
Schrödinger equation in the absence of any external potential.
These 3D localized wave packets are constructed with the
aid of the well-known even and odd parabolic-cylinder and
Airy functions in Cartesian coordinates, and their properties
are discussed in some detail. The 3D spatiotemporal wave
packets with different combinations of constituent functions
may appear in different forms. We find that the localized
wave packets can retain their intensity features over several
Rayleigh lengths and can still accelerate along the vertical
(τ -axis) direction.
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