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Quasienergies and dynamics of a superconducting qubit in a time-modulated field
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We analyze the dynamics of a superconducting qubit and the phenomenon of multiorder Rabi oscillations in the
presence of a time-modulated external field. Such a field is also presented as a bichromatic field consisting of two
spectral components, which are symmetrically detuned from the qubit resonance frequency. This approach leads
to obtaining qualitative quantum effects beyond those for the case of monochromatic excitation of qubits. We
calculate Floquet states and quasienergies of the composite system “superconducting qubit plus time-modulated
field” for various resonant regimes. We analyze the dependence of quasienergies from the amplitude of an external
field, demonstrating the zeros of difference between quasienergies. We show that, as a rule, populations of qubit
states exhibit aperiodic oscillations, but we demonstrate the specific important regimes in which dynamics of
populations becomes periodically regular.
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I. INTRODUCTION

Superconducting circuits based on Josephson junctions
are promising candidates for studying fundamental physics
and implementing qubits and controllable quantum two-level
systems for quantum computing (see, for example, [1–4] for
reviews). The simplest Josephson-junction (JJ) qubit consists
of a small superconducting island with n excess Cooper-pair
charges connected by a tunnel junction with capacitance CJ

and Josephson coupling energy EJ to a superconducting
electrode and the single-electron charging energy EC . In the
case of a qubit only two charge states with n = 0 and 1 play a
role while all other charge states, having a much higher energy,
can be ignored. Thus, a superconducting charge qubit [5]
behaves as an artificial two-level atom in a Cooper box, which
is well described by two charge states, and the electrostatic
energy difference between these states is controlled by the
normalized gate charge.

When a qubit is driven by an external periodically time-
dependent electromagnetic field, it has given rise to new
quantum effects such as Rabi oscillations and coherent control
[6–9], which are the bases for quantum operations. In a
series of experiments many fundamental effects from quantum
optics have been demonstrated [10–16], including a lasing
effect with a Josephson-junction charge qubit embedded in
a superconducting resonator [12]. Superconducting qubits
usually have short coherence time; therefore, to decrease the
time for performing gate operations a large-amplitude external
field should be applied. The dynamics of a qubit driven by
large-amplitude external fields in the case of driving around
the region of avoided level crossing has been also studied
(see [17] and [18] for reviews).

Most studies of qubit dynamics assume the driving field
to be monochromatic or a single cavity mode. In the present
paper we investigate dynamics of a qubit and the phenomenon
of Rabi oscillations for an artificial two-level atom interacting
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with a monochromatic field with time-modulated amplitude.
Such an external field can be also presented as a bichromatic
field that consists of two components of equal amplitudes
which are symmetrically detuned from the qubit resonance
frequency. In this case, the modulation frequency is displayed
as the difference between frequencies of two spectral com-
ponents. This approach, involving modulation of the energy
splitting of a qubit in complicated form due to interaction with
an external bichromatic field, is different from the standard
scheme of laser physics in which the bichromatic field leads to
dipole transitions between two states of atoms. This approach
can be also applied for investigation of a wide variety of
interesting phenomena including tunneling dynamics of time-
dependently driven nonlinear quantum systems. In addition,
this problem offers an ideal testing ground for studying the
fundamental interactions between qubits and multispectral
component light. Note that the scheme of the Josephson-
junction qubit considered in this paper seems to be close to the
experimental scheme on the frequency-modulated transmon
qubit performed most recently in [19].

The other goal of this paper is application of the method
of quasienergies and quasienergetic states (QESs) (or the
so-called Floquet states) for the qubit in a bichromatic field.
Note that, at first, the QESs of the composite system consisting
of an atom and time-periodic electromagnetic field have
been considered in [20–22]. These states provide a classical
counterpart to well-known atomic-dressed states [23] in which
the coupling to the laser is described by a classical field,
whereas the coupling to the vacuum must be described in
second quantization. However, one may still hope that in the
limit of a macroscopically relevant laser field both approaches
lead to the same results. On the other hand, a certain advantage
of the classical treatment implied by the Floquet approach lies
in the fact that laser pulses can be handled more easily than
in a fully quantized approach to the field (see, e.g., [24]). In
the Floquet picture the QESs of the composite system are
formed in a strong external field, and the radiation processes
and spectral lines are described by transitions between them
due to the interaction of the composite system with an
electromagnetic vacuum or with a weak probe field. In this

033811-11050-2947/2013/88(3)/033811(10) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.033811


GOR A. ABOVYAN AND GAGIK YU. KRYUCHKYAN PHYSICAL REVIEW A 88, 033811 (2013)

way, the master equations in the QES basis were obtained
in [25,26] and in the dressed-state basis in [27]. Thus, the
method of QESs is a powerful theoretical framework for
the study of bound-bound multiphoton transitions driven by
periodically time-dependent fields (see for review [28]). There
have been several experiments on nonlinear and quantum
optics that have been interpreted in terms of quasienergy levels
including basic experiments on the resonance fluorescence and
the probe absorption spectroscopy for a two-level atom in a
strong laser field. QESs and dressed states have also been
used in areas of radiation corrections to atomic levels in the
presence of a strong laser field, including the calculation of
the Lamb shift [29–34]. The dressed-state approach including
atomic motion was introduced in [35], while the QES method
was used for strongly confined ions in [36,37] for multiphoton
processes with laser-cooled and trapped ions, for the scheme
of an ion-trap laser [38,39], and for investigations of photons
correlation in an ion-trap system [40].

