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Oscillations and multistability in two semiconductor ring lasers coupled by a single waveguide
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We theoretically study the dynamical behavior of semiconductor ring lasers coupled by a single bus waveguide,
both when weakly coupled and when strongly coupled. We provide a detailed analysis of the multistable landscape
in the coupled system, analyze the stability of all solutions, and relate the internal dynamics in the individual
lasers to the field effectively measured at the output of the waveguide. We show that coupling phases close to
π/2 generally promote instabilities. Finally, our analysis enables us to discuss the advantages and disadvantages
for optical memory operation of coupled semiconductor ring lasers versus solitary ones.
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Semiconductor ring lasers (SRLs) are semiconductor lasers
where the laser cavity consists of a ring-shaped waveguide.
SRLs can generate light in two counterpropagating directions
referred to as the clockwise (CW) and the counterclockwise
(CCW) modes. Bistability between both directional modes has
been demonstrated, allowing us to encode digital information
in the direction of emission of SRLs [1]. This bistable operation
allows SRLs to be used in systems for all-optical switching and
as all-optical memories, both in solitary [2–4] and coupled
[1,5–8] configurations. Moreover, SRLs are highly integrable
and scalable [9], making them ideal candidates for key
components in photonic integrated circuits.

One of the seminal works reporting on the potential of
SRLs as optical memories is the paper by Hill et al. [1].
To demonstrate fast optical flip-flop operation, the authors
fabricated two SRLs coupled by a single waveguide, rather
than a solitary SRL. Nevertheless, the literature shows that
a single SRL can also function perfectly as an all-optical
memory [4]. This raises the question as to whether coupling
two SRLs to realize a single optical memory has any advantage
over using a solitary SRL, taking into account the obvious
disadvantage of a doubled footprint and power consumption.

In a broader context, coupled lasers received a lot of
attention in recent years, e.g., the dynamics of coupled
semiconductor lasers by a passive resonator with [10–12] or
without delay [13], coupled photonic crystal microcavities
[14], laterally coupled semiconductor lasers [15], and mi-
crodisk photonic molecule lasers [5,16,17] have recently been
investigated. This interest in coupled lasers is, among others,
raised by the recent application-driven technological progress,
allowing for the fabrication of photonic integrated circuits
comprising of many active and passive structures [18]. A more
fundamental interest in coupled, or even whole networks of,
nonlinear oscillators exist, where coupled lasers can provide
a toy model for studying general synchronization properties
of coupled nonlinear oscillators [19–24]. Also, coupling two
excitable (asymmetric) SRLs to mimic neural functionality by
transferring pulses is possible and of interest [25,26].

In a recent experimental investigation of coupled SRLs, we
have demonstrated that coupling between SRLs can destabilize
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the system by exciting relaxation oscillations, similar to an
optically injected laser system [8]. In this article, we will
pursue a more in-depth theoretical investigation of dynamics
induced by the coupling. Similar as in Ref. [8], we will consider
the single waveguide coupling configuration as shown in Fig. 1.
The coupling provides the system with two extra degrees
of freedom, the coupling strength and the physical distance
between the SRLs. The latter is taken into account by defining
a coupling phase equal to the optical phase difference accu-
mulated when traveling from one SRL to another. However,
explicit time-delay effects in the coupling (because of the finite
traveling time between the lasers) are neglected.

In Sec. I, we introduce the model equations used throughout
the paper. Sections II and III are devoted to a careful bifurcation
analysis of the existence and stability of various solutions
existing in the coupled laser system. We distinguish between
two regions of operations: a weak-coupling region (see Sec. II)
and a strong-coupling region (see Sec. III). In each case,
we study the influence of pump current, coupling phase, and
coupling strength on the stability and power suppression ratio
of the various lasing states. Finally, in Sec. IV, we discuss the
similarities and differences in observed dynamics of weakly
or strongly coupled SRLs. Moreover, we relate our results
to previous experimental results and consider whether either
coupled or solitary SRLs are more suitable to be used as optical
memory components.

I. MODEL

To model the single-waveguide-coupled SRLs, we use the
rate-equation model for a solitary SRL (see, e.g., [3,27]) and
modify it to comply with our asymmetric coupling configura-
tion, as illustrated in Fig. 1. Other coupling configurations that
maintain the symmetry properties of the solitary SRL could
be considered as well, such as double-waveguide coupling
and point coupling. Here, we focus on single-waveguide
coupling as it has been suggested for use as an optical
memory in Ref. [1]. For each SRL X (X = {A,B}), the model
consists of two slowly varying complex envelopes of the
counterpropagating waves E1X (CW) and E2X (CCW) and
a third equation for the carrier population inversion NX:

Ė1A = κ(1 + iα)[g1ANA − 1]E1A − keiφkE2A, (1a)

Ė2A = κ(1 + iα)[g2ANA − 1]E2A − keiφkE1A − kce
iφcE2B,

(1b)
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FIG. 1. The counterpropagating fields in SRL A (B) are referred
to as E1A and E2A (E1B and E2B). The total field at the left (right)
output is referred to as Eα (Eβ ). The coupling amplitude is referred
to as kc, and the coupling phase as φc.

