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We analytically solve the higher-order nonlinear Schrodinger (HNLS) equation with non-Kerr nonlinearity
under some parametric conditions and obtain results for bright and dark solitary wave solutions. The functional
form of these solutions are different from the traditional sech and tanh bright and dark solitons. Periodic wave
solutions are also presented. Going over to the traveling coordinate, we reduce the complicated HNLS equation
to the Hamiltonian form and treat the resulting equations by the dynamical systems theory. The results of our
study demonstrate that the equation can, in general, support both soliton (bright and dark) and periodic solutions.
We estimate the size of the derivative non-Kerr nonlinear coefficients. The results are in good agreement with
those of the waveguide made of highly nonlinear optical materials. Our calculated values can be used as model

parameters for sub-10 fs pulse propagation.
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I. INTRODUCTION

Optical solitons have potential to become principal infor-
mation carriers in telecommunication due to their capability
of propagating long distances without attenuation and change
in shape. Consequently, many theoretical and experimental
studies were envisaged to analyze the dynamics of solitons in
an optical waveguide. The waveguides used in the picosecond
pulse propagation in nonlinear optical communication systems
are usually of Kerr type. Here the dynamics of light pulses
are described by the nonlinear Schrodinger (NLS) family of
equations with cubic nonlinearity [1]. The validity of the NLS
equation as a reliable model is dependent on the assumption
that the spatial width of the soliton is much larger than the
carrier wavelength. In other words, we require the width
of the soliton frequency to be much less than that of the
carrier frequency. While the robustness of the optical soliton
makes it useful for long distance optical communication, the
high frequency of the carrier wave generates high bit rates.
To increase the bit rate further it is often desirable to use
shorter femtosecond pulses (<100 fs). The propagation of such
short wavelength pulses through waveguides having negligible
fiber loss is modeled by a higher order nonlinear Schrodinger
equation (HNLS) [2]:

E, =i(@Ey + a&|E’E) + a3E + as(|EIE),
+asE(|E?), . (1)

Here z is the normalized distance along the fiber and ¢ is the
normalized time with the frame of the reference moving along
the fiber at the group velocity. The subscripts z and ¢ denote
the spatial and temporal partial derivatives respectively. The
coefficients a¢; (i = 1,2, ...,5), particularly, a; = %, a, =
Vi, a3 = %, as = —Z—L, and as = y; Tk, are the real param-
eters related to group velocity dispersion (GVD), self-phase
modulation (SPM), third-order dispersion (TOD), self steep-
ening, and self-frequency shift due to stimulated Raman
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scattering (SRS) respectively. Here §; = (%)wzm, the dis-
persion coefficients evaluated at the carrier frequency wy,
with B, the inverse of group velocity, B,, the group velocity
dispersion parameter, 83 the third order dispersion (TOD)
parameter, and so on. As the fiber dispersion plays a critical
role in propagation of short optical pulses because different
spectral components associated with the pulse travel at
different speeds given by c¢/n(w), we have B = @ the
mode propagation constant, where n(w) is the refractive
index and c is the velocity of light. More specifically, y; is
a coefficient of cubic nonlinearity, which results from the
intensity-dependent refractive index. The term related to Z—:}
results from the intensity dependence of the group velocity
and causes self-steepening and shock formation at the pulse
edge. The last term related to as = y; Tg incorporates the
intrapulse Raman scattering and originates from the delayed
response, which causes a self-frequency shift. Here the Raman
time constant, Tk, can be estimated from the slope of the
Raman gain (SRS). The characteristic Raman time constant
Tk is defined as the first moment of the nonlinear response
function [3]. Actually, to model intrapulse Raman scattering
the last coefficient as should be as = iy; Tg. However, in the
present work we succeed in deriving analytical solutions in
the case when as is real. That the latter case (as real) also
dominates in the analytical studies (Painlevé property, inverse
scattering transform, Hirota direct method, conservation laws)
undertaken to date [4] to show its integrable nature and obtain
different types of exact solutions, e.g., w-shaped solution,
bright and dark optical solitary wave solutions, etc. Many
recent works [4] represent a significant advance as compared
to previous ones, and the extension of the work to the case of
as imaginary represents a theoretical challenge that should be
undertaken in the near future.