Applications of QESs and quasienergies to Josephson
qubits in a driving field have been done in several papers
[18,41–43], including a review paper on Landau-Zener-
Stückelberg interferometry [18], probe spectroscopy of QESs
[42], application of the Floquet theory to Cooper pair pumping
[41], and observation of the Stark effect and generalized
Bloch-Siegert shift in the experiment with a superconducting
qubit probed by resonant absorption via a cavity [43]. The
experiments on the Rabi oscillations in monochromatically
driven Josephson qubits have been performed and interpreted
on the basis of dressed states [7,8].

QESs for a two-level atom in the bichromatic field have
also been studied in a series of papers (see, for example,
[26,44–47]). Note that investigations of bichromatically driven
natural two-level systems have a long history in areas of laser
physics, nonlinear optics, and quantum optics. The corre-
sponding Hamiltonians of such systems involve the coupling
of a bichromatic field to the transition dipole moment between
two states of atoms in contrast to the case of a superconducting
qubit in a Cooper box in which an external field only
drives the atomic energetic levels. The spectrum of resonance
fluorescence (RF) of a two-level atom in a bichromatic field
was calculated in [26,44,48]. The fluorescence spectrum for
the general case of arbitrary detuning was obtained in [49,50]
and was observed experimentally in [51] in agreement with the
theoretical results. Effects of cavity-modified dynamics were
also found in [52] for two-level Rydberg atoms in a microwave
cavity under the influence of a bichromatic field. In a series
of papers it has been demonstrated that photon correlation
and quadrature squeezing induced by a bichromatic field are
drastically different from the case of RF in a monochromatic
field [45–47,53]. We especially focus on unusually strong
superbunching effects in the second-order correlation function
as a result of strongly correlated two-photon emissions at
the frequency of atomic transition [45,46] in applications for
two-photon lasing.

We believe that the results of forming atomic spectral lines
with strongly different frequencies under bichromatic radiation
are important also for the superconducting qubit inducing
additional Rabi oscillations on quasienergetic states of the
qubit. Additionally, we demonstrate below that quasienergetic
states and quasienergies of the bichromatically driven super-

conducting qubit under consideration differ drastically from
the analogous well-known states of the standard two-level
atom in a bichromatic field, and due to this difference unusual
field-dependence effects appear for the qubit.

Note that time modulation of quantum dynamics for
some systems allows effective control of dissipation and
decoherence effects, essentially improving the quantum ef-
fects. Indeed, it has been shown that the time modulation
in an optical parametric oscillator leads to improvement of
squeezing and continuous-variable entanglement of generated
modes [54,55], and application of such an approach to an
anharmonic oscillator leads to preparation of oscillatory Fock
states superpositions in the presence of decoherence [56,57].
Thus, we expect that this approach applied to artificial atoms,
particularly superconducting qubits, will lead to obtaining new
qualitative quantum effects involving control of superconduct-
ing qubits and improvement of decoherence. Nevertheless,
in this paper, as the first part of these investigations, we
only consider nondissipative dynamics of a qubit in a time-
modulated field for short time intervals.

In this paper, we present analytical results for nontrivial
dynamics of a qubit in a time-modulated field (a bichromatic
field), particularly considering in detail time-dependent popu-
lations of qubit states. We calculate QESs and quasienergies
of the composite system “superconducting qubit plus time-
modulated field” in resonance approximation by using the
Furry picture.

The paper is arranged as follows. In Sec. II we derive the
Hamiltonian of the system in the resonance approximation.
In Sec. III we consider the tunneling amplitude of transitions
between states of a qubit in the presence of a time-modulated
(or bichromatic) field and calculate corresponding QESs as
well as quasienergies. Then, in Sec. IV we investigate the
properties of quasienergies as well as compare two systems
with different time-dependent components along x and z axes.
In Sec. V the Rabi oscillation physics of the qubit driven by a
time-modulated field is considered. We summarize our results
in Sec. VI.

II. FURRY PICTURE FOR QUBIT
IN TIME-MODULATED FIELD

The qubit is realized if the charging energy of a super-
conducting electron box is much larger than the Josephson
coupling energy. In the regime of low-level excitation the
system is formed by two charge states, |↓〉 and |↑〉, which have
either zero Cooper pairs or one Cooper pair. Thus, the system
that we consider here is a qubit coupled to a time-modulated
field (or a bichromatic field) with the Hamiltonian

Ĥ (t) = Ĥ0 + ĤV , (1)

where

Ĥ0 = −1

2
[ε0 + f (t)]σ̂z, ĤV = −�

2
σ̂x . (2)

Here, the external field reads

f (t) = 2A cos (ω0t) cos (δt) , (3)

where ω0 and δ are the central and modulation frequencies,
provided that δ � ω0. This external field can be presented as

033811-2



QUASIENERGIES AND DYNAMICS OF A . . . PHYSICAL REVIEW A 88, 033811 (2013)

a bichromatic field of the form

f (t) = A[cos(ω1t) + cos(ω2t)], (4)

with equal amplitudes of two spectral components at the
frequencies ω1 = ω0 − δ and ω2 = ω0 + δ.