Ė1B = κ(1 + iα)[g1BNB − 1]E1B − keiφkE2B − kce
iφcE1A,

(1c)

Ė2B = κ(1 + iα)[g2BNB − 1]E2B − keiφkE1B, (1d)

ṄA = γ [μ − NA − g1ANA|E1A|2 − g2ANA|E2A|2], (1e)

ṄB = γ [μ − NB − g1BNB|E1B|2 − g2BNB|E2B|2], (1f)

where g1X = 1 − s|E1X|2 − c|E2X|2 and g2X = 1 − s

|E2X|2 − c|E1X|2. The coupling between the SRLs is modeled
by a coupling amplitude kc and a coupling phase φc. We
assume that the travel time between the SRLs is of the same
order as the cavity round-trip time, so that we can neglect any
effects of a delay time. The two coupling sections to couple
the light in and out of each SRL introduce an additional π/2
phase shift [28]. The light that is coupled from one SRL
to the other passes through two such couplers. These two
phase shifts add up to π , which explains the minus sign in
front of the coupling term. No inhomogeneous broadening
is taken into account as the experiments on such coupled
SRLs reported (see, e.g., Ref. [8]) have been performed
on InP-based multi-quantum-well SRLs, having a large
uniformity over the device size with minimal well-width
fluctuations. For simplicity, we use identical parameter values
for SRL A and B. Unless mentioned otherwise, the parameter
set used throughout this article is given in Table I.

We introduce a shorthand notation for the optical phase
differences between the modes of different SRLs that are
coupled to each other (the inter-SRL coupling):

χ1 = φ1B − φ1A, (2a)

χ2 = φ2B − φ2A (2b)

and for the optical phase differences between the modes of
one SRL coupled to each other through backscattering (the

TABLE I. Summary of the physical meaning of the parameters in
Eqs. (1) and their typical values used throughout this paper, unless
stated otherwise.

Symbol Physical meaning Simulation value

κ Field decay rate 100 ns−1

γ Carrier decay rate 0.2 ns−1

α Linewidth enhancement factor 3.5
s Self-saturation coefficient 0.005
c Cross-saturation coefficient 0.01
k Backscattering parameter 0.44 ns−1

φk Backscattering phase 1.5

intra-SRL coupling):

ψA = φ2A − φ1A, (3a)

ψB = φ2B − φ2B, (3b)

where φnX = arg(EnX). The field at each side of the chip is
given by Eα = E2A + E2B exp(iφc) and Eβ = E1A exp(iφc) +
E1B. The powers at both sides of the output waveguide are thus
given by

Pα = |E2A|2 + |E2B|2 + 2|E2A||E2B| cos(χ2 + φc), (4a)

Pβ = |E1A|2 + |E1B|2 + 2|E1A||E1B| cos(χ1 − φc). (4b)

The optical phase differences that determine how the fields of
both SRLs interfere at the outputs are (χ2 + φc) at the α port
and (χ1 − φc) at the β port. Note that this is different from the
interference relation between the fields inside the SRLs. The
optical phase differences determining the interference inside
the rings have an offset of π with respect to these values, being
(χ2 + φc + π ) and (χ1 − φc + π ). This is due to the π/2 phase
shifts introduced by the output couplers [28]. These phase
shifts add up to π when a field travels from one SRL to the
other. But, they cancel each other when considering both fields
in the output waveguide, outside the SRLs. Consequently,
if E1A and E1B constructively interfere at the β port, they
must destructively interfere inside SRL B, and if E2A and E2B

constructively interfere at the α port, they must destructively
interfere inside SRL A, and vice versa.

The value of the coupling parameters kc and φc is a priori
unknown. In Ref. [26], we have shown, however, that the
dynamics of Eqs. (1) is π periodic in φc. Hence, we can
limit ourselves to investigating φc ∈ [0,π ]. In the following
sections, we will distinguish two qualitatively different cases,
depending on the magnitude of the coupling kc compared
to the backscattering k. In the first case of “weak coupling”
(Sec. II), we will assume that kc is smaller or comparable to k

(kc/k � 1). In the second case of “strong coupling” (Sec. III),
we will assume that kc is much larger than k (kc/k � 1).

