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Quantum-state transfer between tripod atoms over a dark fiber
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In this work we introduce a model for quantum-state transfer between tripod atoms over a dark fiber. Two
tripod atoms are confined in separate cavities linked by an optical fiber. The cavities and the fiber sustain two
optical modes of opposite circular polarization. For each atom, the two ground states encode the quantum state
to be transferred and are coupled to a common excited state by the cavity modes of opposite polarization. The
remaining transition for each atom is used to control the transfer process. We demonstrate that by using laser
pulses the dynamics of the system can be confined within a degenerate dark state subspace, with the different
dark states interacting via nonadiabatic couplings. We solve analytically the dynamics in the dark state subspace,
and determine the conditions on the pulse shape for the implementation of the quantum transfer. We identify
a possible pulse shape which satisfies the required conditions, and demonstrate the quantum-state transfer via
numerical simulations.
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I. INTRODUCTION

Quantum interference in atomic systems driven by laser
fields gives rise to a wealth of new quantum-optical phe-
nomena, and to new mechanisms for the control of quantum
systems. In a three-level atomic system interacting with
two laser fields in the � configuration, destructive quantum
interference results in a coherent superposition of ground
states—the so called dark state—not interacting with the laser
radiation [1–3]. For time-dependent laser fields, the dark state
is time dependent. By properly tailoring the laser pulses, the
transfer of the system from one ground state to the other
ground state can be obtained by adiabatic following of the dark
state, a process named stimulated Raman adiabatic passage
(STIRAP [4]).

STIRAP was extended to a variety of multilevel systems
[5,6], and found important applications in quantum computa-
tion [7–11] and quantum communication [12,13]. In Ref. [13],
a scheme for quantum-state transfer via STIRAP between
two atoms placed in distinct cavities linked via a fiber was
introduced. An important feature of the scheme is that the fiber
is not populated at any time during the transfer process, as a
result of quantum interference. This suppresses the important
channel of decoherence represented by photon losses in the
fiber.

In this work we introduce a model for quantum-state
transfer between tripod atoms over a dark fiber. With respect
to the work of Ref. [13], our scheme involves a simpler level
atomic scheme and a smaller number of applied laser fields. In
our scheme, two tripod atoms are confined in distinct cavities
linked by an optical fiber. The cavities and the fiber sustain
two optical modes of opposite circular polarization. For each
atom, the two ground states encode the quantum state to be
transferred and are coupled to a common excited state by
the cavity modes of opposite polarization. The remaining
transition for each atom is used to control the transfer process.
We demonstrate that by using laser pulses the dynamics
of the system can be confined within a degenerate dark
state subspace, with the different dark states interacting via
nonadiabatic couplings. We solve analytically the dynamics in

the dark state subspace, and determine the conditions on the
pulse shape for the implementation of the quantum transfer.
We identify a possible pulse shape which satisfies the required
conditions, and demonstrate the quantum-state transfer via
numerical simulations.

This paper is organized as follows. In Sec. II we introduce
the system under consideration, and state the aim of the process
to be implemented. In Sec. III we define the Hamiltonian of
the system, and identify the relevant dark state subspace. By
solving the dynamics in the dark state subspace, we determine
the condition on the laser pulses for quantum-state transfer. In
Sec. IV we validate the choice of the identified pulse sequence
by numerical simulations of the system evolution. We also
study numerically the dependence of the transfer fidelity on
the cavity-fiber coupling and on other experimentally relevant
parameters. Finally, in Sec. V conclusions are drawn.

II. STATEMENT OF THE PROBLEM

We consider two optical cavities, containing one atom each
and linked via an optical fiber. The atomic level scheme and
the cavities’ configuration are shown in Fig. 1. The atoms
are tripod atoms, with three ground states |−〉, |+〉, and |a〉
coupled to a common excited state |e〉. Each cavity can sustain
two modes with opposite circular polarization. For each atom,
the two ground states |±〉 are coupled to the excited state via
the cavity fields with opposite polarizations, with the same
coupling constant g for the two polarizations. The transition
between the ground state |a〉 and the excited state is driven via
an applied laser field, with Rabi frequencies �1 and �2 for the
first and second atoms, respectively.

We assume that each laser field, applied perpendicularly to
the cavity axis, does not directly pump the cavity or the fiber.
The proposed scheme can be realized with alkali-metal atoms.
For example, the Fg = 1 → Fe = 0 transition of the 87Rb D1

line can be used for this purpose, with the qubit states |±〉
encoded in the |Fg = 1,mF = ±1〉 sublevels and the auxiliary
state |a〉 encoded in |Fg = 1,mF = 0〉.