Here, ε0 = EQ(1 − 2ng) is the electronic energy difference
between the ground and excited states of the qubit and � = Ej

is the Josephson coupling energy or the tunneling amplitude
between the basis states. The operators σ̂x , σ̂z denote the
Pauli spin matrices: σ̂z = |↑〉〈↑| − |↓〉〈↓|, σx = |↑〉〈↓| + |↓〉
〈↑|. The Hamiltonian Eq. (1) describes various physical
systems in addition to the JJ artificial atom [58]. In general,
it describes the tunneling dynamics of bichromatically driven
nonlinear quantum two-level systems.

It should be noted that very often in area “atom+laser”
interaction the other Hamiltonian is used, in which the coupling
of a time-dependent electromagnetic field to the transition
dipole moment between two states of atoms takes place in
contrast to the case of a superconducting qubit, where an
external field drives the atomic energetic levels Eqs. (1) and
(2). The corresponding Hamiltonian Ĥat describing interaction
along the x axis can be related to the Hamiltonian Eq. (1) with
the time-dependent component along the z axis by a rotation
around the y axis. The result reads

Ĥat = e−i π
4 σ̂y Ĥ (t)ei π

4 σ̂y = − 1
2�σ̂z − 1

2 [ε0 + f (t)]σ̂x . (5)

The later Hamiltonian is typical for a natural two-level atom
interacting with a bichromatic field. In this case, the parameter
� describes an energy difference and the interaction term is
responsible for the transitions between two atomic states. See
also Sec. IVB.

We describe the dynamics of the system in the Furry-state
representation |�(t)〉 = U (t)|�U (t)〉, in which the equation
for the vector state of the full system is

i
∂

∂t
|�U (t)〉 = ĤI |�U (t)〉. (6)

The interaction Hamiltonian is given by

ĤI (t) = Û−1(t)ĤV Û (t) = −�

2
Û−1(t)σ̂xÛ (t), (7)

while the unitary operator Û (t) obeys the equation of motion:

i
∂

∂t
Û (t) = Ĥ0Û (t). (8)

It is easy to realize that operator U (t) has a simple form:

Û (t) = exp

[
−i

∫ t

0
Ĥ0(t ′)dt ′

]
= exp (iϕ(t)σ̂z), (9)

where

ϕ(t) = 1

2

[
ε0t + A

ω1
sin(ω1t) + A

ω2
sin(ω2t)

]
. (10)

Thus, the interaction Hamiltonian is calculated in the following
form:

ĤI (t) = −�

2
e−iϕ(t)σ̂z σ̂xe

iϕ(t)σ̂z

= −�

2

(
0 e−2iϕ(t)

e2iϕ(t) 0

)
. (11)

In the σ -matrix form this Hamiltonian can be written as

ĤI (t) = −�

2
[σ̂+e−2iϕ(t) + σ̂−e2iϕ(t)]. (12)

For simplification of the Hamiltonian we use the following
formulas with the Bessel functions:

exp

[
i
A

ω1
sin(ω1t)

]
=

∑
n1

Jn1

(
A

ω0 + δ

)
ein1(ω0+δ)t , (13)

where Jn(x) is nth-order Bessel function of the first kind. In
the result we can obtain

e2iϕ(t) =
∑
n1

∑
n2

Jn1

(
A

ω0 + δ

)
Jn2

(
A

ω0 − δ

)

×ei[ε0+(n1+n2)ω0+(n1−n2)δ]t . (14)

We also add that e−2iϕ = (e2iϕ)∗.
The resonance condition is formulated using the require-

ment that the oscillating terms in time have vanished. Thus,
this condition is formulated for the central frequency ω0 and the
electronic energy difference as ε0 − Nω0 = �N � ε0, where
n1 + n2 = −N . In this approximation we obtain

e2iϕ = ei�N t
∑

n1+n2=−N

Jn1 (z1)Jn2 (z2)ei(n1−n2)δt

= ei�N t
∑
n1

Jn1 (z1)J−N−n1 (z2)ei(2n1+N)δt

= ei(�N +Nδ)t−iNπ
∑
n1

Jn1 (z1)JN+n1 (z2)ein1γ , (15)

where z1 = A
ω0+δ

, z2 = A
ω0−δ

, and γ = 2δt + π . In the follow-
ing we use the well-known formulas of summing the Bessel
functions for the further transformation of the Hamiltonian.
The result reads

e2iϕ = ei(�N +Nδ)t−iNπJN (w(t))
(

z2 − z1e
−iγ

z2 − z1eiγ

) N
2

, (16)

where w(t) = [z2
1 + z2

2 − 2z1z2 cos(γ )]1/2, |z1e
±iγ | < z2. We

rewrite the exponent in the following form:

e±2iϕ(t) = JN (w(t))e±iα(t), (17)

introducing the function

α(t) = (�N + Nδ)t − Nπ − iN

2
ln

[
z2 − z1e

−iγ

z2 − z1eiγ

]
. (18)

Equation (18) can be simplified easily if δ � ω0. Indeed, in
this case z1 ≈ z2 when δ � ω0, and we can check that the
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logarithm in Eq. (18) is simplified as

ln

[
z2 − z1e

−iγ

z2 − z1eiγ

]
≈ ln

(
1 − e−iγ

1 − eiγ

)

= ln

[
e− iγ

2
(
e

iγ

2 − e− iγ

2
)

e
iγ

2
(
e

−iγ

2 − e
iγ

2
)

]
= ln(−e−iγ )

= i(π − γ ) = i(π − 2δt − π ) = −2iδt.