Physical processes in materials and molecules which occur
on a femtosecond time scale can be understood using ultrafast
lasers with pulses as short as 10 fs. Laser spectroscopic
techniques have been widely applied to all fields in science
including chemistry, physics, and biology to get an idea about
microscopic insights into bulk materials, molecules, as well as
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chemical and biochemical reaction processes, which are still
unknown to us exactly. The advances in ultrashort laser pulses
technology make it possible to observe the coherent motion
of atoms, interaction of electrons with their environment,
and phonon dynamics in various molecular systems and bulk
materials in femtosecond resolution. In addition to these
current applications in telecommunication and ultrafast signal
routing systems, as the intensity of the incident light field
becomes stronger, non-Kerr nonlinear effects come into play.
Due to these additional effects, the physical features and
the stability of the NLS soliton can change. The way the
non-Kerr nonlinearity influences NLS soliton propagation is
described by the NLS family of equations with higher degree of
nonlinear terms [5]. To increase the channel handling capacity
and ultra-high-speed pulse, it is necessary to transmit solitary
waves at a high bit rate (*1—10 fs) of ultrashort pulses, which
can be seen in many applicative contexts such as highrepetition
pulse sources based on fiber technology [6]. At the same time,
it is also important to include some additional higher-order
perturbation effects to the HNLS equation to analyze the
solitary wave solution in a non-Kerr nonlinear medium.

In this paper we study the bright and dark solitary wave
solutions for a HNLS equation that contains the time derivative
of non-Kerr nonlinear terms and estimate the size of model
coefficients, which will be useful to simulate propagation
of very short pulses of width around sub-10 fs in highly
nonlinear optical fibers. The paper is organized as follows:
Sec. II presents a generalized HNLS equation with derivative
non-Kerr nonlinear terms, which describes propagation of very
short pulses of width around sub-10 fs in highly nonlinear
optical fibers. In Sec. III we present exact solitary wave
solutions of our model equation in the form of bright, dark,
and periodic solutions. We also present here the phase plane
analysis and discuss various results on the existence of above
solutions along with the linear stability check. In Sec. IV we
present a physical discussion and some applications of our
model equation. Finally, in Sec. V we summarize our outlook
on the present work and make concluding remarks.

II. MODEL EQUATION

We consider the higher-order NLS (HNLS) equation with
non-Kerr term [7], which can be written in terms of a slowly
varying complex envelope of the electric field E(z,t), as

E, = i(a1 Ey + &|EIPE) + a3 Ey + as(|E)PE),
+asE(|E1?), +iag|EI'"E + a7(|EI*E), + asE(|E|*),.
)

The terms related to coefficients ag, a7, as in Eq. (2)
represent the quintic non-Kerr nonlinearities. The quintic
nonlinearities arise from the expansion of the refractive index
in power of intensity I/ of the light pulse: n =ng+n, 1 +
ng I* + - - -. Here ny is the linear refractive index and n,, ng
are the nonlinear refractive indices and originate from third-
and fifth-order susceptibilities respectively. The polarizations
induced through these susceptibilities give the cubic and
quintic (non-Kerr) terms in a nonlinear Schrodinger equation.
The nonlinearity that arises due to fifth-order susceptibility can
be obtained in many optical materials such as semiconductors,
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semiconductor doped glasses, AlGaAs, polydiacctylene
toluene sulfonate (PTS), chalcogenide glasses, and some trans-
parent organic materials. When the last three terms related to
ag, ay, ag in Eq. (2) are ignored, the resulting equation becomes
the HNLS equation as given in Eq. (1). In a recent paper [7]
we investigated the dark-in-the-bright (DITB) solitary wave
solution of Eq. (2). The DS or DITB solitary wave solution is
composed of the product of bright and dark solitary waves. We
also investigated the stability of the DITB solution under some
initial perturbation on the parametric conditions. The shape
of the pulse remains unchanged up to 20 normalized lengths
even under some very small violation in parametric conditions.
More recently [8], we studied the modulational instability (MI)
of Eq. (2) with fourth-order dispersion in the context of optics
and presented an analytical expression for MI gain to show the
effects of non-Kerr nonlinearities and higher-order dispersions
on MI gain spectra. In our study we also demonstrated
that MI can exist not only for an anomalous group velocity
dispersion (GVD) regime but also in the normal GVD regime.
We further investigated that the quintic non-Kerr nonlinear
terms are more important than the cubic Kerr nonlinearity
because non-Kerr nonlinearities are responsible for stability
of localized solutions. But in the previous works [5,7,8] the
solitary wave solutions in the presence of higher non-Kerr
nonlinearity have not been investigated. In a very recent work,
Triki and Taha [9] presented solitary wave solutions for the
HNLS equation including non-Kerr nonlinear terms up to the
coefficient ag of Eq. (2).