The coupling through a single waveguide changes the
symmetry properties of the global system compared to those of
a solitary SRL. Only one of the two counterpropagating modes
of each SRL is fed through to the other SRL, and only one of
the modes in each SRL receives input from the other SRL.
When both SRLs are operating unidirectionally, this leads to
globally symmetric and asymmetric states (see Fig. 2) with,
respectively, equal and unequal power at the outputs in steady
state. When both SRLs lase in opposite directions, there are
two possibilities, depending on whether the dominant modes
point outward [Fig. 2(a)], referred to as the Sout state, or inward
[Fig. 2(b)], referred to as the Sin state. When both SRLs lase in
the same direction, one SRL is injected by a high-power mode
while the other SRL is injected by a low-power mode [see
Figs. 2(c) and 2(d)], referred to as ACCW and ACW, respectively.
In this situation, the SRLs are experiencing different external
inputs and will have different steady-state power levels.

It was noted in Ref. [8] that the single-waveguide-coupled
SRLs can show dynamical behavior similar to an optically
injected semiconductor laser. This can be understood by the
directional bias that is introduced when the SRLs are operating
unidirectionally. When the SRLs operate in an asymmetric
state [see Fig. 2(c) or 2(d)], one of the SRLs is injected by
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FIG. 2. Possible combinations in the single-waveguide-coupling
configuration when the SRLs operate in the unidirectional regime. (a),
(b) Symmetric states, equal output powers. Sout has the high-power
modes pointing outward, while Sin has them pointing inward. (c),
(d) Asymmetric states, unequal output powers. The ACCW (ACW)
asymmetry introduced by the coupling becomes apparent in cases (c)
and (d), when both SRLs are lasing in the same direction.

a high-power mode, while the other SRL is injected by a
low-power mode. In this state, the influence of the low-power
mode that is fed through is negligible compared to the influence
of the high-power mode that is fed through. Hence, the system
behaves as if the coupling is unidirectional, just as in an
optically injected laser system.

II. WEAK COUPLING

We consider the coupling to be weak when the coupling
amplitude between the SRLs is smaller than or comparable to
the backscattering amplitude. This means that the coupling to
the other SRL (the inter-SRL coupling) has to be weaker than
or comparable to the reflective coupling between the counter-
propagating modes inside each SRL (the intra-SRL coupling).

A. Case 1: φc = 0

We begin the investigation of weak coupling with a coupling
amplitude that we have previously classified as such in
Ref. [26], kc = 0.3k, and a coupling phase of φc = 0. The
bifurcation diagram of the output power at the α port versus
the bias current μ is shown in Fig. 3. The same bifurcation
diagram for the internal mode amplitudes of each SRL and
optical phase differences between the SRLs is shown in Fig. 4.
The intra-SRL phase differences ψA and ψB are always very
close to π for all states and for all μ, and are not shown. Taken
together, these figures give us a clear picture of the different
operating regimes.

At low currents, each SRL operates nearly bidirectionally,
with almost equal powers in the counterpropagating modes.
It can be seen in Fig. 4 that the outward modes (E2A and
E1B) have a slightly higher amplitude than the inward modes
(E1A and E2B). The clear nonzero power inside the SRLs is,
however, in sharp contrast with the nearly zero output power
shown in Fig. 3(a). This is because the phase differences χ1

and χ2 are very close to π , yielding destructive interference at
the output ports, but constructive interference inside the SRLs.

At μ = 1.32, a supercritical pitchfork bifurcation PFA

occurs in which two stable asymmetric states ACW and ACCW

are created and the bidirectional symmetric state becomes
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FIG. 3. (Color online) Bifurcation diagrams of fixed points of the
total power at the α port versus the dimensionless bias current μ. Panel
(a) shows the bifurcation lines related to the asymmetric states (ACCW,
ACW) and the symmetric Sout solution, while panel (b) only depicts the
bifurcation lines related to the symmetric Sin solution. Solid, dotted,
and dash-dotted lines indicate stable fixed points, while dashed lines
indicate unstable fixed points. Blue-colored dotted branches belong to
the ACCW solution and red-colored dash-dotted branches belong to the
ACW solution (see also Fig. 4). Pitchfork (saddle-node) bifurcations
are denoted by PF (SN). The bifurcation diagram for the total power
at the β port is identical. Parameter values: kc = 0.3k, φc = 0.

unstable. At μ = 1.55, a subcritical pitchfork bifurcation PFS

stabilizes the symmetric state Sout again. From that point on,
the two asymmetric states ACW and ACCW and the outward
symmetric state Sout are stable for all bias currents. The
outward symmetric state Sout is characterized by destructive in-
terference at the outputs for all currents. But, above μ = 1.55,
the outward modes have a larger power than the inward modes.
The destructive interference between such a high-power
outward and a low-power inward mode does not yield zero
power, as was the case for low currents. For the two asymmetric
states ACW and ACCW, the inter-SRL phase differences χ1 and
χ2 are just above π/2 or just below 3π/2, respectively. This
means that the maximum output power of the asymmetric
states is generated by the interference of the two high-power
modes of both SRLs with a relative phase difference of
approximately π/2. Note that if this phase difference would
be zero, the maximum output power would be twice as high.