(19)

Then, in the lowest approximation of δ/ω0 we obtain α(t) =
�Nt − Nπ and

w(t) ≈ 2
A

ω0
|cos(δt)| . (20)

In this approximation and for the case of exact resonance,
�N = 0, the interaction Hamiltonian is written in the following
form:

ĤI (t) = (−1)N+1 �

2
JN (w(t))σ̂x . (21)

This Hamiltonian, describing the effects of time modulation on
qubit dynamics, is nonstationary and T periodic, HI (t + T ) =
HI (t), with the period T = π/δ; thus, QESs and quasienergies
can be introduced in this representation. The Hamiltonian
is derived for the general case that involves one-quantum
resonance process N = 1 as well as high-order processes with
N > 1. Below we concentrate on consideration of two cases,
N = 1 and 2, in detail.

III. AMPLITUDES OF TUNNELING AND QES

The different regimes of qubit dynamics in the presence
of a time-modulated field are formulated in the adiabatic and
diabatic bases in analogy to the case of a monochromatic field
[18,58]. The diabatic basis states |↓〉 and |↑〉 are the eigenstates
of the Hamiltonian Eq. (1), if � and f (t) have vanished.

Let us consider the case ε 
 �. We assume that states of
a qubit are formed in the presence of a driving field and the
tunneling process is described by transitions between these
states. Then, in the lowest order of the perturbation theory
on the basis of Eqs. (6) and (7) the tunneling amplitude
in the transition |↓〉 → |↑〉 reads A1→2 = 〈↑ |HI (t)|↓〉 =
〈↑ (t)|HV (t)|↓ (t)〉, where |↑ (t)〉 = U (t)|↑〉, |↓ (t)〉 = U (t)|↓〉
are the diabatic states in the U representation. In the limit
of a weak driving we have |↑ (t)〉 = e−iεt/2|↑〉 and |↓ (t)〉 =
eiεt/2|↓〉. For the amplitude we obtain

A1→2 = (−1)N+1 �

2
JN (w(t)). (22)

This amplitude describes the tunneling transition in the pres-
ence of a time-modulated external field that shifts the energetic
levels. It is interesting to compare this result with the analogous
one for the case of a external monochromatic field. It is known
that in the latter case the amplitude of the transition |↓〉 → |↑〉
with parameters satisfying the resonance does not depend on
time intervals, while the amplitude Eq. (22) contains time-
dependent periodic oscillations at the modulation frequency.
In Figs. 1 and 2 we depict the corresponding probabilities
of the tunneling transition in dependence on dimensionless
time for two resonant conditions: N = 1 and 2. As we see,

(a)

(b)

FIG. 1. (Color online) Transition probabilities for first-order
(N = 1) resonance. The parameters are (a) �/δ = 34, A/ω0 = 10−1

and (b) �/δ = 34, A/ω0 = 4.5.

the transition amplitudes are not constants and are periodic in
time, while for the case of a one-monochromatic driving field
these quantities have constant values.

In the case of a weak driving field A � ε0 and ω0 ∼ ε0, we
can use the following approximation for the Bessel function:
Jn(x) ∼ xn

2nn! , x � 1; therefore,

JN (w(τ )) = 1

N !

(
A

ω0

)N

| cos(δt)|N. (23)

Thus, the amplitude of tunneling for a weak driving field is
calculated as

A1→2 = (−1)N+1 �

2

1

N !

(
A

ω0

)N

| cos(δt)|N. (24)

(a)

(b)

FIG. 2. (Color online) Transition probabilities for second-order
resonance (N = 2). The parameters are (a) �/δ = 34, A/ω0 = 10−1

and (b) �/δ = 34, A/ω0 = 4.5.
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This result is in accordance with the results of numerical
calculations corresponding to first-order and second-order
resonances presented in Figs. 1(a) and 2(a).

Below we turn to the general case of qubit dynamics,
considering the state of the full system in the |↓〉, |↑〉
basis as

|�U (t)〉 = C1(t)|↓〉 + C2(t)|↑〉. (25)

In this case, the Schrödinger equation is reduced to two coupled
first-order equations for the amplitudes in the following form:

iĊ1(t) = −�

2
JN (w(t))e−iα(t)C2(t), (26a)

iĊ2(t) = −�

2
JN (w(t))eiα(t)C1(t). (26b)

The coefficients of these equations have a nontrivial
dependence on time, nevertheless we demonstrate that for the
resonance case, �N = 0, the solution of these equations can
be found in a simple analytical form as follows:

C1(t) = cos (γN (t)), (27a)

C2(t) = ieiα sin (γN (t)), (27b)

while the function γN (t) is calculated from Eqs. (26a) and
(26b) as

γN (t) = �

2

∫ t

0
JN (w(τ ))dτ (28)

and α(t) = −Nπ .
This solution is presented for the concrete initial conditions

assuming that the system is initially in the lower state;
therefore, C1(0) = 1 and C2(0) = 0. The populations of the
initial and excited states (if the system was initially in the
lower state) as a function of time are then given by

P1(t) = |C1(t)|2 = cos2 (γN (t)), (29a)

P2(t) = |C2(t)|2 = sin2 (γN (t)). (29b)

To calculate these quantities further we need to analyze the
function γN (t) that involves integration of a periodic function
JN (w(τ )) with period T = π/δ. It is easy to represent the
function γN (t) as

γN (t) = �

2
JN t + �N (t), (30)

where

JN ≡ JN (w(t)) = 1

T

∫ t0+T

t0

JN (w(τ ))dτ. (31)

�(t) is a periodic function defined for t ∈ [t0,t0 + T ] as

�N (t) = �

2

∫ t

t0

[JN (w(τ )) − JN ]dτ (32)

and for other t ∈ [0,∞] through periodicity relation �(t +
T ) = �(t) (see the Appendix).