III. SOLITARY WAVE SOLUTIONS AND PHASE
PLANE ANALYSIS

To investigate the existence of analytic wave solution of the
HNLS equation in the presence of non-Kerr terms we begin
by scaling the variables of the Eq. (2) in the form

E=bV, z=0b§&, and t=Dbst

and choosing b;, by, and b3 such that the coefficients
corresponding to GVD, SPM, and TOD become unity. Thus
in the scaled formed of the Eq. (2) becomes

We = i(Wer + (W) + Worp + o (W PT), + 0 U(]?),

. 4 4 4
+io| V"W + ay(|W["V) + as W (W], 3)
where
bfb2a4 asay bfb2a5 asday
o = ——— = ——, 0= = ’
b3 aras b3 aras
4 a6a% b‘l‘bza7 a7af
o3 :blbzaﬁ—ﬁ, oy = =773 and
asya; b3 asa;

Lo

a

3
In writing (3) we have chosen b; = (#)%, b, = =3, and
b3 _a 243
al ’ . . .
To obtain the exact solitary wave solutions of Eq. (3) we
consider a solution of the form

=0

a

W(E, 1) = Pt + vE)e! B9 = P(y)e/ K0 (4)
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with P(x) is real and x = t + v€ is often referred to as the
traveling coordinate. Substituting Eq. (4) into Eq. (3) we will
get an equation of which the imaginary part gives a second-
order ordinary differential equation, whereas a third-order
differential equation results from the real part. Now removing
the exponential terms from both the equations and integrating
once of the third-order equation, one can obtain the resulting
equations as

3o +2 Sy + 4
Py = (v —2Q+ 3P — 2T 20 py 0 A s

3 5
(5a)
and
) (1—Qay),_; (03— Qo) s
Pux = (1-3Q) _(1—3Q)P_ (1—3Q)P'
(5b)

Equations (5a) and (5b) are identical if we equate the
coefficients of P, P3, and P°.

Before deriving explicit localized solutions, we shall
carry out a qualitative analysis of the second-order ordinary
differential equation obtain from (5a) written as

d2
P _ aP —2bP* — 3¢P>. (6)
dx?
Now multiplying (6) by P, and integrating we get
(P,)? = aP* — bP* — cP° +2€, (7)

where a = (v —2Q2 +392), b = 3“‘22"‘2, c= 5“4]24"‘5, and £
is the arbitrary constant of integration. Equation (6) describes

the evolution of the anharmonic oscillator with potential
a b c
UP)=—=P>+ -P*+ =PS. 8
(P) 2P + 2P + Z”P (8)

Equation (6) can be represented by two equivalent first-order
differential equations given by

dpP
I = Q = p(P, Q) (say) (92)
X
and
dQ 3 5
E =aP —2bP° —3cP’ = q(P, Q) (say). (9b)

It is rather straightforward to show that Egs. (9a) and (9b) form
a Hamiltonian system, satisfying the canonical equations
dP  d0H dQ  JH
dy ~— 99Q dy =~ P’
with the integration constant £ given in Eq. (7) as the
Hamiltonian H of the dynamical system described by Eq. (6).
We obtained five equilibrium points (P, Qf) (i =1, ...,5)
of Eq. (10) by solving 42 = 0 and ‘% = 0. These are

dx
b /b2+3ac b ~/b2+3ac

<_\/_§_T’O>’ - +T’O>’

( _ b Jb+3ac O) .

©0,0),
3¢ 3¢ ’

(10)

( _L+vb2+3uc 0> ,

3¢ 3¢ ’
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As we have written the equation in the form of (9), following
the general criteria for the linear stability analysis, we now
make use of the eigenvalues of the Jacobian matrix [10]

T, T»
M—<T3 T4), det M #0 (11)

to disclose the relationship between the critical points and the
solutions supported by Eq. (6). We can construct the elements
of the matrix in Eq. (11) by using

ap ap
T=— % ) T=— % %)
1=gpleen, T 8Q|(P,Q)

T_8q| T_aql
3= 9P (P*, Q%) » 4 = 90 (P*, Q%)+

Here (P}, Q) stands for the critical points. In the following
we will discuss two cases.