We choose as basis of the system the states
|t1nLnR〉|t2mLmR〉|pLpR〉, where the first (second) ket refers
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FIG. 1. Optical cavity setup, and atom-light interaction scheme
for the proposed implementation of quantum-state transfer.

to the first (second) atom + cavity system, and the third ket to
the fiber. The atom + cavity system is defined by the internal
states t1 and t2 of the first and second atoms (|−〉, |+〉, and
|a〉) and the number of photons in the cavity modes with left
(nL, mL) and right (nR , mR) polarization. The state of the fiber
is defined by the number of photons with (pL) and right (pR)
polarization.

Our aim is to identify a pulse sequence for the two applied
laser fields so that the superposition

|ψin〉 = (α|−00〉 + β| + 00〉)|a00〉|00〉 (1)

will be mapped onto

|ψfin〉 = |a00〉(α|−00〉 + β| + 00〉)|00〉. (2)

This corresponds to quantum-state transfer over the fiber.
Additionally, we require the system to evolve within a dark
state subspace, so that the atomic excited states are not
occupied at any time during the evolution, and the fiber is
not occupied by any photon.

III. THEORETICAL ANALYSIS

A. Hamiltonian and dark state subspace

The Hamiltonian for the system is

H = �1|e〉11〈a| + g|e〉11〈−|a− + g|e〉11〈+|a+ + H.c.

+�2|e〉22〈a| + g|e〉22〈−|b− + g|e〉22〈+|b+ + H.c.

+ ν[c+(a+
+ + b+

+) + c−(a+
− + b+

−) + c+
+(a+ + b+)

+ c+
−(a− + b−)]. (3)

Here a± (b±) is the annihilation operator for a photon of σ±
polarization of the first (second) cavity mode. The operator c±
describes the annihilation of a fiber photon of σ± polarization
and ν is the cavity-fiber coupling strength, assumed to be the
same for the two modes. The above Hamiltonian is valid in
the short-fiber limit 2l	/(2πc) � 1, where l is the length of
the fiber, 	 the decay rate of the cavity into the fiber, and c the
speed of light.

We consider the low-excitation regime, with one photon
at most in the cavity-fiber system when the atoms are in
the ground states. By repeatedly applying the Hamiltonian
to the initial state |a00〉|−00〉|00〉, it is easy to show that the

relevant Hilbert space has dimension 32 and it spanned by
the states: |a00〉|±00〉|00〉, |±00〉|±01〉|00〉, |±00〉|±10〉|00〉,
|e00〉|±00〉|00〉, |±00〉|±00〉|10〉, |±00〉|±00〉|01〉, and the
permutations between the first and second atoms. The system
has a dark space of dimensionality height. The explicit form
of our choice for the basis vectors |ψ (j )

D 〉 (j = 1–8) spanning
the dark subspace is reported in the Appendix.

B. Dynamics in the dark state subspace

We now consider a pulse sequence, with the two pulses
�1 and �2 delayed but overlapping. The dark states relevant
for the quantum-state transfer process are those which show
a dependence on the Rabi frequencies, i.e. |ψ (j )

D 〉 with
j = 5–8. For t → ±∞ the condition �1,2 → 0 implies that
asymptotically these states have the form

∣∣ψ (5)
D (t → −∞)

〉 = |−00〉|a00〉|00〉, (4)

∣∣ψ (6)
D (t → +∞)

〉 = |a00〉|−00〉|00〉, (5)

∣∣ψ (7)
D (t → −∞)

〉 = |+00〉|a00〉|00〉, (6)

∣∣ψ (8)
D (t → +∞)

〉 = |a00〉|+00〉|00〉. (7)

Thus the transformation

∣∣ψ (5)
D (t → −∞)

〉 = |−00〉|a00〉|00〉 → ∣∣ψ (6)
D (t → +∞)

〉
= |a00〉|−00〉|00〉 (8)

∣∣ψ (7)
D (t → −∞)

〉 = |+00〉|a00〉|00〉 → ∣∣ψ (8)
D (t → +∞)

〉
= |a00〉|+00〉|00〉 (9)

is required to implement the wanted quantum-state transfer.
Further analysis requires solving the dynamics of the

system. The Schrödinger equation in the rotating wave
approximation is

d

dt
|ψ〉 = −iH (t)|ψ〉. (10)

We now consider the time dependent basis
{ψ (1)