From μ = 1.6 on, we also find the inward symmetric
state Sin, but it is located on a separate solution branch [see
Fig. 3(b)]. For increasing μ, it is created in a subcritical
pitchfork bifurcation PF succeeding a saddle-node bifurcation
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FIG. 4. (Color online) Bifurcation diagrams of intra-SRL mode
amplitudes (|E1A|, |E2A|, |E1B|, |E2B|, see Fig. 1) and inter-SRL
optical phase differences (χ1, χ2). Solid, dotted, and dash-dotted lines
indicate stable fixed points, while dashed lines indicate unstable fixed
points. Blue-colored dotted branches belong to the ACCW solution and
red-colored dash-dotted branches belong to the ACW solution (see also
Fig. 3). Pitchfork bifurcations are denoted by PF. Parameter values:
kc = 0.3k, φc = 0.

SN. The pitchfork bifurcation stabilizes one of the two unstable
states created in the preceding saddle-node bifurcation. Just as
the outward symmetric state Sout, it is characterized by destruc-
tive interference at the outputs and constructive interference
inside the SRL (χ1 ≈ χ2 ≈ π ), yielding almost the same
output power levels as the Sout state. The inward symmetric
state Sin also remains stable for all larger bias currents.

A common trait of the previous bifurcation diagrams is the
absence of periodic solutions. Weak coupling and a coupling
phase φc ≈ 0 prove to have a stabilizing influence in the
sense that there exists no oscillatory regime, even at parameter
values for which the solitary SRLs exhibit oscillatory behavior
(alternate oscillations). In an oscillatory SRL it has also
been shown experimentally that one can avoid oscillations
by appropriately changing the coupling phase φk [3]. For a
complete bifurcation analysis of the solitary SRL, we refer to
Refs. [27,29].

B. Case 2: φc = π/2

As a second case, we keep the same coupling amplitude
kc = 0.3k, but change the coupling phase φc to π/2. The
four different states are located on four different solution

FIG. 5. (Color online) Bifurcation diagrams with conventions as
in Fig. 3. In the regions delimited by the Hopf bifurcations H 1 to
H 5, there exists at least one stable limit cycle. Parameter values:
kc = 0.3k, φc = π/2.

branches (shown in Fig. 5). Like the case φc = 0, the only
stable solution at low currents is the outward symmetric state
Sout, or oscillatory solutions emanating from this state [related
to the Hopf bifurcations H 1 to H 5 in Fig. 5(a)]. In Sout,
all phase variables are close to π again. Since φc = π/2,
this means that the phase difference inside the SRLs and
at the outputs are ±π/2, resulting in higher-power levels
at the outputs than for the previous case where φc = 0.
The steady-state bifurcates into limit cycles through Hopf
bifurcations for currents approximately in the range 1.28 to
1.45, and currents below 1.14. Hopf bifurcations occur at μ =
1.14 (H 1), 1.28 (H 2), 1.29 (H 3), 1.43 (H 4), and 1.45 (H 5),
corresponding to three different limit cycles. The bifurcations
H 1 to H 4 are all supercritical, while H 5 is subcritical. The
oscillation regime for currents below H 1 is characterized by a
frequency very close to the relaxation oscillation frequency, as
shown in Fig. 6(a) for μ = 1.1 (fR ≈ 0.32 GHz at μ = 1.1).
Note that these relaxation oscillations in SRL A and SRL B
are exactly in antiphase between the two lasers. The oscillation
regime between H 2 and H 5 is characterized by two slower
frequencies very close to the alternate oscillation frequency.
In both of these limit cycles, each SRL exhibits alternate
oscillations within one laser. For the limit cycle shown in
Fig. 6(b), the codirectional modes in both SRLs [both CW
(CCW) modes in each SRL] are oscillating in antiphase, and
Pα and Pβ oscillate in phase. This limit cycle is related to the
H 3 and the H 5 bifurcation. In the other limit cycle related to
H 2 and H 4 (not shown), the codirectional modes in both SRLs
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FIG. 6. Oscillatory solutions from Fig. 5. From top to bottom:
power of the modes in SRL A (P1A = |E1A|2 and P2A = |E2A|2),
power of the modes in SRL B (P1B = |E1B|2 and P2B = |E2B|2), and
power at the outputs α and β (Pα and Pβ ). (a) μ = 1.1 (related to
H 1). (b) μ = 1.38 (limit cycles related to H 3 and H 5). Parameter
values: kc = 0.3k, φc = π/2.

are oscillating in phase, and Pα and Pβ oscillate in antiphase.
This limit cycle is related to the H 2 and the H 4 bifurcations.
For μ between H 2 and H 5, at least one of these two limit
cycles is stable, and for a small range of currents they are both
stable.