A. Casel: @ # }

Equating (5a) and (5b) we get the following necessary and
sufficient conditions on €2 and equation for k in terms of €2:

_ 3a; + 200 — 3 _ Say + dos — Soz

6(c + a2) (100 + 1205 2%
and
k=1-3Q0w—-2Q+3Q2%) - Q>+ Q° (12b)
with constraint relations
a4:3;ﬂ, og:%, and a3=§. (13)

For zero energy (€ = 0) we have found the solution of Eq. (7)
as

2a%\/(ﬁ — b e2Vax)2 4 4qc eAVax evVax
Vla — (b2 — 4ac) eVax 2 + 16ab’c Vx|

provided that @ > 0, b > 0. Now using Eqgs. (4), (12b), and
(14) we can write the solution of Eq. (3) as

Pl =

(14)

\Il(s .[) — P(T + vs) ei{[(l739)(1}7294’392)792#»93]579'[}. (15)

The intensity profile of the solitary wave solution [Eq. (15)]
is shown in Fig. 1(a), as computed from Eq. (3) for the
values a = v =1.6999, b = %, and ¢ = é One can check
the evolution of the intensity profile. It is interesting to note
that the wave profile remains unchanged during evolution,
which we have shown in Fig. 1(b). For a negative value
of the parameter a, Eq. (3) supports the periodic solution.
We have shown the periodic wave solution profile and its
evolution in Figs. 2(a) and 2(b). Here we have taken the
same parameter values as that in Fig. 1 but v = —1 such that
a < 0. Thus we have seen for Q = 0 (i.e., 301 + 20, = 3), and
consequently, a = v, Eq. (3) supports the bright solitary wave
solution (a > 0) and periodic solution (a < 0) respectively.
We can easily check the existence of bright and periodic
solutions by using the phase plane analysis. For (a = 1.6999,
b= % and ¢ = %), the real critical points (P}, QF) are
(—1.02218,0), (0,0), and (1.02218, 0). Using the general
criteria for the linear stability analysis, we have checked
from the eigenvalues of the Jacobian matrix in Eq. (11) that
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FIG. 1. (Color online) (a) Intensity of the solitary wave profile |¥ (0, 7)|? as a function of 7 and its (b) evolution as computed from Eq. (15)

for the values a = v =1.6999 and b = ] and ¢ = 1.

the equilibrium point (0, 0) is a saddle or hyperbolic type
and (£1.02218, 0) represents elliptic equilibrium points, also
called centers. A numerically computed phase trajectory near
the equilibrium points (—1.02218, 0), (0, 0), and (1.02218, 0)
is shown in Fig. 3(a), which corresponds to center, saddle, and
center, respectively, as expected. It is apparent that between
the external (phase curve A) and internal closed orbits (curve
C) there exists a phase path which joins the equilibrium points
(0, 0) to itself [denoted by path B in Fig. 3(a)] and is a form of
separatrix known as a homoclinic orbit. The separatrix is the
curve that separates the phase space into two distinct areas.
The homoclinic orbit that enters or emerges from the saddle
point (0, 0) represents the bright solitary wave solution to the
equation which we have shown in Fig. 1(a). For this choice, the
potential of the system is of double-well nature with minima
at P = £1.02218 and a local maximum at P = 0, have been
shown in Fig. 3(b).

It is also interesting to see from the dynamical system
analysis that for the value a < 0 the eigenvalues of the Jacobian
matrix in Eq. (11) for the equilibrium point (0, 0) are purely
imaginary, and the point represents the center or elliptic
equilibrium point, and the closed phase plot shown in Fig. 4(a)
corresponds to periodic solution, which we have shown in
Fig. 2(a). Also, as expected, for this choice, the potential of
the system is of single-well nature with minimum at P = 0 as
can be seen from Fig. 4(b).

Dark solitary wave: We have seen for £ = 0, the HNLS
equation in the presence of non-Kerr terms supports the bight

(a)
[¥(0,7)1"2

DN N

VA VAV JAVARVAVRVAVERS

(b)

w(EDNN2

optical wave solution provided that the parameter a in Eq. (7)

is positive. Now we chose £ = — % andc = — % such that we
can write Eq. (7) in the form
ay = (- @=0P _%dP (16)
xX= 3ab '
Integrating Eq. (16) we find
ax
P = a7

Vb/(-3+a XZ).