D , . . . ,ψ
(8)
D ,ψ (9), . . . ,ψ (32)} constituted by the height

orthonormal dark states, completed by the 24 orthonormal
states, as obtained by the standard Gram-Schmidt
orthonormalization procedure. In this basis, the Schrödinger
equation becomes

d

dt
|ψ̃〉 = −iH̃ (t)|ψ̃〉, (11)

where

|ψ̃〉 = U−1|ψ〉 (12)

with U the operator whose column are the new basis vectors

U = [
ψ

(1)
D , . . . ,ψ

(8)
D ,ψ (9), . . . ,ψ (32)]. (13)

033817-2



QUANTUM-STATE TRANSFER BETWEEN TRIPOD ATOMS . . . PHYSICAL REVIEW A 88, 033817 (2013)

The transformed Hamiltonian H̃ is

H̃ = U−1HU + iU̇−1U. (14)

We assume the adiabatic limit—an assumption which will
be justified a posteriori —and we restrict our analysis to the
dark state subspace [5,6]. The Hamiltonian restricted to such a
subspace consists of the nonadiabatic couplings between dark
states and has the form

H̃NA = iχ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

where

χ = 2�1�̇2

√
3g2√

3g4 + 4�2
2g

2 + 4�2
1g

2 + 4�2
1�

2
2

(
3g2 + 4�2

2

) . (16)

The nonadiabatic dynamics in the dark state subspace can
be studied with the help of the time-evolution operator

UA = exp

(
−i

∫ t

−∞
H̃NA(t ′)dt ′

)
, (17)

which after substituting the expression (15) for H̃NA reads

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 cos(A) sin(A) 0 0

0 0 0 0 − sin(A) cos(A) 0 0

0 0 0 0 0 0 cos(A) sin(A)

0 0 0 0 0 0 − sin(A) cos(A)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(18)

where

A =
∫ t

−∞
χ (t ′)dt ′. (19)

From the expression for the time-evolution operator it
follows that, in order to implement the transformations
(8) and (9) required for the quantum-state transfer over the
dark fiber, the condition

A = −π

2
(20)

has to be satisfied.
To evaluate the integral (19), first notice that the main

contributions come from the regions where �2(t) has a steep
variation; then, if in one of those regions, say ta < t < tb, �1(t)
is nearly constant, the partial contribution to A is

A(ta,tb) =
∫ tb

ta

χ (t ′)dt ′ = sgn(�1) arctan

⎡
⎣ 2

√
3 �2(t) |�1|√

3{3g4 + 4g2
[
�2

1 + �2(t)2
] + 4�2

1�2(t)2}

⎤
⎦

∣∣∣∣∣∣
t=tb

t=ta

, (21)

which assumes the following simpler form in the limit |�1|,|�2(ta)|,|�2(tb)| � g:

A(ta,tb) ≈ sgn(�1)

[
sgn[�2(tb)] − sgn[�2(ta)]

][
π

6
+ O

(
g2/�2

1

)]
. (22)

The total A is just a matter of counting the steep edges of the
�2(t) pulse. With this in mind a possible choice for pulses
satisfying condition (20) is given by delayed, but overlapping,
pulses with steep leading and trailing edges, as for example

�1(t) = �1,0f [(t − t0 + τ )/w] (23a)

�2(t) = �2,0f [(t − t0 − τ )/w] (23b)

with

f (t) = − exp[−(t + 2)8] + exp[−t8]. (24)

For such pulses the leading and trailing edges of
�2(t) provide the appropriate contribution to obtain A 

(π/2) sgn(�1,0�2,0τ ), for τ �= 0. Instead, for τ = 0 the in-
tegration produces exactly A = 0.

IV. NUMERICAL ANALYSIS

We numerically solved the Schrödinger equation for a pulse
sequence of the form defined by Eqs. (23) and (24). We
assumed that the laser pulses are overlapping, and examined
all possible situations: pulse �1 preceding pulse �2, pulse �2

preceding pulse �1, and no delay between pulses. For a given
nonzero delay, the relative sign between Rabi frequencies
is adjusted so that the condition for quantum-state transfer,
Eq. (20), is satisfied. For an initial preparation of the system in
the state |−00〉|a00〉|00〉 we verified, as shown in Fig. 2, that
the dynamics remains confined in the dark state subspace and,
for a nonzero delay between the pulses, the system evolves
from the initial state to the wanted final state |a00〉|−00〉|00〉.
Furthermore we verified that, due to quantum interference, the
atomic excited states are not populated during the evolution
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FIG. 2. (Color online) Result of numerical simulations for the process implementing quantum-state transfer over a dark fiber. For each
column, the top panel represents the pulse sequence, and the lower panel the time evolution of the populations of the states most relevant
to the transfer process: the dashed line corresponds to the population of the |−00〉|a00〉|00〉 state, while the solid line is the population of
the |a00〉|−00〉|00〉 state. The parameter of the calculations are: left column: τ = −150, ν = 20, �1,0 = �2,0 = 80; center column: τ = 0,
�1,0 = �2,0 = 80; right column τ = 150, �1,0 = −�2,0 = 80. Furthermore, g = 21, w = 300, and ν = 20 for all simulation data sets.