The above formulas allow us to introduce the QES of a qubit
in a time-modulated driving field. Indeed, it is easy to check
that the solution of Eq. (6) with periodic in time Hamiltonian
Eq. (21) can be expressed in the adiabatic basis as

|�N,±(t)〉 = e±i(−1)N γN (t)|ϕ±〉, (33)

where

|ϕ±〉 = |↓〉 ± |↑〉. (34)

Then, by using the formula Eq. (30), these states can be
presented in the form of a QES:

|�N,±(t)〉 = eiE±
N tUN,±(t)|ϕ±〉, (35)

where

UN,±(t) = e±i(−1)N �N (t) (36)

are periodic in time; UN,±(t + T ) = UN,±(t); and E±
N =

±EN , where

EN = (−1)N
�

2
JN (37)

are the quasienergies. In the � representation we obtain

|�±,N 〉 = eiE±
N tUN,±(t)(e−iϕ(t)|↓〉 ± eiϕ(t)|↑〉). (38)

IV. QUASIENERGIES OF QUBIT IN BICHROMATIC FIELD

In this section we study properties of the quasienergies.
Note that some experiments recently realized in the field of
superconducting Josephson qubits have been interpreted in
terms of the probe absorption spectroscopy of the quasienergy
levels (see, for example, [42]). In this way, the frequencies
of probe field absorption or amplification are determined by
the matrix elements of transition between QESs. We briefly
discuss this problem, considering the transition |�N,+〉 →
|�N,−〉 between quasienergetic states �N,±(t) due to a weak
interaction of the system with a probe field. Such an interaction
with a probe field at the frequency ωp can be added as weak
perturbation term λEp cos(ωpt)σ̂z in the Hamiltonian Eq. (1).
Thus, the matrix element of this transition is calculated as

〈�N,−|σ̂z|�N,+〉
= 2

∑
n,m

Jn

(
A

ω0

)
Jm−n

(
A

ω0

)
exp(i�m,nt), (39)

where m = 0, ±1, ± 2, . . .; n = 0, ±1, ±2, . . .; and �m,n =
ε0 + mω0 + (E+ − E−) + (2n − m)δ are the frequencies of
spectral lines corresponding to the absorption (for ωp =
�m,n > 0) and the amplification (for ωp = �m,n < 0) of a
probe field. As we can see, the spectral lines are separated
by the central frequency and modulation harmonics and
contain a field-dependent Stark shift due to the input of the
quasienergies. In Sec. V we demonstrate that the quasienergies
in Eq. (37) also play an essential role in occupation populations
of states.

As we see, the sum of two quasienergies obeys the relation
E+

N + E−
N = 0. This result is in accordance with the exact

result taking place for a two-level atom in a monochromatic
field. According to [20] the sum of two quasienergies equals
the sum of atomic energetic levels, that is zero for the case of
the truncated Hamiltonian Eq. (1), in which the half of the sum
of qubit energetic levels has been omitted.

The difference between quasienergies reads E+
N − E−

N =
2EN in this case. In this representation quasienergies contain
only a field-dependent part and equal zero in the limit of
small driving. Dependences of the quasienergy E±

N on the
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FIG. 3. (Color online) Quasienergy for (N = 1) first-order res-
onance (solid curve) and (N = 2) second-order resonance (dashed
curve).

parameter A/ω0 as a function E±
N = E±

N (A/ω0) for two
types of resonances, for the first order as well as for the
second order, are shown in Fig. 3. As we demonstrate, the
quasienergies E1 and E2 for both types of resonances have
zeros for the definite values of A/ω0. The lower zeros are
at A/ω0 = 3.13,6.3,and 9.45 for N = 1 and are at A/ω0 =
3.8,7.05,and 10.2 for N = 2. Below, we also analyze the
quasienergies for the regime of a weak external field.

A. Quasienergies and phase function at regime of weak driving

In this subsection we derive approximative analytical
results for the quasienergies and the phase function Eq. (30)
using the formula Eq. (23), which describes the weak driving
limit. Integration of the formula Eq. (31) leads to

JN = δ

π

∫ π/δ

0
JN (w(τ ))dτ = F[0;π],N (π/δ)

N !π

(
A

ω0

)N

= 2�
(

3+N
2

) + (1 + N )�
(

1+N
2

)
2
√

πN !(1 + N )�
(

3+N
2

) (
A

ω0

)N

. (40)

In this formula, we introduce a function, which also determines
the periodic part of the phase function Eq. (32):

F[0;π],N (t) =
√

π

2

�
(

1+N
2

)
�

(
1 + N

2

)
− 2F1

(
1
2 , 1+N

2 ; 3+N
2 ; cos2(δt)

)
1 + N

cos(δt)|cos(δt)|N,

(41)

which is defined in [0; π/δ]. Here, 2F1(a,b; c; z) is a hyperge-
ometric function. The final result for the quasienergy reads as
follows:

EN = (−1)N
�

2

2�
(

3+N
2

) + (1 + N )�
(

1+N
2

)
2
√

πN !(1 + N )�
(

3+N
2

) (
A

ω0

)N

, (42)

while the periodic part of the phase function is calculated as

�N (t) = �

2

∫ t

0
[JN (w(τ )) − JN ]dτ

= �

δ

1

2N !