Thus we can write the solitary wave solution of Eq. (3),
with the same constraint relations stated in (13), as

a(t +vé)
Vby[-3 +a(t +vE)]

withk = (1 — 3Q)(v — 2Q + 3Q?) — Q? + Q*, provideda <
0, with v = 2Q — 3Q? — Z(3a; + 202). In Fig. 5(a) we have
plotted the intensity profile of the optical solitary wave
solution with the parameter values and a = v = —1.23999,
b= —%, and ¢ = —%, while Fig. 5(a) depicts its evolution.
We call this solution a dark solitary wave in the sense that
the intensity profile associated with such a soliton exhibits
a dip in a uniform background. and the asymptotic absolute
value of W(&, t) tends toward a constant nonzero value for
large values of 7. The existence of a dark soliton can be
understood using the phase plane analysis. We can see the
nature of phase trajectories from Fig. 6(a) for three values

ol (ke—90)

VE. 1) =

(18)

FIG. 2. (Color online) (a) Intensity of the periodic wave profile | (0, 7)|? as a function of T and its (b) evolution as computed from Eq. (15)

forthevaluea:v:—landb:%andc: é
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FIG. 3. (Color online) (a) Phase trajectory for the system in Eq. (16). The used parameter values are a = 1 (A), a = 1.6999 (B), and

a=18(C),b=
1

ng.

1
3

of the parameter a, namely, a = —1.1, a = —1.23999, and
a = —1.6. We have used the other parameters values as

b= —% and ¢ = —%. Following the general criteria for the
linear stability analysis, we have checked the eigenvalues of
the Jacobian matrix from Eq. (11) for each of the equilibrium
points (P, QF) using the above three set of values (a, b, c).
In particular, for (a = —1.1,b = —%, c = —0.0757576), we
have a pair of saddle center overlapping at (—1.48324, 0) and
(1.48324, 0) respectively and (0, 0) represents a center. A’ in
Fig. 6(a) shows the corresponding phase portrait. The phase
curve C’ represents the periodic curve, and as expected for
(a=—1.6,b = —}, c = —0.0520833), the only critical point
(0, 0)is a center. For the parameter values (a = —1.23999, b =

—%, c= —%), the equilibrium points (£1.5748,0) are of
saddle or hyperbolic type, and (0, 0) represents the elliptic
equilibrium point, also called the center, and the corresponding
phase curve B’ is heteroclinic orbit which connects the periodic
orbit. In this context, a heteroclinic orbit x(¢) refers to a

bounding trajectory of a system if there are two distinct saddle

Q

(b)

FIG. 4. (Color online) (a) Phase trajectory for the system in Eq. (6). Here, for both plots, we have used the values a = —1, b =

andc = é and (b) Shape of the potential function (double- well potential) as computed from Eq. (7) fora = 1,b = %, and

points at x{ and x3 connected by the orbit, one corresponding
to the forward asymptotic time and the other to the reverse
asymptotic time limit, i.e., x(f) - x{ as t — —oo and
x(t) - x; as t— oo.

The asymptotic values of the solution [Eq. (7)]

P(x) — 1.5748 as

X = —00

and
P(x) — —1.5748 as

X — 00.

exactly match with the saddle foci for the particular parametric
values, a = —1.23999, b = —1, and thus the corresponding
phase curve B’ as shown in Fig. 6(a) is heteroclinic orbit.
The existence of a heteroclinic orbit connecting the periodic
solutions represents the dark soliton [11], which we have
shown in Fig. 5(a). We also have shown the shape of the
potential function in Fig. 6(b).

Although bright solitons are relatively easy to generate in
optical fiber, the dark solitons are less sensitive to optical
fiber loss, less influenced by noise, and are more stable

u®P)

%, and

c= é and (b) shape of the potential function (single- well potential) as computed from Eq. (8).
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w(E D12

FIG. 5. (Color online) (a) Intensity of the solitary wave profile |¥(0, 7)|* as a function of  and its (b) evolution as computed from Eq. (17)

b2

for the value a = v = —1.23999, b = —1, and c = —Z.

against Gordon-Haus jitter in long communication line [12].
As the mutual interaction between two neighboring dark
solitons is much weaker than that between two bright solitons
[13], the properties of the dark soliton attracted scientists in
communication systems. But it is difficult to use a dark soliton
with a tanh-type wave form in a transmission system because
dark pulses cannot be easily generated.