of the system. The same applies to the fiber connecting the
two cavities: quantum interference allows the quantum-state
transfer over the fiber, without the fiber ever being populated
by photons.

We verified numerically that the same pulse sequence
produces an essentially perfect quantum-state transfer also for
the symmetric case of initial preparation in the |+00〉|a00〉|00〉
state, as well as for arbitrary initial superposition (α|+00〉 +
β|−00〉)|a00〉|00〉. This confirms that the used pulse sequence
leads to quantum-state transfer over the dark fiber by imple-
menting the correct evolution in the dark state subspace.

We note that the scheme works both for τ > 0 and τ < 0,
provided that the signs of the Rabi frequencies are adjusted
to satisfy condition (20). However for exactly superimposed
pulses (τ = 0, Fig. 2, center column) the dynamics is time
reversible and the system evolves within the dark state
subspace simply to return to the initial state.

We now address the issue of the assumption of the
adiabaticity, and investigate the robustness of the scheme with
respect to the variation of system parameters. We numerically
calculated the eigenvalues of the Hamiltonian in the complete
32 × 32 Hilbert space. In Fig. 3 a typical time evolution of
the eigenvalues is shown, for a pulse sequence of the form
of Eq. (23). Throughout the time evolution there is a clear
separation between the nonzero eigenvalues and the ones
identically equal to zero, the latter ones corresponding to the
dark subspace. We have verified that by decreasing ν or g

the clear separation between the two classes of eigenvalues
vanishes, and the condition of adiabaticity is broken. We can
thus conclude that, provided that g and ν are large enough, the
adiabatic approximation applies.

Provided that we are in the range of applicability of the
adiabatic approximation, the proposed scheme is robust with
respect to the variation of several system parameters. This is
shown in Fig. 4(a) where the fidelity of quantum transfer

F = |〈ψt |ψ(+∞)〉|2 (25)

into the wanted target state |ψt 〉 is plotted as a function of the
fiber-cavity coupling strength ν for different values of the pulse

duration w. The transfer process is robust over a wide range
of variations in the cavity-fiber coupling constant and in the
pulse duration. In particular, these data confirm the previous
result that ν has to be large enough to guarantee adiabaticity.
Beyond that value, the process is robust against any variation
of ν.

We also studied the robustness of the transfer process with
respect to variations of the delay time τ between the pulses.
Our results, shown in Fig. 4(b), show that the process is indeed
robust against variations in the delay time between pulses.

Finally, we investigated how the pulse shape affects the
quantum-state transfer process. We considered a more general
form of pulses replacing the function f (t) as defined by
Eq. (24) with

f (t) = exp{−[(t + 2)2]γ } + exp{−[t2]γ }. (26)

We notice that for γ = 4 we recover the original form of
f (t). For smaller values of γ the pulses show less steep
leading and trailing edges, thus producing values of the
parameter A, as defined by Eq. (19), further differing from
the A = −π/2 value leading to an ideal transfer process.

t/w

FIG. 3. (Color online) Dependence on time of the eigenvalues
of the 32 × 32 Hamiltonian of the system. The relevant parameters
are w = 300, τ = 150, g = 21, t0 = 1400, �1,0 = −�2,0 = 80, and
ν = 10.
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FIG. 4. (Color online) Result of numerical simulations for the
quantum-state transfer over a dark fiber of the superposition
(α|+00〉 + β|−00〉)|a00〉|00〉, with α = 1/

√
3, β = −√

2/3. (a) The
fidelity of transfer is plotted as a function of ν. The different
data sets differ for the value of w: filled circles correspond to
w = 300, open triangles to w = 200, and open squares to w = 150.
The time delay between pulses is τ = 150 for all the data sets.
(b) The fidelity is plotted as a function of the delay time τ between
the pulses, for a cavity-fiber coupling ν = 1, and w = 300. (c) The
fidelity is calculated for pulses of different shape, as defined by
Eq. (26), and plotted as a function of the parameter A, given by
Eq. (19). For the data in panel (c), ν = 1, τ = 150, and w = 300.
The parameters common to all calculations are g = 21, t0 = 1400,
and �1,0 = −�2,0 = 80.