(
A

ω0

)N

[F[0;π],N (t) − F[0;π],N (π/δ)δt].

(43)

Note, that the results of this section on the quasienergetic
states of the qubit in a time-modulated driving field are
essentially different from the analogous results for the states
obtained for a two-level atomic system driven by a bichromatic
field with the Hamiltonian Eq. (5) [26,44–47]. We demonstrate
this point below.

B. System with time-dependent component along x axis

In this subsection we briefly discuss the system with the
Hamiltonian Eq. (5), which is typical for problems that involve
an atom in a bichromatic laser field. Our goal is to show the
differences of the behaviors for the cases of superconducting
qubits [see Hamiltonian Eq. (1) with the time-dependent
component along the z axis] and a two-level atomic system
[see Hamiltonian Eq. (5) with the time-dependent component
along the x axis] in a bichromatic field.

We now take the system described by the Hamiltonian
Eq. (5) in new denotations that are more standard in this area:

Ĥ = −�E

2
σ̂z + V cos(ω0t) cos(δt)σ̂x . (44)

Make a transformation to a rotating frame |�(t)〉 = Ŵ (t)
|�W (t)〉, where

Ŵ (t) = exp

(
i

2
�Etσ̂z

)
. (45)

For this system we can formulate only a one-quantum
condition of the resonance, �E = ω0, in contrast to the
system with the time-dependent component along the z axis in
which multiquantum resonances take place. In the resonance
approximation we obtain

i
∂

∂t
|�W (t)〉 = V cos(δt)σ̂x |�W (t)〉. (46)

The solution of this equation in the adiabatic bases can be
obtained as

|�±(t)〉 = exp

(
i
V

δ
sin(δt)

)
|ϕ±〉. (47)

Comparing the results of Eqs. (35) and (47) we conclude
that the quasienergies corresponding to QES Eq. (47) are
equal to zero for all ranges of the parameters in the rotating
wave approximation in contrast to the results of Eqs. (35) and
(37). Besides this, the periodic wave function exp[i V

δ
sin(δt)]

strongly differs from the periodic wave function UN,±(t) that
corresponds to QES Eq. (35). This situation is displayed
also in the frequencies of spectral lines corresponding to
the transitions between QES |�±(t)〉. Indeed, it is easy
to realize that these frequencies are at ωp = ω0 + nδ, n =
0, ±1, ±2, . . . and do not involve field-dependent shifts of
energetic levels. This effect is in accordance with calculation
of the spectrum of resonance fluorescence and Autler-Townes
splitting in a bichromatic field [46,47].
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FIG. 4. (Color online) A charge qubit with tunable effective
Josephson coupling. It is controlled by gate voltage Vg and magnetic
field �x .

At the end of this section, for completeness, we present the
QES in the � representation:

|�+(t)〉 = Ŵ (t)|�+(t)〉
= 1√

2
exp

(
i
V

δ
sin(δt)

)(
e−i �Et

2 |↓〉 + ei �Et
2 |↑〉),

(48)

|�−(t)〉 = Ŵ (t)|�−(t)〉
= 1√

2
exp

(
− i

V

δ
sin(δt)

)(
e−i �Et

2 |↓〉−ei �Et
2 |↑〉).

(49)

It should be noted that the Floquet basis derived here
for a qubit in a bichromatic field is useful for studying the
Rabi oscillation physics as well as for writing the master
equation governing the dynamics of the reduced density matrix
of a driven system, which is in contact with an external
environment.

Note that Hamiltonians Eqs. (1) and (44) are the particular
cases of a more general Hamiltonian:

Ĥ (t) = − 1
2Bz(t)σ̂z − 1

2Bx(t)σ̂x, (50)

which can be realized on a properly designed superconducting
circuit. In particular, a simple design of the charge qubit
with tunable effective Josephson coupling can be shown
schematically (see Fig. 4) as with time-dependent coefficients
Bx(t) and Bz(t) that allow complete control of the system
through the gate voltage Vg and the external magnetic flux �x

(see, for example, [1]). The relations between these quantities
are expressed as

Bx(t) = EJ (�x(t)) = 2E0
J cos

(
π

�x(t)

�0

)
, (51)

Bz(t) = δEch(Vg(t)) = 4EC

(
1 − 1

e
CgVg(t)

)
, (52)

where EC is the the single-electron charging energy, E0
J is

the Josephson coupling energy, and Cg is the gate capacitor.
Practical realizations of an analogous scheme have been done
in a series of papers (see, for example, [59,60]). We believe
that the schemes considered here with a time-dependent
component along the z or x axis driven by bichromatic

external fields can be constructed in the same way (see [19],
in which multisideband components of qubit energy splitting
are observed).