In Fig. 7, we show the two-parameter continuation of
the Hopf bifurcations H 1 to H 5 in (μ,φc). This figure
shows that the value of φc plays an important role in these
oscillatory regimes. The red crosses show the bifurcation
points corresponding to φc = π/2, as in Fig. 5. Below the
solid black line and above the red circles, which are branch
points, the Sout state is stable. The exact bifurcation structure
through which Sout turns stable above the branching points
is not fully understood and not the main focus of the current
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FIG. 7. (Color online) Two-parameter continuation in (μ,φc) of
the Hopf bifurcations responsible for the oscillatory regimes in Fig. 5.
They are defined as H 1 to H 5 for increasing μ in Fig. 5. The solid
(dashed) line indicates a Hopf bifurcation of a stable (unstable)
structure. RO stands for relaxation oscillations and AO stands for
alternate oscillations. The red crosses indicate the bifurcations points
of Fig. 5, where φc = π/2. The red circles are branch points.
Parameter values: kc = 0.3k.

article. Our aim is only to prove that there exists a whole region
of oscillatory instabilities for φc close to and higher than π/2,
while for φc ≈ 0 oscillatory solutions are suppressed.

The bifurcation diagram of the inward symmetric state Sin

is shown in Fig. 5(b) for φc = π/2. It undergoes a series
of very closely spaced bifurcations for increasing current
(respectively, saddle node, Hopf, pitchfork, Hopf) and turns
into a stable state through the last of these bifurcations
(subcritical Hopf) at μ = 1.85. Again, χ1 and χ2 are close
to π , but since φc = π/2 the interference is not destructive,
yielding higher output powers than the φc = 0 case.

The asymmetric states ACW,CCW are no longer found on the
same branch as the outward symmetric state Sout. They are
now each generated by a saddle-node bifurcation at μ = 1.66
that creates two unstable states, closely followed by a Hopf
bifurcation at μ = 1.67 that stabilizes one of the created states.
In this state, the values of χ1 and χ2 are also close to π . Taking
into account φc = π/2 leads to power levels similar to the
φc = 0 case. An important difference between the two cases is
the bias current at which the asymmetric states are created. In
the φc = 0 case they are created at μ = 1.32 [PFA in Fig. 3(a)],
compared to μ = 1.67 for the φc = π/2 case. This confirms
that also here φc close to zero has a stabilizing influence,
while φc close to π/2 has a destabilizing influence. Note that
the value μ = 1.32 is even lower than the minimum current to
obtain unidirectional operation in solitary SRLs (μ = 1.58 for
these parameter values), which was also noticed in Ref. [6].

When adding noise to the model, we find that all four states
(ACW, ACCW, Sout, Sin) are stable. In the experiment reported
in Ref. [8], the three states ACW, ACCW, Sout were observed,
although the state Sin was not. The lasers A and B operated
at approximately 1560 nm and their free running lasing
wavelength differed by 2–3 nm. Since the free spectral range
was 0.41 nm, locking could be achieved in the asymmetric
states by aligning the frequency combs through an offset in
bias current. Locking could not be achieved for Sout, even
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FIG. 8. Numerical simulation of Eqs. (1) depicting the intra-SRL
(ψA,B) and inter-SRL (χ1,2) phase differences in the asymmetric state
ACCW as a function of the coupling phase φc. The intra-SRL phase
differences ψA and ψB are relatively insensitive to variations of φc.
The inter-SRL phase difference between the high-power CCW modes
χ2 + φc is kept fixed, while the phase difference between the low-
power CW modes χ1 − φc spans the whole [0,2π ] interval for φc

going from 0 to π . Parameter values: μ = 2, kc = 0.3k.

though their frequency combs were aligned. SRL A and B
lased outward at their own free-running wavelength, subject to
a nonresonant injection from low-power mode of the other
laser. The state Sin is characterized by injection from the
high-power mode of the other laser. Although its existence
is predicted by the modeling for identical SRLs, this state
was not observed in the experiment where the parameters of
the SRLs slightly differ. This might be understood because
the high-power modes from A and B simultaneously enforce
locking at different wavelengths due to the mismatch.