We studied the dependence of the transfer process on the
pulse shape by considering values of γ in the range [3/5 : 8]
and studying the fidelity as a function of A. Our results are
shown in Fig. 4(c). Fidelities larger than 0.99 are obtained for
γ � 3/2 (i.e., |A| > 1.48). The fidelity smoothly decreases
for pulses with less steep leading and trailing edges. For
example, for Gaussian pulses (γ = 1) a fidelity of 0.98 is
obtained.

V. CONCLUSIONS

In this work we introduced a model for quantum-state
transfer between tripod atoms in cavities over a dark fiber.
Two tripod atoms are confined in distinct cavities linked
by an optical fibers. The cavities and the fiber sustain two
optical modes of opposite circular polarization. For each
atom, the two ground states encode the quantum state to
be transferred and are coupled to a common excited state
by the cavity modes of opposite polarization. The remaining
transition for each atom is used to control the transfer process.
We demonstrate that by using laser pulses the dynamics
of the system can be confined within a degenerate dark
state subspace, with the different dark states interacting via
nonadiabatic couplings. We solve analytically the dynamics
in the dark state subspace, and determine the conditions on
the pulse shape for the implementation of the quantum trasfer.
We identify a possible pulse shape which satisfies the required
conditions, and demonstrate the quantum-state transfer via
numerical simulations. We also demonstrated numerically
the robustness of the scheme with respect to several system
parameters.
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APPENDIX: THE DARK STATES

The basis vectors |ψ (j )
D 〉 (j = 1–8) spanning the dark

subspace are as follows:

∣∣ψ (1)
D

〉 = −|−00〉|+10〉 − |+00〉|−10〉 + |+00〉|+01〉 + |+10〉|−00〉 + |−10〉|+00〉 − |+01〉|+00〉√
6

|00〉, (A1)

∣∣ψ (2)
D

〉 = |−00〉|−10〉 − |−00〉|+01〉 − |+00〉|−01〉 − |−10〉|−00〉 + |+01〉|−00〉 + |−01〉|+00〉√
6

|00〉, (A2)

∣∣ψ (3)
D

〉 = −|+00〉|+10〉 + |+10〉|+00〉√
2

|00〉, (A3)

∣∣ψ (4)
D

〉 = |−00〉|−01〉 − |−01〉|−00〉√
2

|00〉, (A4)

∣∣ψ (5)
D

〉 = �2√
3
(
3g2 + 4�2

2

) [(3g/�2)|−00〉|a00〉 − |−00〉|−10〉 − 2|−00〉|+01〉

+ |+00〉|−01〉 + |−10〉|−00〉 − |+01〉|−00〉 + 2|−01〉|+00〉]|00〉, (A5)
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∣∣ψ (6)
D

〉 = 1√
3g4 + 4�2

2g
2 + 4�2

1g
2 + 4�2

1�
2
2

⎧⎨
⎩g

√
3g2 + 4�2

2|a00〉|−00〉 + �1√
3g2 + 4�2

2

[−2g�2|−00〉|a00〉+

+ g2(|−01〉|+00〉 − |−00〉|+01〉) + 2
(
g2 + �2

2

)
(|+00〉|−01〉 − |+01〉|−00〉)

+ (
g2 + 2�2

2

)
(|−00〉|−10〉 − |−10〉|−00〉)]

⎫⎬
⎭ |00〉, (A6)

∣∣ψ (7)
D

〉 = �2√
3(3g2 + 4�2

2)
[(3g/�2)|+00〉|a00〉 + |−00〉|+10〉 − 2|+00〉|−10〉,

− |+00〉|+01〉 + 2|+10〉|−00〉 − |−10〉|+00〉 + |+01〉|+00〉]|00〉, (A7)

|ψ (8)
D 〉 = 1√

3g4 + 4�2
2g

2 + 4�2
1g

2 + 4�2
1�

2
2

⎧⎨
⎩g

√
3g2 + 4�2

2|a00〉|+00〉 + �1√
3g2 + 4�2

2

[−2g�2|+00〉|a00〉

+ g2(|+10〉|−00〉 − |+00〉|−10〉) + 2
(
g2 + �2

2

)
(|−00〉|+10〉 − |−10〉|+00〉)

+ (
g2 + 2�2

2

)
(|+00〉|+01〉 − |+01〉|+00〉)]

⎫⎬
⎭ |00〉. (A8)
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