V. APERIODIC AND PERIODIC RABI OSCILLATIONS

In this section, time-dependent populations of states are
investigated for various regimes. We investigate dynamics
of the driven qubit in a time domain for various resonance
conditions. Thus, we consider the occupation probability as
a function of time in dimensionless units, assuming that the
system was initially in the state |↓〉 and the Rabi frequency is
given by

�N (t) = γ̇N (t). (53)

According to the formulas Eqs. (27) and (29) this dynamics
is determined by the function γN (t), that involves both the
quasienergy and the periodic function �N (t) with period T =
π/δ. To present this statement in a clear form we rewrite the
formula Eq. (30) as

γN (t) = (−1)NENt + �N (t). (54)

The function γN (t) is an increasing function in time but it
grows also periodically due to its “linear + periodic” structure.
Therefore, the dynamics of populations Eq. (29) seems to be
aperiodic in time. Indeed, the typical results for the phase
function as well as the populations are depicted in Figs. 5–7.
The dynamics of populations for the case of a weak external
field is shown in Fig. 5 for two resonance regimes. In Fig. 5(a)
we compare two curves of the occupation probabilities for N =
1 (solid curve) and for N = 2 (dashed curve). We can see here
fast oscillations of the population for the regime N = 1 and
slow oscillations for the case of N = 2 [for consideration in
detail, see the curve corresponding to the case N = 2 for large
time intervals in Fig. 5(b)]. The results for the second-order
resonance regime are also demonstrated in Fig. 5(c) for the
other parameter �/δ. Analyzing these results, we note that
dynamics of populations strongly depends on the value of the
ratio �/δ. It can be seen from the formulas Eqs. (40) and
(43) that population behavior shown in Fig. 5(b) for N = 2
is mainly governed by the linear in time term in the phase
function Eq. (43); thus, we can see that the dynamics looks
like cosinusoidal oscillations. The periodic in time part �N (t)
only slightly modulated these oscillations. This part of the
phase function increases with increasing the parameter �/δ

that leads to increasing the role of periodic modulations giving
rise to a nontrivial time dependence of occupation probability
[see Fig. 5(c) for the case N = 2].

The typical examples of occupation probabilities corre-
sponding to the large-amplitude regime are depicted in Figs. 6
and 7. In order to illustrate the role of phase function in the
development of aperiodic dynamics we also show here the
time dependence of this function.

It is obvious that the dynamics of populations can be
periodic if the quasienergy becomes equal to zero at definite
values of the parameter A/ω0 (see Fig. 3). However, as it can
be seen, this situation also takes place for the other wide ranges
of the parameters, if the shift of the phase function during m
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(a)

(b)

(c)

FIG. 5. (Color online) Populations of the ground state for both
resonance conditions N = 1 and 2. The parameters are (a) first-order
(solid curve) and second-order (dashed curve) resonances, �/δ = 40,
A/ω0 = 10−1; (b) second-order resonance (N = 2) for the same
values of �/δ and A/ω0 as in (a); and (c) second-order resonance
(N = 2), �/δ = 370, A/ω0 = 10−1.

periods T = π/δ

γ (t + mT ) = (−1)NEN (t + mT ) + �N (t)

= γ (t) + (−1)N
ENπ

δ
m (55)

becomes equal to nπ , that is the period of square cos(x) or
sin(x) in the formulas Eq. (29). Such a consideration leads to
the following formula:

mδ = n|EN |, (56)

where m and n are positive integers. The physical means of this
formula is very simple. The population of the states depends on
γN (t) as a square of the cosine, for example P1 = cos2[γN (t)].
Thus, if during m periods its growth is equal to any period of
cos2(x), which can be written as nπ , the population will repeat
its behavior.

(a)

(b)

FIG. 6. (Color online) (a) Phase function γN (t) and (b) population
probability for the first-order resonance condition (N = 1). The
parameters are �/δ = 12, A/ω0 = 1.

Thus, the populations could be made periodic by choosing
the values of parameters δ/� and A/ω0 to satisfying the
following condition:

δ

�
= n

m

1

2π

∫ π

0
JN

(
2

A

ω0
| cos(τ )|

)
dτ, (57)

that follows from the formulas Eqs. (37) and (56). For the case
of a weak driving field this condition is simplified and reads

1

N !

�

2δ

(
A

ω0

)N

∗ √
π

�
(

1+N
2

)
�

(
1 + N

2

) = π
m

n
. (58)

(a)

(b)

FIG. 7. (Color online) (a) Phase function γN (t) and (b) population
probability for the second-order resonance condition (N = 2). The
parameters are �/δ = 34, A/ω0 = 1.
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(a)

(b)

FIG. 8. (Color online) The periodically regular dynamics of pop-
ulation probabilities for the second-order resonance. The parameters
are (a) �/δ = 401, A/ω0 = 10−1 and (b) �/δ = 31, A/ω0 = 1.

The typical results for Rabi oscillations with regular,
periodic dynamics are depicted in Fig. 8 for the N = 2
resonance condition. Here, the parameters A/ω0 and two
used parameters, �/δ = 401 [see Fig. 8(a)] and �/δ = 31
[see Fig. 8(b)], satisfy the periodicity condition Eq. (57). We
compare the results shown in Fig. 8(a) with the result depicted
in Fig. 5(c). Both results are obtained for the second-order
resonance condition and for the same parameter A/ω0 = 10−1;
however, using the parameter �/δ satisfying the condition of
periodicity Eq. (57) in Fig. 8(a) leads to the periodic dynamics
of the populations. These regimes in which quantum dynamics
of occupation probabilities becomes periodically regular can
be useful, for example, in applications where one is dealing
with logic operations in qubits.