C. Power suppression ratio (PSR)

When comparing the asymmetric ACW (ACCW) states in
Figs. 3(a) and 5(a), we noticed that the power levels at the
β (α) port are comparable, but that the power levels at the α

(β) port are higher for the φc = π/2 than for the φc = 0 case.
The underlying reason for this is that the inter-SRL phase
difference between the high-power modes remains constant
when changing φc, while the phase difference between the
low-power modes changes. We illustrate this in Fig. 8.
We choose a constant current μ = 2, such that the asymmetric
state is stable for all φc, and vary φc (the results are qualitatively
the same for other values of μ at which the asymmetric state is
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FIG. 9. Numerical simulations of Eqs. (1). (a) Steady-state power
levels at the α port (left axis, black) and β port (right axis, red) of
the ACCW state as a function of the coupling phase φc. The minimum
value of Pβ is 6 × 10−5. (b) Power suppression ratio (PSR) of the
ACCW state as a function of the coupling phase φc. Parameter values:
kc = 0.3k, μ = 3.

stable for all φc). In the ACCW state, the high-power modes are
E2A and E2B, while the low-power modes are E1A and E1B.
The phase difference between the high-power modes at the
output is hence χ2 + φc, and the phase difference between the
low-power modes is χ1 − φc. The intra-SRL phase differences
ψA and ψB do not significantly change with φc, and are close to
π [see Fig. 8(a)]. The phase difference between the high-power
modes χ2 + φc is also insensitive to φc. However, the phase
difference between the low-power modes χ1 − φc covers the
whole [0,2π ] interval for φc ranging from 0 to π [see Fig. 8(b)].

As a result, the relative amount of variation of the power
level as a function of φc is very different at the output ports
Pα and Pβ , which are given by Eqs. (4). This is illustrated in
Fig. 9(a). In this figure, we have chosen μ = 3 to demonstrate
that these results are robust to reasonable parameter variations.
It is clear that while Pα only varies a few percent, Pβ ranges
from 0.11 to practically zero (6 × 10−5). This minimum occurs
at the point where the phase difference between the low-power
modes at the output port χ1 − φc is equal to π , yielding
destructive interference (this happens when φc = 0.2π , see
Fig. 8). Naturally, this causes a sharp peak of 47 dB in
the power suppression ratio Pα/Pβ , as shown in Fig. 9(b).
The solitary SRL has a PSR of 18 dB at μ = 3 (at the same
parameter values). So, using two coupled SRLs seems to be
advantageous from the viewpoint of PSR. However, since
we need to bias two SRLs at μ = 3 to achieve the PSR of
47 dB, it is better to compare it with a solitary SRL biased
at twice the current μ = 6, which has a PSR of 26 dB. This
comparison still shows an improved PSR for the coupled case.
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FIG. 10. (Color online) Bifurcation diagrams with conventions
as in Fig. 3. Parameter values: kc = 20k, φc = 0.

Nevertheless, the practical advantage of the higher PSR of
single-waveguide-coupled SRLs (as also reported in Ref. [6])
can be argued since it arises rather due to a decrease of the
low-power level, than top an increase in the high-power level.

III. STRONG COUPLING

We now set kc = 20k, such that the inter-SRL coupling is
significantly larger than the intra-SRL coupling. For, φc = 0,
the bifurcation diagrams of all steady states are shown in
Fig. 10. Figure 10(a) shows the bifurcation diagram of Sout.
A very notable fact is that the symmetric Sout state is stable
at far lower currents (from μ = 2.04 on) than the ACW,CCW

states (from μ = 9.18 on). Sout is also stable for currents
close to threshold, from μ = 1 up to μ = 1.006, where it
is destabilized in a subcritical Hopf bifurcation. This Hopf
bifurcation is actually the same as H 1 in Fig. 5(a) at μ = 1.14,
and is related to the excitation of relaxation oscillations. Such
destabilization through a Hopf bifurcation now also occurs at
coupling phases φc near zero for these higher values of kc. The
Sin state is no longer observed for these high coupling values
in the considered current range, as can be expected due to the
destabilizing influence of the coupling on this state (see Fig. 2).

The bifurcation diagram of the asymmetric states is shown
in Fig. 10(b). As mentioned before, the asymmetric states are
only stable for current values above μ = 9.18. The reason
for this is the existence of a supercritical Hopf bifurcation
H A at μ = 9.18. For currents lower than this, the asymmetric
states (needed for optical memory operation) are unstable or
simply do not exist. It is only at relatively high-bias currents
(μ = 9.18) that the asymmetric states are stabilized, and they
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FIG. 11. Orbit diagram depicting local extrema constructed by
numerical simulation of Eq. (1). The orbit diagram was initialized in
the asymmetric state ACCW at μ = 20 before decreasing the current
to μ = 1. Parameter values: kc = 20k, φc = 0.

remain stable for all higher current values. The limit cycle
related to this Hopf bifurcation has a very different amplitude
in SRL A and SRL B. Figure 11 shows an orbit diagram
depicting all local extrema for the different fields of the SRL
in a region where the Hopf bifurcation occurs. It can be seen
that the oscillation amplitude of the limit cycle is very large in
one SRL, while being almost negligible in the other.