B. Case2: @ = %
Equation (5b) takes the form

k+ Q> — Q)P — (1 — Qu)P? — (a3 — Qug)P° = 0.

(19)
Setting the coefficients of P, P3 and P° to zero in Eq. (19) and
using Q = % we obtain k = —% and the constraint condition
1 a3 . . .
Q=— and Q= —, which implies a4 = o] o3.
03] (673
(20)

In this case, P(x) satisfies the ordinary differential equation
similar to that in (7) but only differs in the coefficient values:

(P,)? =d P> —b'P* — 'P° +28. 1)
In this case, a’ = (v — %), b = 9+§°‘2, = 5“4;;4“5, and &’

is the arbitrary constant of integration. In case 2, similar to
Eq. (7) one can solve Eq. (21) to get the bright, dark, and

(@)

periodic wave solutions of Eq. (3). Only here the coefficients
a', b, and ¢’ are different from that in Eq. (7).

IV. DISCUSSION

Before arriving at a conclusion, let us discuss some
application of the above theoretical prediction. For large
channel-handling capacity in the frame of dense time-domain
multiplexing and for high speed, it is necessary to transmit
a solitary wave of ultrashort pulses at a high bit rate. At the
same time it is also important to consider the higher-order
non-Kerr-like nonlinearity including derivative in the HNLS
equation for sub-10 fs pulse propagation. The relevance of
these terms is also important in the frame of postsoliton
compression that can be achieved in highly nonlinear material.
Compared to silica glasses, chalcogenide glasses exhibit an
extremely high nonlinear refractive-index coefficient that can
be two or three orders of magnitude greater than that of silica at
1.55 um. They also offer several distinctive optical properties
such as a transmission window that extends far into the infrared
(IR) spectral region (up to 25 um for telluride glasses).
Because of high nonlinearity and large IR transparency,
chalcogenide fibers are well suited for compact Raman ampli-
fiers, supercontinuum generation, and other mid-IR sources.
For experimental verification of the propagation of solitary
wave, one may use the waveguide made of chalcogenide
glasses, which are made from heavy chalcogen elements such

(b)

FIG. 6. (Color online) (a) Phase trajectory for the system in Eq. (6). Here we have used the values a = —1.1(A’), a = —1.23999 (B’),
a=-16(C", b= —%, and ¢ = —;’—z and (b) shape of the potential function as computed from Eq. (8) for a = —1.23999, b = —%, and

b2
=—%-
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as S, As, Se, and Te, having electron shells which are easily
polarizable under an electromagnetic field excitation. For
example, the chalcogenide glass As,Se;, the nonlinear index
coefficients [14,15] are np, =2.2 x 1077 m?/W and n4 =
—6.5 x 1073 m*/W? and for the As,S; sample, the values
are ny = 4.2 x 1078 m?/W and ny = —6.0 x 10732 m*/W?2.
In general, the nonlinear coefficients y; (i = 1, 2) can be es-

timated from y; = itf;, where n; (j = 2, 4) are the nonlinear
refractive index coefficient. Here A.; = mw? is the effective
fiber core area, where w is the core radius of the fiber, which
varies from 3 to 3.8 um for As,Se; and 1.3 to 1.7 um
for As;S3. A, the typical telecommunication wavelength, is
1.55 pm. For the range of cubic nonlinear coefficient |y;| =
2000-3000 W1 /km, we have calculated the values for quintic
nonlinear coefficients: |y»| = 1.3-3 W2 /km for As,Se; and
ly»| = 3.3-7.6 W2 /km for As,S3 respectively. The 1.55 yum
window is mainly of interest for long-distance telecommu-
nication application. The other important feature of this
transmitted wavelength is that it matches the fiber’s low-
loss regions. Fiber energy loss (absorption) compensation
with sufficient Raman gain and distortionless propagation
of picosecond soliton pulses in a monomodal optical fiber
have been experimentally demonstrated by Mollenauer et al.
[16]. Chalcogenide glasses have attracted much interest in
the last few years as a nonlinear optical material in the
telecommunication wavelength window of 1550 nm and are
promising candidates for planar nonlinear optical (NLO) rib
waveguide devices due to high nonlinearity, high refractive
index, and nonlinear optical losses (0.05 dB/cm) at 1550
nm [17,18]. In a very recent work, El-Amraoui et al. [19]
measured the fiber losses as low as 0.35 dB/m at 1.55 um for
a45-m-long 2.3 um core size fiber. The related nonlinear Kerr
coefficient is estimated as high as 2750 W~ 'km™!. It is also
important to note the fact that chalcogenide glasses exhibit
the highest nonlinear refractive indices and suffer, at worst,
only moderately from two-photon absorption. Also they do not
suffer from free-carrier absorption. The nonlinear absorption
faced by the fiber material can be compensated using derivative
higher-order nonlinear Raman gain terms. In this context,
Tuniz et al. [20] studied how Raman gain and nonlinear
absorption counteract across the C and L bands in two-photon
absorption effects in single-mode chalcogenide fiber.