VI. CONCLUSION

In conclusion, we have analyzed dynamics of a supercon-
ducting qubit interacting with an electromagnetic wave with
time-modulated amplitude (or a bichromatic field) for two
basic configurations that involve time-dependent components
along z or x axes. In the case of the z configuration, the
external bichromatic field drives the qubit’s energetic levels,
while in the case of the x configuration (describing also the
standard problems of a two-level atom in a bichromatic field)
the coupling with the bichromatic field leads to the transition
dipole moment between two states of atoms. We have calcu-
lated quasienergetic states and quasienergies of the composite
system “superconducting qubit plus time-modulated field” in
an adiabatic basis of the system analyzing the quasienergies
numerically for arbitrary intensities of the external field
as well as analytically in detail for the regime of weak

driving. Considering the dependence of quasienergies from
the intensity parameter A/ω0 we have shown oscillation-type
behavior of quasienergies for the case of a strong bichromatic
field. In this way, we demonstrate the drastic difference
between QESs of two schemes. Particularly, for the standard
two-level model in a bichromatic field (the x configuration) the
quasienergies are equal to zero for all ranges of the parameters
that are displayed in the spectral line of RF and Autler-Townes
splitting [26,44–47]. In contrast to this case, the QES for the
scheme involving time-dependent z-axis coupling has a more
complicated structure. On the whole, the spectral lines of QES
transitions contain also field-dependent Stark shifts due to the
input of the quasienergies.

We have considered time dependence of the occupation
probabilities of qubit states and Rabi physics for both first-
order (N = 1) and second-order (N = 2) resonance regimes,
when the central frequency ω0 and the electronic energy
difference obey rules ε0 = Nω0. Considering Rabi oscillations
between qubit states we have shown that these oscillations are
aperiodic in time due to effects of time-dependent modulation.
Nevertheless, further, we have demonstrated new regimes in
which dynamics of populations becomes periodically regular.
These regimes can be realized if the ratio of quasienergy to
the detuning is positive integer EN/δ = r for an arbitrary
order of resonances. Together with the recent advancements
in the engineering of various schemes of superconducting
qubits, these results seem to be important for further studies
of quantum phenomena in this area.

APPENDIX

The formula Eq. (30) can be derived by using the Fourier
expansion:

JN (w(t)) =
∞∑

n=−∞
G(n)ei 2πn

T
t . (A1)

Then, the integral from Eq. (28) is transformed to

∫ t

0
JN (w(τ ))dτ =

∞∑
−∞

G(n)
∫ t

0
e−i 2πn

T
t ′dt ′

=
∞∑

|n|=1

G(n)
T

i2πn

(
ei 2πn

T
t − 1

) + G(0)t.

(A2)

Here, it is easy to realize that

GN (0) = JN (w(t)) = JN, (A3)

and thus the formula Eq. (30) is obtained. In this representation
the second term of the function Eq. (30) is written in the
following form:

�N (t) = �

2

∞∑
|n|=1

G(n)
T

i2πn

(
ei 2πn

T
t − 1

)
. (A4)

033811-9



GOR A. ABOVYAN AND GAGIK YU. KRYUCHKYAN PHYSICAL REVIEW A 88, 033811 (2013)

[1] Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73,
357 (2001).

[2] J. Q. You and F. Nori, Phys. Today 58, 42 (2005).
[3] J. Clarke and F. K. Wilhelm, Nature (London) 453, 1031 (2008).
[4] R. J. Schoelkopf and S. M. Girvin, Nature (London) 451, 664

(2008).
[5] Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature (London)

398, 786 (1999).
[6] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina,

D. Esteve, and M. H. Devoret, Science 296, 886 (2002).
[7] J. Johansson, S. Saito, T. Meno, H. Nakano, M. Ueda, K. Semba,

and H. Takayanagi, Phys. Rev. Lett. 96, 127006 (2006).
[8] Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Phys. Rev. Lett.

87, 246601 (2001).
[9] Y. Yu, S. Han, X. Chu, S. I. Chu, and Z. Wang, Science 296, 889

(2002).
[10] D. I. Schuster et al., Nature (London) 445, 515 (2007).
[11] A. Fragner, M. Goppl, J. M. Fink, M. Baur, R. Bianchetti, P. J.

Leek, A. Blais, and A. Wallraff, Science 322, 1357 (2008).
[12] O. Astafiev, K. Inomata, A. O. Niskanen, T. Yamamoto, Yu. A.

Pashkin, Y. Nakamura, and J. S. Tsai, Nature (London) 449, 588
(2007).

[13] M. Neeley et al., Science 325, 722 (2009).
[14] O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Jr., Yu. A.

Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S.
Tsai, Science 327, 840 (2010).

[15] O. V. Astafiev, Y. A. Pashkin, Y. Nakamura, J. S. Tsai, A. A.
Abdumalikov, Jr., and A. M. Zagoskin, Phys. Rev. Lett. 104,
183603 (2010).

[16] A. A. Abdumalikov, Jr., O. V. Astafiev, A. M. Zagoskin,
Yu. A. Pashkin, Y. Nakamura, and J. S. Tsai, Phys. Rev. Lett.
104, 193601 (2010).

[17] S. Ashhab, J. R. Johansson, A. M. Zagoskin, and F. Nori,
Phys. Rev. A 75, 063414 (2007).

[18] S. N. Shevchenko, S. Ashhab, and F. Nori, Phys. Rep. 492, 1
(2010).

[19] Jian Li, M. P. Silveri, K. S. Kumar, J.-M. Pirkkalainen,
A. Vepsäläinen, W. C. Chien, J. Tuorila, M. A. Sillanpää, P. J.
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