The frequency of this limit cycle is of the same order but
slightly larger than the relaxation oscillation frequency of the
solitary SRLs. For example, at μ = 8 the relaxation oscillation
frequency is 2.66 GHz and the frequency of the limit cycle is
3.57 GHz. Hence, this scenario is very similar to the case of an
optically injected laser [30–33]. One SRL acts as the master
laser (negligible oscillation amplitude) and drives the second
SRL (large oscillation amplitude) into relaxation oscillations.
However, the coupling in this system is bidirectional, as op-
posed to the unidirectional coupling from master to slave in an
optically injected laser. The similarity stems from the nature of
the modes that are coupled to the other SRL. In the asymmetric
state, a high-power mode is fed through in one direction, while
a low-power mode is fed through in the other direction (see
Fig. 2), producing a bias in the directionality of the coupling.

The bifurcation diagram of the asymmetric states for
φc = π/2 is the same as in Fig. 10(b), although the power
level of the low-power side is again higher for φc = π/2 than
for φc = 0. Figure 12(a) is the two-parameter continuation
of the Hopf bifurcation H A in (μ,φc), and it shows that the
location of H A is insensitive to the value of the φc.1 However,
the current value at which the H A occurs does drastically
change with varying kc. This is shown by the two-parameter
continuation in (μ,kc) in Fig. 12(b). The solid line represents

1Varying φc roughly moves H A between μ = 9.17 and 9.19 [not
visible in Fig. 12(a)].
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phase φc, but drastically changes with kc. Parameter values: φc = 0.

a Hopf bifurcation of a stable structure (H A), while the dashed
line represents a Hopf bifurcation of an unstable structure
[located on the unstable branch in Fig. 10(b)]. For increasing
kc, H A folds back on itself. This means that for higher kc,
two Hopf bifurcations will occur that move toward each other
before completely disappearing.

Above kc/k ≈ 40, the asymmetric state is no longer
destabilized by H A, and stable operation is obtained for all
currents above the saddle-node bifurcation. We illustrate this in
Fig. 13(a), which is the bifurcation diagram of the asymmetric
state for kc = 100k. The saddle-node bifurcation SA is located
at μS = 1.61 and now determines at which current value
stable operation in the asymmetric state becomes possible.
There is a substantial influence of φc on the exact location
of this bifurcation, shown in Fig. 13(b). As we continue SA

in (μ,φc), we see that μS varies between 1.47 and 2.69,
depending on the value of φc. When the coupling waveguide
length is such that it corresponds to constructive (φc = π ) or
destructive (φc = 0) interference between the coupled fields,
the asymmetric state is stable for significantly lower-bias
currents.2 Once again, coupling phases φc close to π/2 shift
the stability of steady-state solutions to higher-bias currents.

2Note that the two couplers each introduce a π/2 phase shift that
add up with φc.
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FIG. 13. (Color online) (a) Bifurcation diagram with conventions
as in Fig. 3. Parameter values: kc = 100k, φc = 0. (b) Two-parameter
continuation in (μ,φc) of SA in (a). Parameter values: kc = 100k.

Some of the important changes in the dynamical regimes
take place at relatively high values of the parameters. This
raises the question as to whether these high-parameter values
are physically attainable in experimental setups. Concerning
the bias current μ, its values can be mapped on the device bias
current I using the values of the threshold current Ithr and the
transparency current Itr. These are identified with the values
μ = 1 (threshold) and μ = 0 (transparency), respectively,
yielding the following relation for the bias current I :

I = (Ithr − Itr)μ + Itr. (5)

A value of μ ≈ 9 is an experimentally attainable value in
semiconductor ring laser devices. For example, the semicon-
ductor ring lasers used in Ref. [25] have a threshold current
Ithr = 35 mA and a transparency current Itr = 25 mA, such
that a normalized current μ = 9 corresponds to an actual
driving current I = 115 mA. These ring laser devices have
been exposed to even higher currents without being damaged.

The modeling in the paper of Hill et al. assumed kc � k,
which according to our analysis should excite relaxation
oscillations. Since the coupling from the rings to the coupling
waveguide was only 1.5% [1], and since the small size of the
SRLs increases the amount of backscattering, we suspect that
they rather operated in the low-coupling limit kc � k. This
would explain the stability of the asymmetric states ACW,CCW,
which is needed for stable flip-flop functionality. In this weak-
coupling regime, where relaxation oscillations are not excited,
there seems to be an optimal operating regime for functionality
as an optical memory, at φc ≈ 0. For these parameters, there is
a low-bias current range in which the functionality would not
be disturbed by the existence of Sout since it is unstable. For

033813-8



OSCILLATIONS AND MULTISTABILITY IN TWO . . . PHYSICAL REVIEW A 88, 033813 (2013)

1.32 < μ < 1.55 (between PFA and PFS in Fig. 3), ACW,CCW

are the only stable states. However, in this range, the maximum
power suppression ratio that can be achieved between the
output ports is 7.3 dB at μ = 1.54. Even though this current
value is lower than the bias current at which the unidirectional
regime starts in solitary SRLs (μ = 1.58), two SRLs have to be
biased at μ = 1.54. A better comparison is given by biasing
a solitary SRL at μ = 3, which yields a power suppression
ratio of approximately 18 dB. So, even in this optimal regime
(without the excitation of relaxation oscillations and the
existence of a stable symmetric state Sout), using coupled SRLs
does not seem to have an advantage over solitary SRLs.