Now, physically, for the ultrashort laser pulse propa-
gation through optical fiber at telecommunication wave-
length 1.55 um (see the last reference of Ref. [2]) and
carrier frequency wy = 1.22 x 1057, ie., Ty = 5.1475 x
10~3s, if we choose the typical real experimental value for

the model parameters of Eq. (2) as a; = % = 10ps?/km,

a, =y =2765W~!/km, a3 = % =0.0235ps’/km, a4 =
—g—; = —14.2328 W~ /[2n)kmTHz], and a5 =y T; =
14931 W fs/km (Ty = 5.4fs for chalcogenide glass fiber
[15]), we can estimate the size of the coefficients of the
non-Kerr nonlinearities of Eq. (2) from the constraint relations
in Eq. (13). The calculated values for the coefficients of non-

T 3dal .
Kerr nonlinearities are ag = y» = zz‘:‘ =2.533 W2 /km,
1

a7 = 2295% _ 1304 x 10~2 W~2/[(27r)km THz], and ag=

3
Say

aaies 11.3996 W2 fs/km. For the sub-10 fs bright pulse

3
2ay
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communication in a non-Kerr medium with the above model
parameter values for Eq. (2), one can check that we need
chalcogenide optical fiber of the type As,Ses of core radius
3.20415 pum and for As,S; of core radius 1.399 um respec-
tively. If we use the same parameter values for the dark pulse
propagation, one can obtain the energy value for a dark pulse
S = 02939 _gg 779,

__a
asé=—g 301 +20

V. CONCLUSION

In conclusion, we have reported optical bright and dark
solitary wave solutions of higher-order nonlinear Schrodinger
equation in the presence of non-Kerr terms subject to constraint
relations among the parameters. The derivative Kerr and non-
Kerr nonlinear terms are important for compensation of the
nonlinear absorption during propagation in highly nonlinear
materials. These terms also play an important role for the post-
soliton compression to get highly stable compressed optical
pulses. We also have presented the periodic solutions, which
are very meaningful in optics. We followed the dynamical
systems theoretic approach to study qualitatively the existence
of bright, dark, and periodic solitary wave solutions. We
presented the phase space behavior of the solutions together
with their existence curves such as homoclinic, heteroclinic,
and periodic orbits. We have seen that the estimated values for
non-Kerr nonlinear model parameters of Eq. (2) agreed with
those of the waveguide made of chalcogenide glasses. So the
inclusion of the non-Kerr nonlinear terms in Eq. (1) is really
needed to describe the sub-10 fs pulse propagation in highly
nonlinear optical fiber. As in case 1, we have checked the
parametric condition in Eq. (21) for case 2 using the model
parameters given above. The quintic non-Kerr nonlinear terms
in contemporary optics have become very crucial to upcoming
applications in ultrafast signal routing systems, double doped
optical fiber, optical switching, etc. The periodic solution
can be used to study the formation of solitons in the periodic
stricture if one considers the quintic non-Kerr nonlinearity in a
fiber Bragg grating [21]. Finally, with the calculated parameter
values for highly nonlinear optical fiber made of chalcogenide
glasses, the HNLS equation, in the presence of non-Kerr
nonlinear terms as a higher-order perturbation, not only could
find application in broadband telecommunication that extends
far into the infrared (IR) spectral region for the bright and
dark optical pulses, but also Eq. (2) may be a new model
equation for experimental designing sub-10 fs optical pulse
propagation, which will be applicable for the next generation
optical fiber using chalcogenide-type highly nonlinear
optical glasses. Finally, our study may provide us with the
possibility to explore physical phenomena with the help
of laser spectroscopic techniques and ultrashort laser pulses
technology to understand the most basic properties which
determine the dynamic response of materials in femtosecond
resolution.
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