IV. DISCUSSION

In this article, we have investigated SRLs that are coupled
by a single bus waveguide. We used an amplitude-phase de-
scription of the coupling, giving rise to two new parameters: the
field coupling strength kc and the accumulated optical phase φc

when traveling from one SRL to the other. When both SRLs are
operating unidirectionally, this can lead to globally symmetric
and asymmetric states, with respectively equal and unequal
power at the outputs (see Fig. 2). The asymmetric states
ACW,CCW have both SRLs lasing in the same direction, respec-
tively: the clockwise and the counterclockwise directions. The
symmetric states Sin,out have both SRLs lasing in the opposite
direction, both respectively lasing inward and outward.

Weak coupling can have a stabilizing influence on the
SRL operating regimes. If the coupling phase φc is near
zero, oscillatory regimes are completely suppressed in the
weakly coupled SRLs, even at parameter ranges where solitary
SRLs exhibit alternate oscillations. The power level of the
high-power port in the ACW,CCW states is independent of φc,
but the power level of the low-power port is not. The reason for
this is that the high-power modes of each SRL impose a fixed
inter-SRL phase relationship very close to −π/2, whatever
the value of φc. The inter-SRL phase difference between the
low-power modes is therefore slaved and spans the whole
[0,2π ] interval for φc going from 0 to π . The interference of
the low-power modes of each SRL will hence be destructive or
constructive depending on the value of φc, yielding different
power suppression ratios.

A strong coupling destabilizes the asymmetric states
ACW,CCW due to the excitation of relaxation oscillations up
to currents almost 10 times the threshold current, regardless
of the value of φc. Relatively low-coupling strengths are
sufficient to trigger these relaxation oscillations. They occur
for coupling amplitudes kc ranging from O(k) to O(40k),
where k is the backscattering amplitude. For coupling values
larger than 40k, the asymmetric states are stabilized again.
This is similar to the behavior of optically injected lasers,
where relaxation oscillations are first excited for low to

moderate injection powers and subsequently damped for
higher injection powers. This similarity is emphasized by
the fact that in this regime the mode powers in one SRL are
almost constant, while the mode powers in the other SRL
are oscillating near the relaxation oscillation frequency. So,
although the coupling in our system is bidirectional, the SRLs
behave very similar to an optically injected laser system. For
this range of coupling amplitudes, the coupled SRLs will
preferably reside in the Sout state, which is always stable for
much lower bias currents than the ACW,CCW states.

A generally observed feature is that coupling phases φc

close to π/2 promote instabilities, in the sense of oscillatory
solutions or shifting the stability of steady-state solutions
to higher-bias currents. For instance, at weak-coupling am-
plitudes, oscillatory solutions (related to either relaxation
oscillations or alternate oscillations) were possible for φc

close to π/2, and the current at which the asymmetric states
ACW,CCW become stable are notably larger for φc close to
π/2 (1.66 for φc = π/2 versus 1.32 for φc = 0). For very
strong coupling, the asymmetric states turn stable at markedly
higher-bias currents when φc is close to π/2. Note that this is
in correspondence with the results on coupled excitable SRLs
in Ref. [26], in which the ability to excite a response in the
second SRL also required a coupling phase φc close to π/2.

Regarding optical memory operation proposed using two
SRLs coupled by a single waveguide, our analysis indicates
that there is no real advantage for bistable memory operation
compared to using a solitary SRL. The increased power
suppression ratio is mainly due to the destructive interference
of the SRL fields at the low-power port, and its usefulness can
hence be argued. Moreover, coupling of the same order as the
backscattering can excite relaxation oscillations, resulting in a
periodic rather than a stable output power level. Finally, there
will often exist multistability between the asymmetric states
ACW,CCW used for optical memory operation and the outward
symmetric state Sout. All these factors are detrimental for
bistable optical memory operation, and indicate that solitary
SRLs are better suited for serving as an all-optical memory.
One could on the one hand also argue that the coexistence of
multiple stable states (the asymmetric and outward symmetric
states) could be potentially interesting to store more than one
bit of information in a single optical memory unit. However,
on the other hand, accurately controlling switching between
these stable states would probably require a more complicated
setup (e.g., additional waveguides) and control scheme.
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